三角形的重心
三角形的重心与外心

三角形的重心与外心三角形是几何学中最基本的多边形之一,在三角形的研究中,重心和外心是两个重要的概念。
本文将详细介绍重心和外心的定义、性质以及计算方法。
一、重心重心是指三角形内部所有三条中线所交的一点,通常表示为G。
在任意三角形ABC中,以A、B、C三个顶点为起点,分别向对边中点引垂线,这三条垂线交于一点G,即为三角形的重心。
重心的坐标可以通过以下公式计算得出:G(x,y) = [(x1+x2+x3)/3, (y1+y2+y3)/3]二、重心的性质1. 重心将三角形划分为六个三角形,其中三个小三角形的质心与重心重合。
2. 重心到三角形三个顶点的距离比例为2:1,即AG:BG:CG=2:1。
3. 重心是三角形内部离三条边最近的点。
4. 如果三角形的三边长度相等,则重心与内心、外心重合。
5. 重心是三角形垂心、内心和外心的连线的交点之一。
三、外心外心是指三角形外接圆的圆心,通常表示为O。
在任意三角形ABC 中,取三个角的外角平分线,这三条外角平分线的交点即为三角形的外心。
计算三角形外心的坐标比较复杂,可以利用外接圆的性质来简化计算。
由于外接圆的圆心到三角形三个顶点的距离相等,因此可以通过求解三角形两边的垂直平分线的交点来确定外心的坐标。
四、外心的性质1. 外心是三角形外接圆的圆心,外接圆的半径等于三角形的外接圆半径。
2. 外心与三个顶点的连线相等,即OA=OB=OC。
3. 外心是三角形三条高的交点之一。
4. 如果三角形是等边三角形,则外心与重心、内心重合。
五、计算方法1. 重心的计算方法已在前文中提及,即取三个顶点的坐标的平均值。
2. 外心的计算方法可以通过以下步骤进行:(1)计算三边的中垂线斜率,分别记作k1,k2,k3;(2)计算三边中点的坐标,分别记作M1,M2,M3;(3)计算三条中垂线的方程,分别为L1:y = k1x + b1,L2:y = k2x + b2,L3:y = k3x + b3;(4)求解方程组 L1与L2,L2与L3的交点,即为外心的坐标。
三角形重心性质及应用

三角形重心性质及应用三角形的重心是三条中线的交点,也是三个顶点与对应中线交点的连线所形成的三角形中的重心。
三角形重心有很多特点和应用。
首先,三角形的重心坐标性质。
假设三角形的三个顶点的坐标分别为A(x1, y1)、B(x2, y2)、C(x3, y3),那么重心的坐标可以表示为G(x, y),其中x=(x1+x2+x3)/3,y=(y1+y2+y3)/3。
这个性质可以很容易地通过几何推导得到,也可以通过向量运算证明。
这个性质可以用来计算三角形的重心坐标。
其次,三角形的重心与重心连线。
三角形的重心与三个顶点分别连线,可以得到三条中线。
中线是三角形的一个特殊的线段,它连接了一个顶点与对应的底边的中点。
三角形的重心恰好是三条中线的交点,因此可以通过重心连线来确定重心的位置。
再次,三角形的重心与面积。
三角形的重心将三角形划分为六个小三角形,其中每个小三角形的面积都相等。
这个性质可以用于求三角形的重心坐标。
设三角形的重心坐标为G(x, y),且已知三个顶点的坐标为A(x1, y1)、B(x2, y2)、C(x3, y3),则可以通过面积的性质得到x=(Ax1+Ax2+Ax3)/3、y=(Ay1+Ay2+Ay3)/3。
此外,三角形重心的应用还有很多。
其中之一是三角形质心定理。
根据三角形的重心定义,可以推导出质心与顶点的距离满足d(G, A):d(G, B):d(G, C)=2:2:1。
这个性质可以用于解决一些几何问题,例如求质心到某一点的距离比例等。
此外,三角形重心还可以用于求解三角形的面积。
根据面积的定义,可以得到三角形的面积等于底乘以高的一半。
对于任意一个三角形ABC,以重心G为底可以得到一个位于底边上的高。
因此,可以通过底边的长度与高的长度来计算三角形的面积。
最后,三角形的重心还可以用于设计平衡结构。
在工程中,有时候需要设计一个三角形结构,使得结构保持平衡。
此时,可以选择使得结构的重心和支点重合,从而达到平衡的效果。
三角形的重心、垂心、内心、外心

三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。
一、三角形重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
定理证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB 因此,垂心定理成立!四、三角形内心定理三角形内切圆的圆心,叫做三角形的内心。
三角形的重心是什么

三角形的重心是什么三角形的重心是三角形三条中线的交点。
当几何体为匀质物体时,重心与形心重合。
重心的性质1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。
5.重心是三角形内到三边距离之积最大的点。
6.三角形ABC的重心为G,点P为其内部任意一点,则3PG²=(AP²+BP²+CP²)-1/3(AB²+BC ²+CA²)。
7.在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则AB/AP+AC/AQ=3。
8.从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB²+BC²+CA²)为半径的圆周上。
9、G为三角形ABC的重心,P为三角形ABC所在平面上任意一点,则PA²+PB²+PC²=GA²+GB ²+GC²+3PG²。
顺口溜三条中线必相交,交点命名为重心;重心分割中线段,线段之比二比一。
三角形的五心1、内心:三角形三条内角平分线的交点,即内切圆的圆心。
内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。
2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。
该点叫做三角形的外心。
3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心。
4、重心:重心是三角形三边中线的交点。
5、旁心:三角形的一条内角平分线与其他两个角的外角平分线交于一点,该点即为三角形的旁心。
三角形重心的坐标公式

三角形重心的坐标公式三角形的重心是一个三角形内部的点,它由三角形的三个顶点的位置决定。
它在三角形的三条中线的交点处,中线是三角形的两个顶点和相应边中点之间的线段。
设三角形的三个顶点分别为A(x1, y1), B(x2, y2), C(x3, y3)。
则三角形重心的坐标可以通过以下公式计算:重心横坐标 Gx = (x1 + x2 + x3) / 3重心纵坐标 Gy = (y1 + y2 + y3) / 3这个公式的原理是,对于任意三角形ABC,假设重心为G,则AG的长度为BC中线的两倍,BG的长度为AC中线的两倍,CG的长度为AB中线的两倍。
因此,重心的横坐标是三个顶点横坐标之和的1/3,纵坐标是三个顶点纵坐标之和的1/3,可通过计算得到重心的坐标。
三角形的重心是一个非常重要的点,它具有以下性质:- 重心到三角形的三边距离的平方和最小,即重心到三角形三边的距离的平方和最小。
- 在质心坐标系中,重心的坐标为(1, 1, 1),即重心到边的距离与坐标轴上单位向量的点积均为1。
- 重心将三角形的内部面积按照三等分。
- 重心是一个凸包上的点,即任意两点之间的线段始终都在重心到该线段的垂直平分线上。
重心是解决三角形相关问题的重要工具,如计算三角形的面积、判断三角形是否重合、确定三角形的相似性等等。
通过计算重心的坐标,可以得到三角形的重心位置,进而进行相关计算。
除了重心的坐标公式,还可以通过其他方法求取三角形的重心,如向量法、矢量法、质心坐标法等。
这些方法都可以得到同样的结果,只是计算的过程和原理略有不同。
总之,三角形的重心是一个特殊的点,它的坐标可以使用上述公式进行计算。
重心具有一些特殊的性质和应用,对于理解和解决三角形相关问题具有重要意义。
三角形重心定理

一、三角形重心定理 二、三角形外心定理 三、三角形垂心定理 四、三角形内心定理 五、三角形旁心定理 三角形五心定理二、三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。
一、三角形重心定理 三角形的三条边的中线交于一点。
该点叫做三角形的重心。
重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。
二、三角形外心定理 三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A 为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。
c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。
外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。
5、外心到三顶点的距离相等 三、三角形垂心定理 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
三角形重心定理

一、三角形重心定理 二、三角形外心定理 三、三角形垂心定理 四、三角形内心定理 五、三角形旁心定理 三角形五心定理二、三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。
一、三角形重心定理 三角形的三条边的中线交于一点。
该点叫做三角形的重心。
重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。
二、三角形外心定理 三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。
c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。
外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。
5、外心到三顶点的距离相等 三、三角形垂心定理 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
三角形重心

5、 三 角 形 内 到 三 边 距 离 之 积 最 大 的 点 。
O是重心,向量OA+向量OB+向量OC=零向量。
三角形重心
三角形重心
三角形重心是三角形三边中线的交点。当几何体为匀质物体时,重心与形心重合。
定 义 三角形在三条中线的交点
性质比例 重心到顶点与到对边中点比为 2: 1
性质证明
1、重心到顶点的距离与重心到对边中点的距离之比为 2: 1。
例:已知:△ABC,E、F是AB,AC的中点。EC、FB交于G。 求证:EG=1/2CG 证明:过E作EH∥BF交AC于H。 ∵AE=BE,EH//BF ∴AH=HF=1/2AF(平行线分线段成比例定理) 又∵ AF=CF ∴HF=1/2CF ∴HF:CF=1/2 ∵EH∥BF ∴EG:CG=HF:CF=1/2 ∴EG=1/2CG
2、重心和三角形 3个顶点组成的 3个三角形面积相等。
证明方法:
在△ABC内,三边为a,b,c,点O是该三角形的重心, AOA'、BOB'、COC'分别为a、b、c边上的中线。 根据重心性质知,OA'=1/3AA',OB'=1/3BB',OC'=1/3CC', 过O,A分别作a边上高OH',AH,
可知OH'=1/3AH 则,S△BOC=1/2×OH'a=1/2×1/3AHa=1/3S△ABC; 同理可证S△AOC=1/3S△ABC,S△AOB=1/3S△ABC, 所以,S△BOC=S△AOC=S△AOB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对应中线长
尝试练习 分析各部分的面积 分析各部分的长度
F O B A
E
C
D
尝试练习 分析各部分的面积 分析各部分的长度
A
E
O B C
D
求线段长
课堂检测
如图,在Rt△ABC中,∠A=30°,点 D是斜边AB的中点,当G是Rt△ABC的重 心,GE⊥AC于点E,若BC=6cm,则 GE= cm。 B D
G E C
A
今日作业
求面积
在△ABC中,中线AD、BE相交 于点O,若△BOD的面积等于5,求 A △ABC的面积。
E O B
求证:顺次连结矩形四边中点所得的四边形是菱形
选作
D
C
试一试
已知:△ABC中,D、E分别是边 BC、AB的中点,AD、CE相交于G。
GE GD 1 CE AD 3
GE GD 1 求证: CE AD 3
A
E B
G D
C
归纳
1 重心与一边中点的连线的长是对应中线长的 3
1 3
2 重心与一顶点的连线的长是对应中线长的 3
1 3
重心与一边中点的连线的长 重心与一顶点的连线的长
§23.4.2
三角形的重心
设计者 刘书山
请同学们画出
一个三角形的三条中线
第1、2、3竖排画锐角三角形 第4、5竖排画直角三角形 第6、7、8竖排画钝角三角形
导
入
三条中线相交于几个点?
我们把这个点叫三角形的重心
学习目 标 1.理解三角形的重心的含义
2.理解掌握三角形重心的性质
3.运用三角形重心的性质解决问题