三角形的重心定理及其证明

合集下载

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心, 外心, 垂心, 内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理, 外心定理, 垂心定理, 内心定理, 旁心定理的总称.之马矢奏春创作一、二、三角形重心定理三角形的三条边的中线交于一点.该点叫做三角形的重心.三中线交于一点可用燕尾定理证明, 十分简单.(重心原是一个物理概念, 对等厚度的质量均匀的三角形薄片, 其重心恰为此三角形三条中线的交点, 重心因而得名)重心的性质:1、重心到极点的距离与重心到对边中点的距离之比为2∶1.2、重心和三角形3个极点组成的3个三角形面积相等.即重心到三条边的距离与三条边的长成反比.3、重心到三角形3个极点距离的平方和最小.4、在平面直角坐标系中, 重心的坐标是极点坐标的算术平均, 即其重心坐标为((X1+X2+X3)/3, (Y1+Y2+Y3)/3.二、三角形外心定理三角形外接圆的圆心, 叫做三角形的外心.外心的性质:1、三角形的三条边的垂直平分线交于一点, 该点即为该三角形外心.2、若O是△ABC的外心, 则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角).3、当三角形为锐角三角形时, 外心在三角形内部;当三角形为钝角三角形时, 外心在三角形外部;当三角形为直角三角形时, 外心在斜边上, 与斜边的中点重合.4、计算外心的坐标应先计算下列临时变量:d1, d2, d3分别是三角形三个极点连向另外两个极点向量的点乘.c1=d2d3,c2=d1d3, c3=d1d2;c=c1+c2+c3.重心坐标:( (c2+c3)/2c,(c1+c3)/2c, (c1+c2)/2c ).5、外心到三极点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点, 该点叫做三角形的垂心.垂心的性质:1、三角形三个极点, 三个垂足, 垂心这7个点可以获得6个四点圆.2、三角形外心O、重心G和垂心H三点共线, 且OG∶GH=1∶2.(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一极点距离为此三角形外心到此极点对边距离的2倍.4、垂心分每条高线的两部份乘积相等.定理证明已知:ΔABC中, AD、BE是两条高, AD、BE交于点O, 连接CO 并延长交AB于点F , 求证:CF⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB因此, 垂心定理成立!四、三角形内心定理三角形内切圆的圆心, 叫做三角形的内心.内心的性质:1、三角形的三条内角平分线交于一点.该点即为三角形的内心.2、直角三角形的内心到边的距离即是两直角边的和减去斜边的差的二分之一.3、P为ΔABC所在平面上任意一点, 点I是ΔABC内心的充要条件是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).4、O为三角形的内心, A、B、C分别为三角形的三个极点, 延长AO交BC边于N, 则有AO:ON=AB:BN=AC:CN=(AB+AC):BC五、三角形旁心定理三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心, 叫做三角形的旁心.旁心的性质:1、三角形一内角平分线和另外两极点处的外角平分线交于一点, 该点即为三角形的旁心.2、每个三角形都有三个旁心.3、旁心到三边的距离相等.如图, 点M就是△ABC的一个旁心.三角形任意两角的外角平分线和第三个角的内角平分线的交点.一个三角形有三个旁心, 而且一定在三角形外.附:三角形的中心:只有正三角形才有中心, 这时重心, 内心, 外心, 垂心, 四心合一.有关三角形五心的诗歌三角形五心歌(重外垂内旁)三角形有五颗心, 重外垂内和旁心, 五心性质很重要, 认真掌握莫记混.重心三条中线定相交, 交点位置真奇巧, 交点命名为“重心”, 重心性质要明了,重心分割中线段, 数段之比听分晓;长短之比二比一, 灵活运用掌握好.外心三角形有六元素, 三个内角有三边.作三边的中垂线, 三线相交共一点.此点界说为外心, 用它可作外接圆.内心外心莫记混, 内切外接是关键.垂心三角形上作三高, 三高必于垂心交.高线分割三角形, 呈现直角三对整,直角三角形有十二, 构成六对相似形, 四点共圆图中有, 细心分析可找清.内心三角对应三极点, 角角都有平分线, 三线相交定共点, 叫做“内心”有根源;点至三边均等距, 可作三角形内切圆, 此圆圆心称“内心”, 如此界说理固然.。

2020中考数学知识点:三角形的重心公式证明

2020中考数学知识点:三角形的重心公式证明

2020中考数学知识点:三角形的重心公式证明重心是三角形三边中线的交点,三线交一点可用燕尾定理来证明。

三角形的重心已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。

求证:F为AB 中点。

证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。

重心的几条性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。

2.重心和三角形3个顶点组成的3个三角形面积相等。

3.重心到三角形3个顶点距离的平方和最小。

4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/35.重心是三角形内到三边距离之积最大的点。

如果用塞瓦定理证,则极易证三条中线交于一点。

如图,在△ABC中,AD、BE、CF是中线则AF=FB,BD=DC,CE=EA∵(AF/FB)*(BD/DC)*(CE/EA)=1∴AD、BE、CF交于一点即三角形的三条中线交于一点其实考试中不会单独的出现关于三角形的重心问题,而是综合图形知识要领,这就需要大家准确的分析了。

2019-2020学年数学中考模拟试卷一、选择题1.如图,一次函数y=-x 与二次函数y=ax 2+bx+c 的图象相交于点M 、N ,则关于x 的一元二次方程ax 2+(b+1)x+c=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上结论都正确 2.刘主任乘公共汽车从昆明到相距千米的晋宁区办事,然后乘出租车返回,出租车的平均速度比公共汽车快千米/时,回来时路上所花时间比去时节省了小时,设公共汽车的平均速度为千米时,则下面列出的方程中正确的是( )A.B.C. D.3.已知二次函数y =ax 2+bx 的图象经过点A (﹣1,1),则ab 有( )A.最小值0B.最大值1C.最大值2D.有最小值﹣4.统计局信息显示,2018年嘉兴市农家乐旅游营业收入达到27.49亿元,若2020年全市农家乐旅游营业收入要达到38亿元,设平均每年比上一年增长的百分率是x ,则下列方程正确的是( )A .27.49+27.49x 2=38B .27.49(1+2x )=38C .38(1﹣x )2=27.49D .27.49(1+x )2=385.某工厂接到加工 600 件衣服的订单,预计每天做 25 件,正好按时完成,后因客户要求提前 3 天交货,工人则需要提高每天的工作效率,设工人每天应多做件,依题意列方程正确的是( )A.B.C. D.6.64的立方根是( )A .8B .2C .3D .47.如图,在ABC ∆中,90C ∠=︒,按以下步骤作图:①:以点B 为圆心,以小于BC 的长为半径画弧,分别交AB 、BC 于点E 、F ;②:分别以点E 、F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ; ③:作射线BG ,交AC 边于点D ,若4BC =,5AB =,则ABD S ∆=( )A .3B .103C .6D .2038.已知点A (a ,b )是一次函数y=-x+4和反比例函数y=1x 的一个交点,则代数式a 2+b 2的值为( ) A .8 B .10 C .12 D .149.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°10.在半径为8cm 的圆中,垂直平分半径的弦长为( )A .4cmB .43cmC .8cmD .83cm11.休闲广场的边缘是一个坡度为i =1:2.5的缓坡CD ,靠近广场边缘有一架秋千.秋千静止时,底端A 到地面的距离AB =0.5m ,B 到缓坡底端C 的距离BC =0.7m .若秋千的长OA =2m ,则当秋千摆动到与静止位置成37°时,底端A′到坡面的竖直方向的距离A′E 约为( )(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)A .0.4mB .0.5mC .0.6mD .0.7m12.如图菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 顺时针方向旋转90°,则图中阴影部分的面积是( )A.23πB.2332π-C.113122π-D.23π﹣1 二、填空题13.如图,在△ABC 中,点D 在BC 边上,△ABC ∽△DBA .若BD =4,DC =5,则AB 的长为_____.14.﹣19的倒数是_____. 15.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排_____名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.16.抛物线y =x 2﹣2x+m 与x 轴只有一个交点,则m 的值为_____.17.如图,⊙O 的直径AB=8,点C 在⊙O 上,∠CAB=22.5°,过点C 作CD ⊥AB 交⊙O 于点D ,则弧CD 的长为______.18.抛物线22(5)3y x =-+-的顶点坐标是__________.三、解答题19.如图,等边△ABC 中,P 是AB 上一点,过点P 作PD ⊥AC 于点D ,作PE ⊥BC 于点E ,M 是AB 的中点,连接ME ,MD .(1)依题意补全图形;(2)用等式表示线段BE ,AD 与AB 的数量关系,并加以证明;(3)求证:MD =ME .20.如图,一次函数y =kx+3的图象分别交x 轴、y 轴于点B 、点C ,与反比例函数y x n =的图象在第四象限的相交于点P ,并且PA ⊥y 轴于点A ,已知A (0,﹣6),且S △CAP =18.(1)求上述一次函数与反比例函数的表达式; (2)设Q 是一次函数y =kx+3图象上的一点,且满足△OCQ 的面积是△BCO 面积的2倍,求出点Q 的坐标.21.如图,在平行四边形ABCD 中,点E 、F 分别是AB 、BC 上的点,且AE CF =,AED CFD ∠=∠,求证:(1)DE DF =;(2)四边形ABCD 是菱形.22.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程式是重要的数学成就。

三角形重心性质及应用

三角形重心性质及应用

三角形重心性质及应用三角形的重心是三条中线的交点,也是三个顶点与对应中线交点的连线所形成的三角形中的重心。

三角形重心有很多特点和应用。

首先,三角形的重心坐标性质。

假设三角形的三个顶点的坐标分别为A(x1, y1)、B(x2, y2)、C(x3, y3),那么重心的坐标可以表示为G(x, y),其中x=(x1+x2+x3)/3,y=(y1+y2+y3)/3。

这个性质可以很容易地通过几何推导得到,也可以通过向量运算证明。

这个性质可以用来计算三角形的重心坐标。

其次,三角形的重心与重心连线。

三角形的重心与三个顶点分别连线,可以得到三条中线。

中线是三角形的一个特殊的线段,它连接了一个顶点与对应的底边的中点。

三角形的重心恰好是三条中线的交点,因此可以通过重心连线来确定重心的位置。

再次,三角形的重心与面积。

三角形的重心将三角形划分为六个小三角形,其中每个小三角形的面积都相等。

这个性质可以用于求三角形的重心坐标。

设三角形的重心坐标为G(x, y),且已知三个顶点的坐标为A(x1, y1)、B(x2, y2)、C(x3, y3),则可以通过面积的性质得到x=(Ax1+Ax2+Ax3)/3、y=(Ay1+Ay2+Ay3)/3。

此外,三角形重心的应用还有很多。

其中之一是三角形质心定理。

根据三角形的重心定义,可以推导出质心与顶点的距离满足d(G, A):d(G, B):d(G, C)=2:2:1。

这个性质可以用于解决一些几何问题,例如求质心到某一点的距离比例等。

此外,三角形重心还可以用于求解三角形的面积。

根据面积的定义,可以得到三角形的面积等于底乘以高的一半。

对于任意一个三角形ABC,以重心G为底可以得到一个位于底边上的高。

因此,可以通过底边的长度与高的长度来计算三角形的面积。

最后,三角形的重心还可以用于设计平衡结构。

在工程中,有时候需要设计一个三角形结构,使得结构保持平衡。

此时,可以选择使得结构的重心和支点重合,从而达到平衡的效果。

证明重心到三角形的三顶点的距离平方和最小

证明重心到三角形的三顶点的距离平方和最小

证明重心到三角形的三顶点的距离平方和最小重心到三角形的三顶点的距离平方和最小是一个重要的几何问题。

在本文中,我们将探讨如何证明这一结论。

让我们回顾一下什么是重心。

在一个三角形ABC中,重心是三条中线的交点,其中中线是连接顶点和对边中点的线段。

重心通常用G 表示。

我们的目标是证明重心到三角形的三个顶点的距离平方和最小。

换句话说,我们要证明对于任意一点P,PA² + PB² + PC² ≥ GA² + GB² + GC²。

其中,A、B、C为三角形的顶点,P为任意一点。

我们来研究重心到三个顶点的距离平方和GA² + GB² + GC²。

根据重心的定义,我们可以知道GA = 2/3 * AM,GB = 2/3 * BM,GC = 2/3 * CM。

其中,M为对边BC的中点。

现在,我们可以将GA² + GB² + GC²改写为(2/3)² * (AM² + BM² + CM²)。

由于AM² + BM² + CM²是一个常数,我们可以将其记为k。

因此,GA² + GB² + GC² = (2/3)² * k = 4/9 * k。

接下来,我们来研究PA² + PB² + PC²。

根据平方和的性质,我们可以将其拆分为三个部分,即PA² + PB² + PC² = PA² + PA² + PB² + PB² + PC² + PC²。

现在,让我们考虑PA² + PA²。

根据三角形的定理,我们知道PA =GA + PG。

将其代入PA² + PA²中,我们可以得到PA² + PA² = (GA + PG)² + (GA + PG)² = 2(GA² + PG²) + 2GA * PG。

三角形重心

三角形重心

三角形重心三角形是几何学中最简单、最基本的图形之一,它由三条边和三个顶点组成。

在三角形中,有一个特殊的点称为三角形的重心,它是三条中线的交点。

重心在三角形的性质和应用中有着很重要的地位。

在本文中,将深入探讨三角形重心的定义、性质、计算方法和应用领域。

1. 重心的定义和性质三角形的重心定义为三条中线的交点,其中中线是连接一个顶点与对边中点的线段。

如果一个三角形的三条中线相交于一点,则该点就是三角形的重心。

以下是三角形重心的一些性质:(1)三角形的重心和顶点的连线是三等分角的角平分线;(2)三角形的重心到三边的距离满足距离定理,即重心到顶点所在边的距离是重心到对边的距离的两倍;(3)重心到三边的距离和相等;(4)三角形的重心是三个中线的交点,也是质心的两倍。

2. 重心的计算方法计算三角形的重心可以使用向量法或坐标法。

以坐标法计算为例,假设一个三角形的顶点坐标分别为A(x1, y1),B(x2, y2)和C(x3,y3)。

可以通过以下公式计算重心的坐标G(x, y):x = (x1 + x2 + x3) / 3y = (y1 + y2 + y3) / 3通过坐标法计算重心的好处是,无论三角形的形状和大小如何改变,只要知道顶点的坐标,就能准确计算重心的坐标。

3. 重心的应用领域重心在几何学和物理学中有着广泛的应用。

以下是几个重心的应用领域:(1)建筑物和桥梁设计:重心在建筑物和桥梁的设计中起着关键作用。

确定一个建筑物或桥梁的重心可以帮助工程师分析和预测结构的稳定性和平衡性。

(2)机械工程:在机械工程中,重心的概念经常用于计算和设计运动系统的稳定性。

(3)物理学:在物理学中,重心是许多力学问题的重要概念。

通过确定物体的重心,可以帮助理解和分析物体的运动和平衡状态。

(4)地理学:在地理学中,重心被用来计算地球表面的重心,以便更好地了解地球的质量分布和地理数据分析。

(5)航空航天工程:在航空航天工程中,重心对于飞机和火箭的稳定性和控制至关重要。

三角形重心定理(Centroid Theorem) 证明(1)

三角形重心定理(Centroid Theorem) 证明(1)

1 BC, F E = BC;
2
4. 同理,HK
1 BC, HK = BC;
2
5. 由此,F E
BC
1 HK, F E = BC = HK;
2
6. 由平行四邊形判別定理,F EKH 為一平行四邊形;
7. 由平行四邊形性質定理,平行四邊形的對角線互相平分,
EG
=
GH ,由此
BG
=
2 BE
3
8.

B E 、C F
3. 因 AG = GH, AF = F B, 由三角形中位線定理,CF BH;
4. 同理,BE CH;
5. 由此,BGCH 為一平行四邊形;
A
FG
E
B
C
K
H
6. 由平行四邊形性質定理,平行四邊形的對角線互相平分, 所以,BK = KC, GK = KH,由此,AK 實為由 A 到 BC 的中線。 ABC 的 三條中線相交於一點。
性質(1)
若 G 為 ABC 的重心,則,S AGB = S AGC = S BGC (以 S AGB 記 AGB 面積)。
1. 因 BD = DC,由等底等高的三角形面積相等, 有 S ABD = S ADC , S GBD = S GDC ,
2. S ABG = S ABD − S GBD = S ACD − S GCD = S ACG 3. 同理,S ABG = S BCG 4. 所以,S ABG = S BCG = S ACG
7. 亦因為 AG = GH = 2GK, G 到頂點 A 的距離是它到對邊中點 K 距離的 2 倍。
1
證明(2)
1. 設 E、F ,分別為 AC、AB 的中點,BE、CF 交於 G

2020中考数学知识点:三角形的重心公式证明

2020中考数学知识点:三角形的重心公式证明

2020中考数学知识点:三角形的重心公式证明重心是三角形三边中线的交点,三线交一点可用燕尾定理来证明。

三角形的重心已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。

求证:F为AB 中点。

证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。

重心的几条性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。

2.重心和三角形3个顶点组成的3个三角形面积相等。

3.重心到三角形3个顶点距离的平方和最小。

4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/35.重心是三角形内到三边距离之积最大的点。

如果用塞瓦定理证,则极易证三条中线交于一点。

如图,在△ABC中,AD、BE、CF是中线则AF=FB,BD=DC,CE=EA∵(AF/FB)*(BD/DC)*(CE/EA)=1∴AD、BE、CF交于一点即三角形的三条中线交于一点其实考试中不会单独的出现关于三角形的重心问题,而是综合图形知识要领,这就需要大家准确的分析了。

2019-2020学年数学中考模拟试卷一、选择题1.以下所给的数值中,为不等式﹣2x+3<0的解集的是( )A.x <﹣2B.x >﹣1C.x <﹣32D.x >322.统计局信息显示,2018年嘉兴市农家乐旅游营业收入达到27.49亿元,若2020年全市农家乐旅游营业收入要达到38亿元,设平均每年比上一年增长的百分率是x ,则下列方程正确的是( )A .27.49+27.49x 2=38B .27.49(1+2x )=38C .38(1﹣x )2=27.49D .27.49(1+x )2=383.下列图形中,是圆锥的侧面展开图的为( )A .B .C .D .4.下列图形中是轴对称图形,不是中心对称图形的是( )A .线段B .圆C .平行四边形D .角 5.已知|a|=3,b 2=16,且|a+b|≠a+b,则代数式a ﹣b 的值为( )A .1或7B .1或﹣7C .﹣1或﹣7D .±1或±76.转动A 、B 两个盘当指针分别指向红色和蓝色时称为配紫色成功。

三角形重心

三角形重心
重心的坐标是顶点坐标的算术平均数 , 即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3]; 空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/3
5、 三 角 形 内 到 三 边 距 离 之 积 最 大 的 点 。
O是重心,向量OA+向量OB+向量OC=零向量。
三角形重心
三角形重心
三角形重心是三角形三边中线的交点。当几何体为匀质物体时,重心与形心重合。
定 义 三角形在三条中线的交点
性质比例 重心到顶点与到对边中点比为 2: 1
性质证明
1、重心到顶点的距离与重心到对边中点的距离之比为 2: 1。
例:已知:△ABC,E、F是AB,AC的中点。EC、FB交于G。 求证:EG=1/2CG 证明:过E作EH∥BF交AC于H。 ∵AE=BE,EH//BF ∴AH=HF=1/2AF(平行线分线段成比例定理) 又∵ AF=CF ∴HF=1/2CF ∴HF:CF=1/2 ∵EH∥BF ∴EG:CG=HF:CF=1/2 ∴EG=1/2CG
2、重心和三角形 3个顶点组成的 3个三角形面积相等。
证明方法:
在△ABC内,三边为a,b,c,点O是该三角形的重心, AOA'、BOB'、COC'分别为a、b、c边上的中线。 根据重心性质知,OA'=1/3AA',OB'=1/3BB',OC'=1/3CC', 过O,A分别作a边上高OH',AH,
可知OH'=1/3AH 则,S△BOC=1/2×OH'a=1/2×1/3AHa=1/3S△ABC; 同理可证S△AOC=1/3S△ABC,S△AOB=1/3S△ABC, 所以,S△BOC=S△AOC=S△AOB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的重心定理及其证明
积石中学王有华
同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好.
已知:(如图)设ABC 中,L 、M 、N 分
别是BC 、CA 、AB 的中点.
求证:AL 、BM 、CN 相交于一点G ,且
AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中
线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点.
现在,延长GL ,并在延长线上取点D ,使GL=LD 。

因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点.
另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点.
另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1.
这个点G 被叫做ABC 的重心.
证明2(向量法):(如图2)在ABC 中,设AB 边上的中B C
线为CN ,AC 边上的中线为BM ,其交点为
G ,边BC 的中点为L ,连接AG 和GL ,因
为B 、G 、M 三点共线,且M 是AC 的中点,
所以向量BG ∥BM ,所以,存在实数1λ ,使得 1BG BM λ=,即 1()AG AB AM AB λ-=-
所以,11(1)AG AM AB λλ=+-
=111(1)2
AC AB λλ+- 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-
= 221(1)2
AB AC λλ+- 所以 111(1)2AC AB λλ+- = 221(1)2
AB AC λλ+- 又因为 AB 、 AC 不共线,所以
1221112112λλλλ=-=-⎧⎨⎩ 所以 1223λλ== ,所以 1133
AG AB AC =+ . 因为L 是BC 的中点,所以GL GA AC CL =++ =111()332
AB AC AC CB -+++ =121()332AB AC AB AC -++- =1166
AB AC +,即2AG GL =,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1
C
证明3(向量法)(如图3)在ABC 中,
BC 的中点L 对应于1()2OL OB OC =+, 中线AL 上的任意一点G ,有
(1)OG OA OL λλ=+- 1122OA OB OC λλλ--=++.同理,AB 的中线
CN 上的任意点G ′,1122OG OC OA OB μ
μ
μ--'=++,
求中线AL 和CN 的交点,就是要找一个λ和一个μ,使OG OG '=.因此,我们令12μλ-=,1122λ
μ--=,12λ
μ-=.解之得13λμ==.所以111
333OG OG OA OB OC '==++.由对称性可知,
第三条中线也经过点G . 故AL 、CN 、BM 相交于一点G ,且易证AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1.。

相关文档
最新文档