三角形的重心定理及其证明

合集下载

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心, 外心, 垂心, 内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理, 外心定理, 垂心定理, 内心定理, 旁心定理的总称.之马矢奏春创作一、二、三角形重心定理三角形的三条边的中线交于一点.该点叫做三角形的重心.三中线交于一点可用燕尾定理证明, 十分简单.(重心原是一个物理概念, 对等厚度的质量均匀的三角形薄片, 其重心恰为此三角形三条中线的交点, 重心因而得名)重心的性质:1、重心到极点的距离与重心到对边中点的距离之比为2∶1.2、重心和三角形3个极点组成的3个三角形面积相等.即重心到三条边的距离与三条边的长成反比.3、重心到三角形3个极点距离的平方和最小.4、在平面直角坐标系中, 重心的坐标是极点坐标的算术平均, 即其重心坐标为((X1+X2+X3)/3, (Y1+Y2+Y3)/3.二、三角形外心定理三角形外接圆的圆心, 叫做三角形的外心.外心的性质:1、三角形的三条边的垂直平分线交于一点, 该点即为该三角形外心.2、若O是△ABC的外心, 则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角).3、当三角形为锐角三角形时, 外心在三角形内部;当三角形为钝角三角形时, 外心在三角形外部;当三角形为直角三角形时, 外心在斜边上, 与斜边的中点重合.4、计算外心的坐标应先计算下列临时变量:d1, d2, d3分别是三角形三个极点连向另外两个极点向量的点乘.c1=d2d3,c2=d1d3, c3=d1d2;c=c1+c2+c3.重心坐标:( (c2+c3)/2c,(c1+c3)/2c, (c1+c2)/2c ).5、外心到三极点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点, 该点叫做三角形的垂心.垂心的性质:1、三角形三个极点, 三个垂足, 垂心这7个点可以获得6个四点圆.2、三角形外心O、重心G和垂心H三点共线, 且OG∶GH=1∶2.(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一极点距离为此三角形外心到此极点对边距离的2倍.4、垂心分每条高线的两部份乘积相等.定理证明已知:ΔABC中, AD、BE是两条高, AD、BE交于点O, 连接CO 并延长交AB于点F , 求证:CF⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB因此, 垂心定理成立!四、三角形内心定理三角形内切圆的圆心, 叫做三角形的内心.内心的性质:1、三角形的三条内角平分线交于一点.该点即为三角形的内心.2、直角三角形的内心到边的距离即是两直角边的和减去斜边的差的二分之一.3、P为ΔABC所在平面上任意一点, 点I是ΔABC内心的充要条件是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).4、O为三角形的内心, A、B、C分别为三角形的三个极点, 延长AO交BC边于N, 则有AO:ON=AB:BN=AC:CN=(AB+AC):BC五、三角形旁心定理三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心, 叫做三角形的旁心.旁心的性质:1、三角形一内角平分线和另外两极点处的外角平分线交于一点, 该点即为三角形的旁心.2、每个三角形都有三个旁心.3、旁心到三边的距离相等.如图, 点M就是△ABC的一个旁心.三角形任意两角的外角平分线和第三个角的内角平分线的交点.一个三角形有三个旁心, 而且一定在三角形外.附:三角形的中心:只有正三角形才有中心, 这时重心, 内心, 外心, 垂心, 四心合一.有关三角形五心的诗歌三角形五心歌(重外垂内旁)三角形有五颗心, 重外垂内和旁心, 五心性质很重要, 认真掌握莫记混.重心三条中线定相交, 交点位置真奇巧, 交点命名为“重心”, 重心性质要明了,重心分割中线段, 数段之比听分晓;长短之比二比一, 灵活运用掌握好.外心三角形有六元素, 三个内角有三边.作三边的中垂线, 三线相交共一点.此点界说为外心, 用它可作外接圆.内心外心莫记混, 内切外接是关键.垂心三角形上作三高, 三高必于垂心交.高线分割三角形, 呈现直角三对整,直角三角形有十二, 构成六对相似形, 四点共圆图中有, 细心分析可找清.内心三角对应三极点, 角角都有平分线, 三线相交定共点, 叫做“内心”有根源;点至三边均等距, 可作三角形内切圆, 此圆圆心称“内心”, 如此界说理固然.。

三角形重心定理证明方法

三角形重心定理证明方法

三角形重心定理证明方法
嘿,朋友们!今天咱来聊聊三角形重心定理的证明方法呀。

你看那三角形,就像一个稳固的小天地。

而重心呢,就是这个小天地里特别重要的一个点。

怎么找到它呢?嘿嘿,这可有讲究啦!
咱可以把三角形想象成一块大蛋糕,然后把它切成三块大小形状都一样的小蛋糕。

这时候你想想,这三块小蛋糕的“重量”是不是差不多呀?那这个让它们能平衡的点不就是重心嘛!
或者再换个说法,就好像是三角形的三条边在玩跷跷板,而重心就是那个能让跷跷板稳稳当当的中间点。

那怎么证明这个神奇的重心呢?咱可以这样干。

先在三角形的三条边上分别找三个中点,然后把相对的边的中点连起来。

哇塞,这一下子就出现了三条中线啦!接着呢,你就会神奇地发现,这三条中线居然都交于一点,这个点就是重心啦!
这难道不神奇吗?就像变魔术一样,几条线一弄,重心就乖乖现身啦!
你说这三角形重心定理是不是很有意思呀?它就像是隐藏在三角形里的小秘密,等着我们去发现。

而且这个定理在好多地方都能用得上呢,比如在建筑设计里,要让建筑物稳稳当当的,就得考虑重心的位置呀。

咱再想想,生活中不也有很多类似的情况吗?就像我们做事情,得找到那个关键的“点”,才能把事情做好,就像三角形找到了重心一样。

所以呀,可别小瞧了这个三角形重心定理,它可是有着大用处呢!它让我们看到了数学的奇妙之处,也让我们明白了做事要抓住关键的道理。

怎么样,是不是对三角形重心定理有了更深的认识啦?。

三角形的重心的性质(一)

三角形的重心的性质(一)

三角形的重心的性质(一)引言:三角形是几何学中非常重要的一个形状,而重心则是三角形的一个重要特征。

本文将深入探讨三角形重心的性质,包括定义、重心的位置与性质、与其他特殊点的关系以及相关的定理。

正文:一、三角形重心的定义1. 定义:三角形的重心是三条中线的交点,即三边中点连线的交点。

二、重心的位置与性质1. 重心的位置:重心位于三角形中线上的2:1处,离每条中线的起点的距离是中线长度的2/3。

2. 重心的坐标:根据三角形顶点的坐标可以求得重心的坐标,即三个顶点的坐标的均值。

3. 重心的性质:重心将三角形分成六个小三角形,其中三个小三角形的面积相等。

4. 重心与几何中心的关系:重心也是三角形的质心、内心和外心的连线的交点。

三、重心与其他特殊点的关系1. 重心与垂心的关系:重心是垂心到三顶点连线的中点。

2. 重心与重心连线:三角形的重心之间连成一线段,这条线段称为重心连线,且重心连线与垂心连线垂直。

四、重心相关的定理1. 重心定理:三角形的三个顶点与重心的距离之和等于三角形边长之和的三分之一。

2. 已知重心求顶点坐标:已知三角形重心的坐标,可以求得顶点的坐标,通过重心的定义和坐标计算可得。

五、总结通过以上的探讨,我们得出了以下关于三角形重心的性质:1. 重心是三角形中线的交点,位于中线上的2:1处。

2. 重心将三角形分为六个面积相等的小三角形。

3. 重心是三角形的质心、内心和外心连线的交点。

4. 重心与垂心连线垂直,是垂心到三顶点连线的中点。

5. 已知重心的坐标可以求得三角形顶点的坐标。

6. 重心定理给出了重心与三角形顶点之间距离的关系。

本文仅对三角形重心性质进行了初步介绍,未来的研究中还有更多的性质和定理值得深入探索。

三角形重心到三顶点距离的平方和最小证明

三角形重心到三顶点距离的平方和最小证明

三角形重心到三顶点距离的平方和最小是一个常见的几何定理,它反映了三角形重心的重要性质。

下面我将尝试用几何方法证明这个定理。

首先,我们需要了解一些基本概念。

在三角形中,重心是指三条中线的交点。

对于给定的三角形,其重心到顶点的距离可以通过将三角形分成两部分,并考虑这两部分的重心到顶点的距离之差来得到。

为了证明这个定理,我们需要使用一些基本的几何性质和三角形的性质。

首先,我们知道对于任何三角形,其重心到顶点的距离是所有点到顶点的距离的平均值。

这意味着,如果我们将三角形的三个顶点视为三个独立的点,那么重心到这三个点的距离的平方和应该等于这三个点之间的所有可能点对之间的距离的平方和的最小值。

为了证明这个最小值存在,我们可以使用凸包的概念。

凸包是一个数学概念,它描述了在一个多边形上的所有点构成的集合。

对于给定的三角形,其重心到三个顶点的距离构成的线段可以构成一个凸包。

这意味着在三角形的内部或边上一定存在一个点,该点到重心的距离小于或等于所有点到重心的距离之和的一半。

因此,我们可以得出结论:三角形重心到三个顶点的距离的平方和的最小值存在于三角形的内部或边上,并且这个最小值等于三角形三边长度平方和的最小值。

换句话说,三角形重心到三顶点距离的平方和最小,当且仅当三角形的三边长度相等时达到最小值。

在实践中,这个定理可以用作证明三角形中线长度的一个重要工具。

在三角形的中线中,我们知道它们有两个重要性质:一是它们将三角形分成两个相等的部分;二是它们是三角形重心到三顶点的中线。

这些性质结合起来,我们就可以使用上述定理来证明三角形中线长度具有某种特殊性质,这在许多实际应用中都是非常重要的。

综上所述,三角形重心到三顶点距离的平方和最小是一个重要的几何定理,它反映了三角形重心的重要性质。

这个定理可以用几何方法和数学工具进行证明,并且在实际应用中具有重要的实用价值。

以上证明仅是一个基础性证明,具体的证明可能会根据具体的背景和应用有所不同。

重心定理

重心定理
同理CE/EA=S△BOC/ S△AOB④AF/FB=S△AOC/S△BOC⑤
③×④×⑤得BD/DC*CE/EA*AF/FB=1
利用塞瓦定理证明三角形三条高线必交于一点:
设三边AB、BC、AC的垂足分别为D、E、F,
根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)
另外,有很多人会觉得书写这个公式十分烦琐,不看书根本记不住,下面从别人转来一些方法帮助书写
为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。
证明:
过点A作AG‖BC交DF的延长线于G,
则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。
方案①——从A经过B(不停留)到F(停留),再返回B(停留),再到D(停留),之后经过B(不停留)到C(停留),再到E(停留),最后从E经过C(不停留)回到出发点A。
按照这个方案,可以写出关系式:
(AF:FB)*(BD:DC)*(CE:EA)=1。
现在,您知道应该怎样写“梅涅劳斯定理”的公式了吧。
从A点出发的旅游方案还有:
(AE:EC)*(CD:DB)*(BF:FA)=1。

三角形重心性质定理.

三角形重心性质定理.

三角形重心性质定理1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的重要方法之一。

6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

三角形中的重心与外心定理

三角形中的重心与外心定理

三角形中的重心与外心定理三角形是几何学中最基本的形状之一,研究三角形的性质和特点对于深入了解几何学具有重要意义。

在三角形中,重心和外心是两个重要的概念,通过重心与外心定理,我们可以揭示它们的关系和性质。

重心是指三角形三条中线的交点,记作G。

在一个三角形ABC中,连接顶点A与边BC的中点M,连接顶点B与边AC的中点N,连接顶点C与边AB的中点P,这三条线段分别称为三角形ABC的中线。

重心G是中线的交点,即G=MN∩NP∩PM。

外心是指三角形外接圆的圆心,记作O。

在一个三角形ABC中,若存在一个圆可以同时与三条边AB、BC、CA相切,称这个圆为三角形ABC的外接圆。

外心O则为外接圆的圆心。

重心与外心定理是指,三角形的重心、外心和三边中点构成一个等腰三角形。

换句话说,连接重心和外心的线段与连接三边中点的线段长度相等,且它们之间的夹角等于π/2。

证明这个定理的方法有很多,这里我们可以采用向量的方法。

考虑一个三角形ABC,其三个顶点的向量表示分别为a、b、c。

重心G可以表示为G=(a+b+c)/3,外心O可以表示为O=(a|b|c)/(|a|+|b|+|c|),其中|a|表示向量a的模。

首先,我们来证明 |G-M|=|O-G|。

注意到中点M的向量表示为M=(b+c)/2,连接线段GM的向量表示为G-M=(a+b+c)/3-(b+c)/2=(a-b/2-c/2)/3。

同理,O-G=(a|b|c)/(|a|+|b|+|c|)-(a+b+c)/3=(a|b|c-|a|(b+c)-|b|(a+c)-|c|(a+b))/(3∗(|a|+|b|+|c|))。

我们将等式两边进行化简,得到:6(G-M)=2(a-b/2-c/2)=(2a-b-c)=3(a-b/2-c/2)=|a|∗(a|b|c-|a|(b+c)-|b|(a+c)-|c|(a+b))/(3∗(|a|+|b|+|c|))=|O-G|说明 |G-M|=|O-G| 成立。

三角形重心定理(Centroid Theorem) 证明(1)

三角形重心定理(Centroid Theorem) 证明(1)

1 BC, F E = BC;
2
4. 同理,HK
1 BC, HK = BC;
2
5. 由此,F E
BC
1 HK, F E = BC = HK;
2
6. 由平行四邊形判別定理,F EKH 為一平行四邊形;
7. 由平行四邊形性質定理,平行四邊形的對角線互相平分,
EG
=
GH ,由此
BG
=
2 BE
3
8.

B E 、C F
3. 因 AG = GH, AF = F B, 由三角形中位線定理,CF BH;
4. 同理,BE CH;
5. 由此,BGCH 為一平行四邊形;
A
FG
E
B
C
K
H
6. 由平行四邊形性質定理,平行四邊形的對角線互相平分, 所以,BK = KC, GK = KH,由此,AK 實為由 A 到 BC 的中線。 ABC 的 三條中線相交於一點。
性質(1)
若 G 為 ABC 的重心,則,S AGB = S AGC = S BGC (以 S AGB 記 AGB 面積)。
1. 因 BD = DC,由等底等高的三角形面積相等, 有 S ABD = S ADC , S GBD = S GDC ,
2. S ABG = S ABD − S GBD = S ACD − S GCD = S ACG 3. 同理,S ABG = S BCG 4. 所以,S ABG = S BCG = S ACG
7. 亦因為 AG = GH = 2GK, G 到頂點 A 的距離是它到對邊中點 K 距離的 2 倍。
1
證明(2)
1. 設 E、F ,分別為 AC、AB 的中點,BE、CF 交於 G
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的重心定理及其证明
积石中学王有华
同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好.
已知:(如图)设ABC 中,L 、M 、N 分
别是BC 、CA 、AB 的中点.
求证:AL 、BM 、CN 相交于一点G ,且
AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中
线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点.
现在,延长GL ,并在延长线上取点D ,使GL=LD 。

因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点.
另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点.
另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1.
这个点G 被叫做ABC 的重心.
证明2(向量法):(如图2)在ABC 中,设AB 边上的中B C
线为CN ,AC 边上的中线为BM ,其交点为
G ,边BC 的中点为L ,连接AG 和GL ,因
为B 、G 、M 三点共线,且M 是AC 的中点,
所以向量BG ∥BM ,所以,存在实数1λ ,使得 1BG BM λ=,即 1()AG AB AM AB λ-=-
所以,11(1)AG AM AB λλ=+-
=111(1)2
AC AB λλ+- 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-
= 221(1)2
AB AC λλ+- 所以 111(1)2AC AB λλ+- = 221(1)2
AB AC λλ+- 又因为 AB 、 AC 不共线,所以
1221112112λλλλ=-=-⎧⎨⎩ 所以 1223λλ== ,所以 1133
AG AB AC =+ . 因为L 是BC 的中点,所以GL GA AC CL =++ =111()332
AB AC AC CB -+++ =121()332AB AC AB AC -++- =1166
AB AC +,即2AG GL =,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1
C
证明3(向量法)(如图3)在ABC 中,
BC 的中点L 对应于1()2OL OB OC =+, 中线AL 上的任意一点G ,有
(1)OG OA OL λλ=+- 1122OA OB OC λλλ--=++.同理,AB 的中线
CN 上的任意点G ′,1122OG OC OA OB μ
μ
μ--'=++,
求中线AL 和CN 的交点,就是要找一个λ和一个μ,使OG OG '=.因此,我们令12μλ-=,1122λ
μ--=,12λ
μ-=.解之得13λμ==.所以111
333OG OG OA OB OC '==++.由对称性可知,
第三条中线也经过点G . 故AL 、CN 、BM 相交于一点G ,且易证AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1.。

相关文档
最新文档