状态观测器的设计

合集下载

控制系统的扩展状态观测器设计与应用

控制系统的扩展状态观测器设计与应用

控制系统的扩展状态观测器设计与应用在控制系统中,扩展状态观测器是一种重要的设计和应用工具。

它能够提供系统状态的准确估计和可靠的反馈,从而帮助我们实现对系统的精确控制和优化。

本文将介绍控制系统中扩展状态观测器的设计原理和应用情况。

一、扩展状态观测器的设计原理扩展状态观测器是一种用于估计系统状态的观测器,它通过测量系统的输出和控制输入,利用系统动力学模型进行状态估计。

与传统的状态观测器相比,扩展状态观测器引入了一个扩展变量,能够更准确地估计系统状态。

扩展状态观测器的设计需要满足以下原则:1.系统模型准确性:扩展状态观测器的设计基于系统的动力学模型,因此模型的准确性对观测器的性能至关重要。

在设计观测器时,需要确保系统模型能够准确地描述系统的动态行为,并符合实际要求。

2.观测器稳定性:观测器的稳定性是指观测误差在有限时间内能够收敛到零。

为了实现观测器的稳定性,设计时需要考虑系统的可观测性和观测误差的界定。

3.观测器误差鲁棒性:在实际应用中,系统模型可能存在不确定性或者扰动。

为了提高观测器的鲁棒性,设计时需要考虑不确定性因素,并采用相应的鲁棒性设计方法。

二、扩展状态观测器的应用情况扩展状态观测器被广泛应用于不同领域的控制系统中,下面将以几个具体应用案例进行介绍。

1.飞行控制系统:在飞机的自动驾驶系统中,扩展状态观测器被用于估计飞机的姿态和位置信息。

通过测量飞机的加速度和陀螺仪的转速等传感器数据,通过状态估计算法对飞机的姿态和位置进行准确估计,从而实现飞机的精确控制。

2.电力系统:在电力系统中,扩展状态观测器被用于估计电力网络的状态和负荷信息。

通过测量电压、电流等传感器数据,通过状态估计算法对电力系统的状态进行准确估计,从而实现电力系统的稳定运行和优化控制。

3.机器人控制系统:在机器人控制系统中,扩展状态观测器被用于估计机器人的姿态和位置信息。

通过测量机器人的传感器数据,如陀螺仪、加速度计和激光雷达等,通过状态估计算法对机器人的姿态和位置进行准确估计,从而实现机器人的精确运动控制和路径规划。

利用MATLAB设计状态观测器

利用MATLAB设计状态观测器

利用MATLAB 设计状态观测器本节将介绍用MATLAB 设计状态观测器的若干例子。

我们将举例说明全维状态观测器和最小阶状态观测器设计的MATLAB 方法。

------------------------------------------------[例1] 考虑一个调节器系统的设计。

给定线性定常系统为Cxy Bu Ax x =+=& 式中]01[,10,06.2010=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=C B A且闭环极点为)2,1(==i s i μ,其中4.28.1,4.28.121j j −−=+−=μμ期望用观测-状态反馈控制,而不是用真实的状态反馈控制。

观测器的期望特征值为821−==μμ试采用MATLAB 确定出相应的状态反馈增益矩阵K 和观测器增益矩阵e K 。

[解]对于题中给定的系统,可利用如下MATLAB Program 1来确定状态反馈增益矩阵K和观测器增益K。

矩阵eMATLAB Program 1% Pole placement and design of observer ------% ***** Design of a control system using pole-placement% technique and state observer. Solve pole-placement% problem *****% ***** Enter matrices A,B,C,and D *****A=[0 1;20.6 0];B=[0;1]C=[1 0];D=[0];% ***** Check the rank of the controllability matrix Q *****Q=[B A*B];Rank(Q)ans=2% ***** Since the rank of the controllability matrix Q is 2, % arbitrary pole placement is possible *****% ***** Enter the desired characteristic polynomial by% defining the following matrix J and computingpoly(J) *****J=[-1.8+2.4*i 0;0 -1.8-2.4*i];Poly(J)ans=1.000 3.6000 9.0000% ***** Enter characteristic polynomial Phi *****Phi=polyvalm(poly(J),A);% ***** State feedback gain matrix K can be given by ***** K=[0 1]*inv(Q)*PhiK=29.6000 3.6000% ***** The following program determines the observer matrix Ke *****% ***** Enter the observability matrix RT and check its rank *****RT=[C’ A’*C’];rank(RT)ans=2% ***** Since the rank of the observability matrix is 2, design of% the observer is possible *****% **** Enter the desired characteristic polynomial by defining % the following matrix J0 and entering statement poly(JO) *****JO=[-8 0;0 -8];Poly(JO)ans=1 16 64% ***** Enter characteristic polynomial Ph ***** Ph=polyvalm(ply(JO),A);% ***** The observer gain matrix Ke is obtained from ***** Ke=Ph*(inv(RT’))*[0;1]Ke=16.000084.60000求出的状态反馈增益矩阵K 为[]6.36.29=K观测器增益矩阵e K 为⎥⎦⎤⎢⎣⎡=6.8416e K 该观测-状态反馈控制系统是4阶的,其特征方程为0=+−+−C K A sI BKA sI e通过将期望的闭环极点和期望的观测器极点代入上式,可得5764.3746.1306.19)8)(4.28.1)(4.28.1(2342++++=+++−+=+−+−s s s s s j s j s C K A sI BK A sI e这个结果很容易通过MATLAB得到,如MATLAB Program 2所示(MATLAB Program 2是K已MATLAB Program1的继续。

一类线性时变系统的状态观测器设计方法

一类线性时变系统的状态观测器设计方法

摘要该论文主要研究控制领域中的线性时变系统的状态观测器设计问题,其目获得的问题。

区别于在状态观测器理论方面已经趋于成熟的线性定常系统,线性时变系统的研究相对困难并且具有挑战性,所发表出的理论成果较少,并且容。

该论文的设计思路是对于原有的线性时变系统,首先对其进行线性非奇异变换以使得变换后的系统具有某种特殊形式,而后对变换后的系统进行状态观测器设计,并最终达到重构原有系统状态的设计要求。

针对此思路能够得知设计工作主要划分为两个部分,即线性非奇异变换以及状态观测器设计。

首先,该论文提出线性时变系统基于方块展开的状态观测器设计。

线性非奇异变换后的系统中系数矩阵皆为分块形式,并且其中包含较多的零阵以及单位阵。

而后对变换后的系统进行全维,降维以及Luenberger状态函数观测器设计,给出各自的动态方程,系数矩阵求解方法以及算法步骤等。

其次,该论文提出线性时变系统基于行展开的状态观测器设计。

线性非奇异变换矩阵由原有系统能观测性矩阵中线性无关的行经过运算得到。

变换后的系统仍为分块形式,不同点在于其各个子块中均包含较多的零元。

而后对变换后的系统进行全维状态观测器设计。

上述基于一种设计思路,两种设计方法得到的各个状态观测器均由仿真验证其可行性以及有效性。

并且针对两种设计方法该论文给出对比,从而在具体最后,该论文还对线性时变系统中闭环系统的分离原理问题进行了初步研究,得到该论文所设计出的状态观测器均符合分离原理的结论。

该论文主要研究成果是对线性时变系统的状态观测器设计此研究课题在理论层面上的推进与添补。

所设计出的状态观测器其优点在于可以避免求解复杂的矩阵微分方程,并且将部分运算转化到线性定常系统中。

这样极大地降低与关键词:线性时变系统;状态观测器设计;线性非奇异变换;分离原理AbstractIn this paper, linear state observer design of linear time-varying systems has been researched to solve the state reconstruction problem that states cannot be acquired compeletely or partialy due to various reasons in actual engineering. Different from the mature theory of state observer for linear time-invariant systems, research on linear time-varying systems is ralatively more difficult and challenging, less amount of theoretical achievements and closer to the actual project. So it is the research focus in recent years. The main contents of this paper are described below.Design ideas of this paper is to transform the original linear time-varying systems into some special form with linear non-singular transformations initially. Then the state observer design based on the linear time-varying systems transformed can achieve the reconstructed state of original linear time-varying systems. For this idea, we can know that the design work is divided into two parts, namely, linear nonsingular transformation and state observer design.Firstly, the state observer design of linear time-varying systems based on the square matrices is presented. The coefficient matrices of systems transformed are all partitioned including much zero and unit submatrices. Then the full, reduced and Luenberger state observer design of transformed systems are illustrated detailed including some aspects such as the solutions of dynamis equations and coefficient matrices, as well as the algorithms and their steps.Secondly, we propose the state observer design for linear time-varying systems based on row expansion. The linear nonsingular transformation matrix is obtained by computing the linearly independent rows of observation matrix. The coefficient matrices of transformed system are still partitioned, and the difference between two linear nonsingular metiods is that each of its sub-blocks contains much zero elements. The the full state observer is designed.Based on a design idea, all the state observers obtained by the two design methods are proved to be feasible and effective by simulation. Moreover, the contrast of two methods is proposed in this paper in order to select in actual engineering.Finally, the paper studies the separation principle of closed loop system in linear time-varying system, and obtains the conclusion that the state observer designed in this paper meets the separation principle.The main research results of the paper is to promote and increase theoritical achienements of the state observer design for linear time-varying systems. The pivotal merit is that it can avoid solving complex differential equations by transforming them into constant partially. These reduces and simplifies the computational complexity aswell as the amount of computation greatly. Therefore, they also have practical engineering significance.Keywords: Linear time-varying systems; state observer design; Linear nonsingular transformation; Separation principle目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1论文课题来源及研究背景和意义 (1)1.1.1 课题来源 (1)1.1.2 课题的背景及意义 (1)1.1.3 时变系统分类 (2)1.1.4 观测器分类 (3)1.2国内外研究现状 (3)1.3论文主要研究内容及安排 (5)第2章基础内容介绍 (6)2.1线性时变系统概述 (6)2.1.1 线性时变系统模型及相关定义 (6)2.1.2 线性时变系统稳定性 (7)2.2线性时变系统的线性非奇异变换 (8)2.3线性定常系统状态观测器设计基本介绍 (10)2.3.1 全维状态观测器 (10)2.3.2 降维状态观测器 (11)2.3.3 LUENBERGER状态函数观测器 (12)2.4函数矩阵运算介绍 (12)2.5本章小节 (13)第3章基于方块展开的状态观测器设计 (14)3.1基于方块展开的线性非奇异变换 (14)3.2全维状态观测器设计 (17)3.3降维状态观测器设计 (21)3.4LUENBERGER状态函数观测器设计 (23)3.5状态观测器的分离原理研究 (27)3.6仿真验证 (32)3.7本章小结 (37)第4章基于行展开的状态观测器设计 (38)4.1相关理论基础 (38)4.2基于行展开的线性非奇异变换 (41)4.3全维状态观测器设计 (44)4.4两种状态观测器设计方法对比 (46)4.5仿真验证 (46)4.6本章小结 (48)结论 (50)参考文献 (51)攻读硕士学位期间发表的论文及其它成果 (56) (57)致谢 (59)第1章绪论1.1 论文课题来源及研究背景和意义1.1.1 课题来源本课题来源于国家自然科学基金重大项目-空间翻滚目标的捕获策略及组合体的快速稳定控制以及国家自然科学基金创新研究群体项目-航天飞行器的鲁棒控制理论及应用。

现代控制理论状态反馈和状态观测器的设计实验报告

现代控制理论状态反馈和状态观测器的设计实验报告

现代控制理论状态反馈与状态观测器的设计实验报告
LT ac ker(AT ,CT , P)

LT place( AT ,CT , P)
其中 P 为给定的极点,L 为状态观测器的反馈阵。
例 3 已知开环系统
其中
x• Ax bu y Cx
0 1 0 0
A=
0
0
1
,b=
0
,C= 1
0
0
6 11 6 1
(1)
现代控制理论状态反馈与状态观测器的设计实验报告
其中 A : n n; B : n r;C :: m n
引入状态反馈,使进入该系统的信号为ຫໍສະໝຸດ u r Kx(2)
式中 r 为系统的外部参考输入,K 为 n n 矩阵、
可得状态反馈闭环系统的状态空间表达式为
(3) 可以证明,若给定系统就是完全能控的,则可以通过状态反馈实现系统
设计全维状态观测器,使观测器的闭环极点为-2 j2 3 ,-5、
解 为求出状态观测器的反馈矩阵 L,先为原系统构造一对偶
系统,
z AT C T n
w
BT
z
然后采用极点配置方法对对偶系统进行闭环极点位置的配置,得
到反馈阵 K,从而可由对偶原理得到原系统的状态观测器的反馈阵 L。
现代控制理论状态反馈与状态观测器的设计实验报告
K=acker(A,b,p) 式中,p 为给定的极点,K 为状态反馈阵。
对于多变量系统的极点配置,MATABLE 控制系统工具箱也给出了函数
place(),其调用格式为
K=place(A,B,P)
例2 已知系统的状态方程为
0 0 4 1 2 0

x
10

现代控制实验状态反馈器和状态观测器的设计

现代控制实验状态反馈器和状态观测器的设计

现代控制实验状态反馈器和状态观测器的设计现代控制实验中,状态反馈器和状态观测器是设计系统的重要组成部分。

状态反馈器通过测量系统的状态变量,并利用反馈回路将状态变量与控制输入进行耦合,以优化系统的性能指标。

状态观测器则根据系统的输出信息,估计系统的状态变量,以便实时监测系统状态。

本文将分别介绍状态反馈器和状态观测器的设计原理和方法。

一、状态反馈器的设计:状态反馈器的设计目标是通过调整反馈增益矩阵,使得系统的状态变量在给定的性能要求下,达到所需的一组期望值。

其设计步骤如下:1.系统建模:通过对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。

通常表示为:ẋ=Ax+Buy=Cx+Du其中,x为系统状态向量,u为控制输入向量,y为系统输出向量,A、B、C、D为系统的状态矩阵。

2.控制器设计:根据系统的动态性能要求,选择一个适当的闭环极点位置,并计算出一个合适的增益矩阵。

常用的设计方法有极点配置法、最优控制法等。

3.状态反馈器设计:根据控制器设计得到的增益矩阵,利用反馈回路将状态变量与控制输入进行耦合。

状态反馈器的输出为:u=-Kx其中,K为状态反馈增益矩阵。

4.性能评估与调整:通过仿真或实验,评估系统的性能表现,并根据需要对状态反馈器的增益矩阵进行调整。

二、状态观测器的设计:状态观测器的设计目标是根据系统的输出信息,通过一个状态估计器,实时估计系统的状态变量。

其设计步骤如下:1.系统建模:同样地,对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。

2.观测器设计:根据系统的动态性能要求,选择一个合适的观测器极点位置,以及一个合适的观测器增益矩阵。

常用的设计方法有极点配置法、最优观测器法等。

3.状态估计:根据观测器设计得到的增益矩阵,通过观测器估计系统的状态变量。

状态观测器的输出为:x^=L(y-Cx^)其中,L为观测器增益矩阵,x^为状态估计向量。

4.性能评估与调整:通过仿真或实验,评估系统的状态估计精度,并根据需要对观测器的增益矩阵进行调整。

现代控制实验--状态反馈器和状态观测器的设计

现代控制实验--状态反馈器和状态观测器的设计

现代控制实验--状态反馈器和状态观测器的设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN状态反馈器和状态观测器的设计一、实验设备PC 计算机,MATLAB 软件,控制理论实验台,示波器二、实验目的(1)学习闭环系统极点配置定理及算法,学习全维状态观测器设计法;(2)掌握用极点配置的方法(3)掌握状态观测器设计方法(4)学会使用MATLAB工具进行初步的控制系统设计三、实验原理及相关知识(1)设系统的模型如式所示若系统可控,则必可用状态反馈的方法进行极点配置来改变系统性能。

引入状态反馈后系统模型如下式所示:(2)所给系统可观,则系统存在状态观测器四、实验内容(1)某系统状态方程如下10100134326x x u •⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦[]100y x =理想闭环系统的极点为[]123---.(1)采用 Ackermann 公式计算法进行闭环系统极点配置;代码:A=[0 1 0;0 0 1;-4 -3 -2];B=[1; 3; -6];P=[-1 -2 -3];K=acker(A,B,P)Ac=A-B*Keig(Ac)(2)采用调用 place 函数法进行闭环系统极点配置;代码:A=[0 1 0;0 0 1;-4 -3 -2];B=[1;3;-6];eig(A)'P=[-1 -2 -3];K=place(A,B,P)eig(A-B*K)'(3)设计全维状态观测器,要求状态观测器的极点为[]---123代码:a=[0 1 0;0 0 1;-4 -3 -2];b=[1;3;-6];c=[1 0 0];p=[-1 -2 -3];a1=a';b1=c';c1=b';K=acker(a1,b1,p);h=(K)'ahc=a-h*c(2)已知系统状态方程为:10100134326x x u •⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦[]100y x =(1)求状态反馈增益阵K ,使反馈后闭环特征值为[-1 -2 -3];代码:A=[0 1 0;0 0 1;4 -3 -2];b=[1;3;-6];p=[-1 -2 -3];k=acker(A,b,p)A-b*keig(A-b*k)(2)检验引入状态反馈后的特征值与希望极点是否一致。

第13章 线性定常系统的状态反馈和状态观测器设计

第13章 线性定常系统的状态反馈和状态观测器设计
试设计状态反馈增益矩阵k,使闭环极点配置在-1,-2上。
第13章 线性定常系统的状态反馈和状态观测器设计 解 (1)系统的能控矩阵
因为rankUc=2,所以系统是能控的。 故可以通过状态反馈实现闭环系统极点的任意配置
第13章 线性定常系统的状态反馈和状态观测器设计 (2)期望闭环极点配置在-1,-2,由
第13章 线性定常系统的状态反馈和状态观测器设计
第13章 线性定常系统的状态反馈 和状态观测器设计
13.1 状态反馈与输出反馈 13.2 闭环系统的极点配置 13.3 状态观测器的设计
第13章 线性定常系统的状态反馈和状态观测器设计
13.1 状态反馈与输出反馈
13.1.1 状态反馈 状态反馈就是将系统的每一个状态变量乘以相应的反馈
得 (3)求状态反馈增益矩阵k,则
第13章 线性定常系统的状态反馈和状态观测器设计 (4)状态反馈系统模拟结构图如图13-4所示。
图13-4 状态反馈系统模拟结构图
第13章 线性定常系统的状态反馈和状态观测器设计
2.方法二 求解实际问题的状态反馈增益矩阵k 的步骤为: (1)计算能控性矩阵Uc,判断系统是否能控; (2)根据闭环系统的期望极点计算系统的期望特征多项 式:
13.4 带观测器的状态反馈系统
13.4.1 系统的结构和状态空间表达式 带观测器的状态反馈系统由三部分组成,即原系统、观
测器和控制器,如图13-7所示。
第13章 线性定常系统的状态反馈和状态观测器设计
图13-7 带状态观测器的反馈系统
第13章 线性定常系统的状态反馈和状态观测器设计 设能控能观测的受控系统为
绍,下面就其特点和应用方面略加讨论。 (1)状态反馈与输出反馈的共同特点是:反馈的引入并不

最优控制问题的状态观测器设计

最优控制问题的状态观测器设计

最优控制问题的状态观测器设计最优控制问题是指在某个系统中,通过对输入信号进行调节以使得某个性能指标达到最优的控制方法。

在实际应用中,由于受限于物理条件等因素,我们往往不能直接获取系统的全部状态信息,而只能通过一部分可观测的状态信息来进行控制。

而状态观测器则是一种用来估计系统未知状态的辅助装置,它基于已知的输入和观测值,通过数学模型计算得到对系统状态的估计值,并将其用于最优控制问题的解决。

在最优控制问题中,我们通常通过构建性能指标,使用最优化方法来求解控制输入的优化变量。

然而,这些优化方法通常需要精确的系统状态信息作为输入才能得到准确的优化结果。

而实际中,往往无法直接测量到系统的全部状态变量。

因此,为了解决这个问题,我们需要设计一种状态观测器来估计系统的未知状态,以便在最优控制问题中得到准确的结果。

状态观测器设计的目标是通过已知的输入信号和可观测的输出信号来估计系统的未知状态,使得估计值与实际值尽可能接近。

常见的状态观测器设计方法有卡尔曼滤波、扩展卡尔曼滤波和无迹卡尔曼滤波等。

其中,卡尔曼滤波是最常见的一种方法,它基于线性系统和高斯噪声的假设,能够较好地处理线性系统的状态估计问题。

卡尔曼滤波的基本原理是利用系统的状态方程和观测方程来建立一个状态估计模型。

状态方程描述了系统状态的演变规律,观测方程描述了观测量与系统状态之间的关系。

通过不断迭代计算,卡尔曼滤波器可以根据当前的观测值和上一时刻的状态估计值,得到当前时刻的最优状态估计值。

卡尔曼滤波器的设计包括两个关键步骤:预测步和更新步。

在预测步中,我们利用上一时刻的状态估计值和系统的状态方程来预测当前时刻的状态估计值。

在更新步中,我们将当前时刻的观测值与预测值进行比较,通过观测方程来修正状态估计值,从而得到更准确的估计结果。

通过不断迭代这两个步骤,我们可以逐渐趋近于系统的真实状态。

除了卡尔曼滤波器,还有其他一些高级的状态观测器设计方法,如无迹卡尔曼滤波器和扩展卡尔曼滤波器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 状态观测器的设计
一、实验目的
1. 了解和掌握状态观测器的基本特点。

2. 设计状态完全可观测器。

二、实验要求
设计一个状态观测器。

三、实验设备
1. 计算机1台
2. MATLAB6.X 软件1套
四、实验原理说明
设系统的模型如式(3-1)示。

p m n R y R u R x D Cx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (3-1)
系统状态观测器包括全维观测器和降维观测器。

设计全维状态观测器的条件是系统状态完全能观。

全维状态观测器的方程为:
Bu y K z C K A z
z z ++-=)( (3-2) 五、实验步骤
已知系数阵A 、B 、和C 阵分别如式(3-4)示,设计全维状态观测器,要求状态观测器的极点为[-1 -2 -3]上
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=234100010A ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=631B []001=C (3-4) 设计全维状态观测器,要求状态观测器的极点为[-1 -2 -3]。

对系统式(3.4)所示系统,用MATLAB 编程求状态观测器的增益阵K z =[k1 k2 k3]T
程序:
%实验4
A=[0 1 0;0 0 1;-4 -3 -2];
B=[1;3;-6];
C=[1 0 0];
D=[0];
[num,den]=ss2tf(A,B,C,D,1); %求出原系统特征多相式denf=[-1 -2 -3]; %希望的极点的特征多相式
k1=den(:,1)-denf(:,1)
k2=den(:,2)-denf(:,2) %计算k2=d2-a2
k3=den(:,3)-denf(:,3) %计算k3=d3-a3
Kz=[k1 k2 k3]'
运行结果:
k1 =
2
k2 =
4.0000
k3 =
6.0000
Kz =
2.0000
4.0000
6.0000。

相关文档
最新文档