液压缸结构设计

合集下载

挖掘机液压缸设计计算结构设计

挖掘机液压缸设计计算结构设计

挖掘机液压缸设计计算结构设计1 绪论1.1 小型挖掘机的概述小型挖掘机主要用于城市、狭窄地区,代替人力劳动。

主要作业是挖掘、装载、整地、起重等,用于城市管道工程、道路、住宅建设、基础工程和园林作业等。

小型挖掘机体积小,机动灵活,并趋向于一机多能,配备多种工作装置,除正铲、反铲外,还配备了起重、抓斗、平坡斗、装载斗、耙齿、破碎锥、麻花钻、电磁吸盘、推土板、冲击铲、集装叉、高空作业架、铰盘及拉铲等,以满足各种施工的需要。

与此同时,发展专门用途的特种挖掘机,如低比压、低嗓声、水下专用和水陆两用挖掘机等。

总之它是一种多用途万能型的城市建设机械。

由于这种机械的特点很靠近人,因此在设计上除了要求耐久性、可靠性和作业效率等,还需着重考虑人、机、环境的协调,特别要注意以下几点:1.安全性即机械作业过程中不要与周围的人和物相碰撞,防倾翻稳定性好。

2.低公害即排放要求高、低震动、低噪音,声音要比较悦耳。

3.与周围环境能调和,形象要美观,形体和色彩不要引起人们不愉快感,对人有亲和感。

4.尽量扩大其使用功能,可装多种附属装置,应成为城市万能型工程机械。

5.操纵简便,任何人一学就会,都能操纵。

小型挖掘机具有中型挖掘机的多项功能,又具有便于运输、能耗低、灵活、适应性强等优势,非常适用于空间狭小的施工场地作业,而且价格低、质量轻、保养维修方便,所以在小型土石方工程、市政工程、路面修复、混凝土破碎、电缆埋设、自来水管道的铺设、园林栽培等工程中得到了广泛的应用。

由于满足基本的挖掘·、装载、整地、起重等功能外,必须考虑到工作空间小(人力所不能至)、地形复杂、方便操作、可控,目前市场对小型挖掘机性能要求如下:1.改进挖掘机可控性和控制精确性以及复合动作。

2.简化液压系统、降低成本,达到大作业量与低油耗的动态平衡。

3.改进工作可靠性。

4.改进驾驶操作舒适性及降低劳动强度,提高单位生产率。

5.改进操作安全性。

6.低振动、低噪音适用生活区工作。

3液压缸解读

3液压缸解读

液压缸液压缸(又称油缸)是液压系统中常用的一种执行元件,是把液体的压力能转变为机械能的装置,主要用于实现机构的直线往复运动,也可以实现摆动,其结构简单,工作可靠,应用广泛。

3.1 液压缸的类型及特点液压缸可按运动方式、作用方式、结构形式的不同进行分类,其常见种类如下。

3.1.1活塞式液压缸活塞式液压缸可分为双杆式和单杆式两种结构形式,其安装又有缸筒固定和活塞杆固定两种方式。

3.1.1.1双杆活塞液压缸双活塞杆液压缸的活塞两端都带有活塞杆,分为缸体固定和活塞杆固定两种安装形式,如图3.1所示。

图3.1 双活塞杆液压缸安装方式简图因为双活塞杆液压缸的两活塞杆直径相等,所以当输入流量和油液压力不变时,其往返运动速度和推力相等。

则缸的运动速度V 和推力F 分别为:)(422d D q A q v v -==πη (3.1)m p p d D F ηπ))((42122--= (3.2)式中: 1p 、2p --分别为缸的进、回油压力;v η、m η--分别为缸的容积效率和机械效率;D 、d--分别为活塞直径和活塞杆直径;q--输入流量;A--活塞有效工作面积。

这种液压缸常用于要求往返运动速度相同的场合。

3.1.1.2单活塞杆液压缸单活塞杆液压缸的活塞仅一端带有活塞杆,活塞双向运动可以获得不同的速度和输出力,其简图及油路连接方式如图3.2所示。

(1)当无杆腔进油时[图3.2(a )],活塞的运动速度1v 和推力1F 分别为v v D q A q v ηπη2114== (3.3)m m p d D p D A p A p F ηπη])([4)(2221222111--=-= (3.4)(2)当有杆腔进油时[图3.2(b)],活塞的运动速度2v 和推力2F 分别为v v d D q A q v ηπη)(42222-==(3.5)m m p D p d D A p A p F ηπη])[(4)(2212211222--=-= (3.6)式中符号意义同式(3.1)、式(3.2)。

液压缸的设计

液压缸的设计

目录一、设计要求——————————————————————-1 题目—————————————————————————1二、各零部件的设计及验算————————————————-51、缸筒设计———————————————————————52、法兰设计———————————————————————143、活塞设计———————————————————————194、活塞杆设计——————————————————————21•一、设计一单活塞杆液压缸,工作台快进时采用差动联接,快进、快退速度为5m/min。

当工作进给时外负载为25×103N,背压为0.5MPa,已知泵的公称流量为25L/min,公称压力为6.3MPa,工作行程L=100mm。

•要求:(1)确定活塞和活塞杆直径。

(2)如缸筒材料的[σ]=5×107N/m2,计算筒壁厚。

1、主要设计参数:•(1)外载F=25×103N,背压P2=0.5MPa•(2)工进、快退速度V1= 5m/min。

•(3)泵的公称流量q=25L/min,公称压力为P1=6.3MPa •(4)工作行程L=100mm•(5)缸筒材料的自选(教材仅作参考)2、设计提要①、液压油缸主要参数给定在设计要求中已经提到的参数这里就不再赘述,下面只给出此次设计中液压油缸主要部件的其他参数:缸内径:D=100mm;缸外径:D=116mm;1壁厚: =8mm;极限推力:F=25KN;max活塞杆直径:d=70mm;活塞外推流量(快退):q2 =0.20L/min,快进:q1=0.39L/min说明:液压缸的效率油缸的效率η:本设计不考虑效率②、法兰安装方式螺纹连接③、缓冲机构的选用一般承压在10MP以上应当选用缓冲机构,本次设计中,工作压力为3.5MP,因此缓冲机构从略。

④、密封装置选用选用Y型密封圈.⑤、工作介质的选用因为工作在常温下,所以选用普通的是油型液压油即可。

液压缸基本结构

液压缸基本结构

液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。

上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。

活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。

下面对液压缸的结构具体分析。

3.2.1 缸体组件•缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。

3.2.1.1 缸筒与端盖的连接形式常见的缸体组件连接形式如图3.10所示。

(1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。

(2)半环式连接(见图b),分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。

半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。

(3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。

•(4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。

只适用于长度不大的中、低压液压缸。

(5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。

3.2.1.2 缸筒、端盖和导向套的基本要求•缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗糙度在 0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要承受很大的液压力,因此,应具有足够的强度和刚度。

液压缸的结构设计应该注意什么

液压缸的结构设计应该注意什么

液压缸的结构设计应该注意什么
液压缸的结构设计应该注意以下:
1、活塞杆导向部分的结构:包括活塞杆与端盖、导向套的结构,以及密封、防尘、锁紧装置等。

2、活塞及活塞杆处密封圈的选用:应根据密封部位、使用部位、使用的压力、温度、运动速度的范围不同而选择不同类型的密封圈。

常见的密封圈类型:O型圈,O型圈加挡圈,高底唇Y型圈,Y型圈,奥米加型等。

3、缸体与缸盖的连接形式:常用的连接方式法兰连接、螺纹连接、外半环连接和内半环连接,其形式与工作压力、缸体材料、工作条件有关。

4、活塞杆与活塞的连接结构:常见的连接形式有:整体式结构和组合式结构。

组合式结构又分为螺纹连接、半环连接和锥销连接。

5、液压缸排气装置:对于速度稳定性要求的机床液压缸,则需要设置排气装置。

6、液压缸的缓冲装置:液压缸带动工作部件运动时,因运动件的质量大,运动速度较高,则在达到行程终点时,会产生液压冲击,甚至使活塞与缸筒端盖产生机械碰撞。

为防止此现象的发生,在行程末端设置缓冲装置。

常见的缓冲装置有环状间隙节流缓冲装置,三角槽式节流缓冲装置,可调缓冲装置。

汽车液压缸的工作原理与结构设计

汽车液压缸的工作原理与结构设计

汽车液压缸的工作原理与结构设计汽车液压缸是一种常见的液压执行器,它在汽车工业中扮演着至关重要的角色。

它主要用于转换液压能为机械能,实现汽车的运动控制和力量传递。

本文将详细介绍汽车液压缸的工作原理和结构设计。

一、工作原理液压缸的工作原理基于帕斯卡定律,即在封闭的液体中,压力传递是均匀并且保持不变的。

通过液压缸内部的活塞和密封件,液体可以在缸内进行无阻碍的往复运动。

液压缸的工作过程可以简要概括为以下几个步骤:1. 液体供给:液体通过液压泵从液体储备器中供给液压缸。

液体被压力推至液压缸的缸体内部。

2. 压力传递:液体的压力被传递至液压缸内的活塞上。

根据帕斯卡定律,所有施加在液体上的压力都会均匀传递给同一液体的每一个部分。

3. 缸体伸缩:当液压缸内活塞上施加的压力超过外部负荷力时,液压缸会开始伸缩。

这时,液压缸的功效就发挥出来了,它可以提供足够的力量推动汽车的运动。

4. 压力释放:当液压缸需要停止运动或者运动方向改变时,液体的压力将会被释放。

这通过液压缸内的阀门来实现,阀门的开启和关闭控制了液体的流动。

5. 循环再生:液体流回液体储备器进行再次循环使用。

如此一来,液压缸可以持续不断地工作。

二、结构设计汽车液压缸的结构设计通常分为以下几个组成部分:1. 缸体:液压缸的缸体承载着液体和气体的压力,因此需要具备足够的强度和刚性。

一般情况下,缸体由优质的合金钢制成,以确保其在高压情况下不会出现变形或破裂。

2. 活塞:液压缸内的活塞是液压能到机械能的转换器。

它通常由高硬度的合金材料制成,表面经过特殊处理以提高耐磨性和密封性。

活塞上通常安装有活塞环,用于保持液体的密封和防止泄漏。

3. 密封件:液压缸内的密封件起到密封液体的作用。

常见的密封件包括O型圈、密封环等,它们能够在高压情况下有效防止液体泄漏,并保持液体的压力。

4. 阀门:液压缸的阀门控制液体的流动,实现液压缸的伸缩和停止。

阀门通常由电磁阀、手动阀或脚踏阀等形式组成,根据具体的应用需求进行选择。

液压缸结构设计的特点分析

液压缸结构设计的特点分析

液压缸结构设计的特点分析摘要这篇结构设计论文发表了液压缸结构设计的特点分析,当前液压技术正在向高压、高速、大功率、高效率、低噪音、高可靠性和安全性、高集成化方向发展, 研发轻量化高性能的液压元这篇结构设计论文发表了液压缸结构设计的特点分析,当前液压技术正在向高压、高速、大功率、高效率、低噪音、高可靠性和安全性、高集成化方向发展, 研发轻量化高性能的液压元件是其重要的一环[1]。

液压缸作为液压系统的核心零部件之一, 轻量化是其发展的一个重要趋势。

关键词:结构设计论文投稿,液压缸;结构设计;运行特点随着机械工艺的不断发展与提升,液压传统系统已经被广泛地应用于各种不同类型的机械中,而液压缸则是液压传统系统中的核心部件,发挥着最为重要的作用。

液压缸的主要职责是借助液压油完成能量的传递,而能量的传递则是液压传统系统的中心环节,且借助于液压缸的运动,能够使液压转变为机械动能,从而使传动系统中的各个环节执行相应的运动指令。

1液压缸结构设计在液压传统系统中,液压缸是非常重要的能源执行元件,在特定功能的实现中发挥着关键性的作用,不仅如此,液压缸对液压传统系统的影响是全方位的,任何层面的问题,比如结构尺寸、性能等,都会对液压传动系统带来非常大的影响,甚至使得液压传统系统难以实现预期功能,因此,液压缸设计,特别是液压缸的结构设计就显得尤为必要。

在液压缸结构设计中重点需要处理好以下几点内容:第一、当液压缸没有活塞杆,直接连通油箱时,需要将活塞向右断开,同样的情形也表现在当有活塞杆但没有与高压油侧通时;第二、当活塞的两侧与高压油同时连通,在设计中需要根据两侧实际的承压面积,将活塞向左关闭;第三、活塞杆作为结构设计中的重点,在实际应用中经常出现滑动的现象,而导致此种现象的主要因素则是活塞杆的直径存在问题,因此,在活塞杆设计时,需要根据实际情况与需求,合理的设计活塞杆的直径,避免故障的发生。

不仅如此,在液压缸的结构设计中,还要做好直径计算与校核、厚度计算与校核、长度计算与校核的工作。

液压缸结构设计

液压缸结构设计

1.3 强度校核
1. 缸筒壁厚校核 在中、低压液压系统中,液压缸的缸筒壁厚常由结构工艺
上的要求决定,强度问题是次要的,一般不须验算。在高压系 统中,即
1.3 强度校核 2. 活塞杆直径校核 (1)强度计算。活塞杆强度按下式校核
(2)稳定性计算。活塞杆所能承受的负载F,应小于使它保持 工作稳定的临界负载Fk。
3.螺栓强度校核
1.3 强度校核
3.螺栓强度校核 液压缸盖固定螺栓在工作过程中同时承受拉应力和扭应力,
其螺栓直径ds可按下式校核
液压与气动控制
d值也可由D和λv来决定。按国家标准进行圆整。行业标准规定 了单杆活塞液压缸两腔面积比的标准系列 。
3)缸筒长度L 液压缸的缸筒长度L由最大工作行程决定, 通常缸筒的长度=活塞最大行程+活塞长度+活塞杆导向长度+ 活塞杆密封长度+其他长度,其中活塞长度=(0.6~1)D,活塞 杆导向长度= (0.6~1.5)d。其他长度是指一些特殊装置所需 长度,如液压缸两端缓冲装置所需的长度等。缸筒的长度一般 不超过其内径的20倍。
4)最小导向长度H 对于一般的液压缸,当液压缸的最大行 程为L,缸筒直径为D时,最小导向长度H为:
活塞的宽度B一般取B=(0.6~1)D。导向套滑动面长度A,在 D<80mm时,取A=(0.6~1)D,在D>80mm时,取A=(0.6~ 1)d。为保证最小导向长度,过分增大A和B都是不合适的,必要时 可在导向套和活塞之间装一隔套(图中零件K),隔套的长度C由 需要的最小导向长度H决定,即
1.2 液压缸主要尺寸计算
1)缸筒内径D 根据负载大小和选定的工作压力,或运动速 度和输入流量,按本章有关算式确定后,再从国家标准中选取 相近尺寸加以圆整。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

缓冲装置(3/3)
(4)可调节流孔式缓冲装置
在缓冲过程中,缓冲腔油液经小孔节流排 出,调节节流孔的大小,可控制缓冲腔内缓 冲压力的大小,以适应液压缸不同的负载和 速度工况对缓冲的要求,同时当活塞反向运 动时,高压油从单向阀进入液压缸内,活塞 也不会因推力不足而产生启动缓慢或困难等 现象。
液压缸的排气装置
一、设计
液压缸的主要尺寸包括: 液压缸内径D 活塞杆直径d
液压缸缸体长度L
设计依据:
缸工作压力、运动速度、工作条件、 加工工艺及拆 装检修等。
液压缸内径D
1 根据最大总负载和选取的工作压力来确定
2 根据执行机构速度要求和选定液压泵流量 来确定
液压缸工作压力的确定
F FL Ff FA
缓冲装置(2/3)
(2)圆锥形环隙式缓冲装置 由于缓冲柱塞为圆锥形,所以缓冲环形间隙随
位移量l而改变,即节流面积随缓冲行程的
增大而缩小,使机械能的吸收较均匀,其缓 冲效果较好。
缓冲装置(3/3)
(3)可变节流槽式缓冲装置
理想缓冲装置应在全部工作过程中保持缓 冲压力恒定不变,因此,可在缓冲柱塞上开 由浅到深的三角节流沟槽,节流面积随着缓 冲行程的增大而逐渐减小,缓冲压力变化平 缓,但需要专门设计。
1—缸盖 2—放气小孔 3—缸体 4—活塞杆
三、 液压缸的设计与计算
一、设计 :液压缸内径D、 活塞杆直径d、 液压缸缸体长度L
二、校核
液压缸设计中的注意事项
(1)活塞杆受拉状态下承受最大负载,在受压 状态下具有稳定性。
(2)排气和制动问题 (3)液压缸的安装,只能在一端用键或销定位。 (4)结构简单紧凑 (5)密封性要好
缓冲原理
利用节流方法在液压缸的回油腔产 生阻力,减小速度,避免撞击。
缓冲装置类型
(1) 圆柱形环隙式缓冲装置 (2) 圆锥形环隙式缓冲装置 (3) 可变节流槽式缓冲装置 (4) 可调节流孔式缓冲装置
缓冲装置(2/3)
(1)圆柱形环隙式缓冲装置
当缓冲柱塞进入缸盖上的内孔时,缸盖和活塞 间形成缓冲油腔B,被封闭油液只能从环形间隙 排出,产生缓冲压力,从而实现减速缓冲。这种 缓冲装置在缓冲过程中,由于其节流面积不变, 故缓冲开始时产生的缓冲制动力很大,但很快就 降低了,其缓冲效果较差,但这种装置结构简单, 便于设计和降低制造成本,所以在一般系列化的 成品液压缸中多采用这种缓冲装置。
V2
V1
液压缸内径和活塞杆直径的确定
(一)液压缸内径D
(二)活塞杆直径d
液压缸内径D
一 双杆缸
F



A p1 p2 m
q A
v


4qv
D2 d 2

4
D2 d 2
p1 p2 m
二 单杆缸 无杆腔进油时 活塞的速度和推力
1

q A1
必要性 排气方法
排气的必要性
∵ 系统在安装或停止工作后常会渗入空气 ∴ 使液压缸产生爬行、振动和前冲,换向精度降低等。
故 必须设置排气装置。
排气方法
1 排气孔 油口设置在液压缸最高处 2 排气塞 象螺钉(如暖气包上的放气阀) 3 排气阀 使液压缸两腔经该阀与油
箱相通启动时,拧开排气 阀使液压缸空载往复运动 几次即可
活塞杆头部结构
活塞杆:是连接活塞和工作部件的传 力零件,必须具有足 够的强 度和刚度,一般用钢料制成, 且需镀铬。
液压缸的缓冲装置
必要性 缓冲原理 缓冲装置类型
缓冲的必要性
∵ 在质量较大、速度较高(v>12m/min),
由于惯性力较大,活塞运动到终端时会撞 击缸盖,产生冲击和噪声,严重影响加工 精度,甚至使液压缸损坏。 ∴ 常在大型、高速、或高精度液压缸中设置 缓冲装置或在系统中设置缓冲回路。
缸主要尺寸的计算(2/3)
当液压缸的往复速度比有一定要求时,由式得杆径
d为:
d D 1
缸的速度比 过大会使无杆腔产生过大的背压,速 度比 过小则活塞杆太细,稳定性不好。
2 根据执行机构速度要求和选定液压 泵流量 来确定
以单杆缸为例: 无杆腔进油时
1

q A1
v

4q
D2

v

4q
D2


[
4
D2
p1


4
D2 d2
p2 ]m
P2

[
4
D2

p1

p2



4
d
2
p2
]m
根据最大总负载和选取的工作压力来确定D
以单杆缸为例: 无杆腔进油时
D
4 Fmax
p1
是最大工作负载。
PFm1ax P2液压缸工作腔的工作压力,可根据机床类型 或负载的大小来确定, P2 是背压一般为零。
典型结构
缸体组件、活塞组件、密封件、 连接件、缓冲装置、排气装置等。
一、液压缸的结构
二、液压缸的组成
1、 缸体与端盖的结构
缸体与端盖的连接 活塞和活塞杆结构 液压缸的缓冲装置 液压缸的排气装置
缸体与端盖的连接
法兰连接 半环连接 螺纹连接 拉杆连接 焊接连接
缸体与端盖的连接
∵ 工作压力、缸体材料、 工作条件不同
有杆腔进油时
2

q A2


4qv
D2 d 2
(二)活塞杆直径d
原则:活塞杆直径可根据工作压力或设 备类型选取液压缸的往复速度比 有一定要求时
d = D√λv-1/λv d = D√v2-v1/V2
计算所得活塞杆直径d亦应圆整 为标准系列值。
∴ 连接形式很多低压, 铸铁缸体,外形尺寸大
缸体与端盖的连接形式
法兰连接:高压,需焊接法兰盘,较杂。
内半环 —结构简单、紧凑、装卸
半环连接 <
方便(但因缸体上开了环行槽,强度削弱)
外半环
内螺纹
螺纹连接<
> 重量轻,外径小,但端部复杂,
外螺纹 装卸不便,需专用工具
焊接连接
拉杆连接
通用性好,缸体加工方便,装拆方 便,但端盖体积大,重量也大,拉 杆受力后会拉伸变形,影响端部密 封效果,只适于中低压.
活塞和活塞杆的连接
∵ 工作压力、安装方式、 工作条件的不同。
∴ 活塞组件有多种结构形式。 整体式:常用于小直径液压缸,
结构简单,轴向尺寸紧凑, 但损坏后需整体更换
活塞和活塞杆的连接
焊接式:同上 锥销式:常用于双杆缸,加工容易,装配
简单,但承 载能力小,且需防止 脱落 螺纹式:常用于单杆缸,结构简单,装拆 方便,但需 防止螺母松动。 半环式:常用于高压大负载或振动比较大 的场合,强 度高,但结构复杂, 装拆方便。
相关文档
最新文档