高速铁路牵引供电系统相关问题的分析与研究毕业设计

合集下载

高速铁路牵引供电系统相关问题的分析

高速铁路牵引供电系统相关问题的分析
高速 铁 道 飞 度 发 展 的 背 景 下 . 作 为 高 速铁 路 的 “ 心脏 ” , 为 了满
吸 流 变压 器供 电方 式 一 般 用 B T供 电 方 式 进 行 简单 表 述 ,
这 是 一 种 在 牵 引 网 中 串联 接 入 一 定数 量 变 比 为 1 : 1的 吸 流 变
2 2 0 k V 以前 的 各 支路 要 比 1 1 0 k V 侧 多 . 因 此 将 电 铁 电 源 由
牵引变 电所
电力机车
钢轨
图 1牵引供 电系统的组成
1 . 2 牵 引供 电系统 的 几种供 电 方式
1 . 2 . 1 直 接 供 电 方 式
图 5 同轴 电缆供电方式原理图
直 接 供 电 方 式 通 常 可 以 简单 的 用 “ T — R 供 电” 表 示, 它表 示 牵 引 变 电所 通 过 接 触 网直 接 向 电 力机 车供 电 , 牵 引 回 流 自
【 关键词 】 高速铁路 ; 牵 引电力系统 ; 供 电方式
【 中图分类号 】 U 2 3 8
【 文献标识码 】 B
【 文章编号 】 1 0 0 6 — 4 2 2 2 ( 2 0 1 4 ) 0 2 — 0 0 9 8 — 0 2
引 言
我 国 高速 铁 路 的 建 设 始 于 1 9 9 9年 所 兴 建 的 秦 沈 客 运 专 线, 截止 2 0 1 3年 9月 2 6 日, 中 国 高铁 总 里 程 达 到 1 0 4 6 3 k m, 而根据我 国中长期铁路 网规划方 案 , 至 2 0 1 5年 年 底 , 我 国将 会建成 4 2条 高速 铁 路 客 运 专 线 , 总 里程 将 超 过 2 0 , 0 0 0 k m, 本 上 建 成 以“ 四纵 四横 ” 为 骨 架的 全 国快 速 客 运 网 : 到 2 0 2 0年 我 国 时速 在 2 0 o k m 以 上 的 高速 铁 路 里程 将 会 超 过 3 0 . 0 0 0 k m。 在

高速铁路牵引供电系统相关问题的分析与研究毕业设计

高速铁路牵引供电系统相关问题的分析与研究毕业设计

高速列车与牵引供电系统直接相关,是进行牵引供电系统研究的最重要的基础。

为此,文首先对牵引供电系统组成进行了详细介绍,然后结合牵引供电系统供电方式及牵引供电回路的特点,对牵引供电系统供电分析论证,针对无功功率、谐波电流、负序电流,分析了牵引供电系统存在问题 提出了解决办法。

然后提出了理想牵引供电系统,根据运行方式与同相供电系统,研究并分析牵引变电所的(最小)补偿容量,并提出研究后的自耦变压器(AT)供电模式,从而进行新型AT供电模式的研究。

关键词:牵引供电系统、牵引变电所、供电系统、供电回路第1章绪论 (1)1.1 本文研究的目的和意义 (1)1.2 国内外研究现状 (2)1.2.1 概况 (2)1.2.2 日本 (3)1.2.3 法国 (6)1.2.4 德国 (7)1.3 本文主要工作 (7)第2章高速铁路牵引供电系统系统介绍 (8)2.1 牵引供电部分 (9)2.2 牵引网供电方式 (11)2.2.1 直接供电方式 (11)2.2.2 吸流变压器—回流线装置BT (12)2.2.3 自耦变压器供电方式(AT) (12)2.2.4 带回流线的直接供电方式(DN) (14)2.3 牵引供电回路 (15)第3章高速铁路牵引供电系统相关问题 (17)3.1 铁道牵引供电系统的组成 (17)3.2 铁道牵引供电系统存在的问题 (17)3.2.1 无功功率 (17)3.2.2 谐波电流 (18)3.2.3 负序电流 (18)3.2.4 解决方法 (19)第4章高速铁路牵引供电发展的若干关键技术问题 (21)4.1 理想牵引供电系统 (21)4.1.1 系统构成 (21)4.1.2 运行过程 (22)4.2 现行方式与同相供电系统 (23)4.2.1 同相供电系统 (24)4.2.2 牵引变电所的(最小)补偿容量 (24)致谢 (26)参考文献 (27)第1章绪论1.1 本文研究的目的和意义随着我国国门经济的持续稳定发展,人口城镇化进程加速,国际交往急剧增加,旅游事业日益兴旺,诱发了大量的困运需求。

高速铁路牵引供电系统的可靠性与故障诊断研究

高速铁路牵引供电系统的可靠性与故障诊断研究

高速铁路牵引供电系统的可靠性与故障诊断研究随着高铁的快速发展,牵引供电系统的可靠性和故障诊断成为确保高速铁路正常运行的关键因素之一。

本文将针对高速铁路牵引供电系统的可靠性与故障诊断进行研究,探讨其重要性、现有问题和未来发展方向。

一、高速铁路牵引供电系统的可靠性及其重要性高速铁路的运行速度较快,列车对供电系统的要求也相对较高。

牵引供电系统的可靠性直接影响列车运行的安全性和稳定性。

因此,确保牵引供电系统的可靠性是高速铁路运行的关键之一。

可靠的供电系统可以降低系统故障发生的概率,确保列车高速运行的安全性。

二、高速铁路牵引供电系统的现有问题1. 系统故障频发:当前,高速铁路牵引供电系统存在故障频发的问题,这给列车运行稳定性带来了负面影响。

故障可能导致列车停运、延误等问题,对乘客出行和铁路运输效率造成不利影响。

2. 故障诊断困难:目前,高速铁路牵引供电系统故障诊断方面存在一定困难。

故障往往发生在复杂的供电系统中,诊断起来非常复杂和耗时,需要专业的技术人员进行判断和处理。

三、高速铁路牵引供电系统可靠性与故障诊断的研究现状为了提高高速铁路牵引供电系统的可靠性和故障诊断准确性,许多研究机构和企业进行了相关的研究。

目前,主要有以下几个方面的研究:1. 引入智能化技术:通过引入智能化技术,如人工智能、大数据分析等,可以帮助系统自动分析、检测和诊断故障。

智能化技术可以通过对供电系统的实时数据进行分析,提前识别潜在故障,降低故障的发生概率。

2. 清洁能源的应用:传统的供电系统使用煤炭等化石能源,不仅对环境造成污染,而且容易出现故障。

采用清洁能源,如太阳能、风能等,不仅降低了对环境的影响,而且提高了供电系统的可靠性。

3. 系统监测与维护:通过建立完善的供电系统监测与维护机制,可以及时发现潜在的问题,并进行正确的维护。

定期检查以及预防性维护可以大大降低故障发生的概率,提高供电系统的可靠性。

四、高速铁路牵引供电系统可靠性与故障诊断的未来发展方向为了进一步提高高速铁路牵引供电系统的可靠性与故障诊断准确性,需要在以下几个方面进行深入研究:1. 加强系统监测与预防:建立有效的系统监测与预防机制,提前发现潜在问题,并采取有效措施进行预防,从而减少故障的发生。

高速动车组牵引供电系统故障处理与分析

高速动车组牵引供电系统故障处理与分析

高速动车组牵引供电系统故障处理与分析摘要:经济的快速发展,有效的推动了铁路运输事业的发展,我国铁路开始向高速化的方向发展,目前高速铁路的建设,更是加快了我国铁路发展的进程。

文章针对我国高速铁路牵引供电系统的常见故障进行了分析,并对故障的处理办法进行了具体的阐述,这对于我国高速铁路牵引供电系统的运行和维护工作将起到积极的作用。

关键词:高速铁路;牵引供电;常见故障;处理分析1、前言随着我国铁路的快速发展,目前我国高铁进入了快速建设阶段。

高铁在我国已经过了十几年的发展,目前在经济高度发达地区,高速铁路都已开通,为铁路运输注入了新的活力。

目前我国高铁技术在不断的发展及完善过程中,已基本成熟,高铁的供电系统能够处于良好的运行状况,确保了运输的正常秩序。

我国高铁使用的是牵引供电系统,在高铁运营过程中供电系统会存在着一些常见的故障,对这些故障的快速处理,则是保证我国高速铁路正常运行的关键。

2、牵引供电系统主要故障原因与分析2.1、主要故障原因在铁路电气化和电力供电全行业各环节,在故障率最高的几个工作环节中,首先与高铁设备的施工、运用维护的工艺和日常管理有关,如设备状态异常时的工艺处理、施工管理、材质问题;其次与弓网关系的匹配有关,受电弓、轨道线路的接口管理及和运输外部环境有关的异物侵入等接口管理;第三是与雷击、鸟害等多因素有关,是需要进一步研究解决的综合性难题。

发生的故障从专业类别分,无法采用备用措施的接触网故障占到故障总数的80%,是牵引供电各专业中的主要故障所在。

2.2、故障原因分析高铁牵引供电系统各类性质故障中,又以设备类故障居多(占63%)。

从专业角度进一步分析细化各设备的故障特点及其影响。

除了原因复杂或不明因素外,影响最大的是“其他线断伤”因素,实际是附加导线尤其是AT正馈线短线故障引起的,属不正常现象,完全可以人为杜绝,解决了附加导线故障后可不再设置AT正馈线隔离切除开关。

第二是“接触网和承力索断伤”,原因和电气化供电的电分相有关,往往与由机车误操作带电闯分相或列控信号故障失灵引起塌网的故障有关。

高速铁路电力牵引供电系统分析与研究

高速铁路电力牵引供电系统分析与研究

高速铁路电力牵引供电系统分析与研究摘要:如今高速铁路飞速发展,在高铁动车组列车大幅投入运营的同时,对高铁安全可靠性也提出了更高要求。

在高铁运行各技术系统中,牵引供电系统尤其重要,因牵引供电系统直接关系高铁的可靠运行。

本文借鉴了日本、法国模式, 提出一种取电于公用电网同时又相对独立的牵引供电系统。

该系统能彻底解决电能质量问题, 并能够完全取消电分相。

文中提出了最小补偿容量的同相供电方案, 研究三相接入电力系统平衡接线变压器, 不仅便于今后同相改造, 同时也能与单相变电所实现同相供电。

本文在对国内外正使用的AT供电模式借鉴和分析基础之上, 提出建立我国新供电系统。

关键词:高速铁路;牵引供电系统;同相供电;分析研究一、关于牵引供电系统1.牵引供电系统能量来源我国电气化铁路取电于国家公用电网,外部电源是高速列车所需能量来源,它在牵引变压器作用下实现了将电力系统能量转变成牵引供电能量。

一般普通铁气化路,牵引变压器工作电压为110KV,但高速铁路牵引变电所需要外部电源电压为220KV,目的是使高速铁路在供电电能提供上有安全可靠外电网保障。

2.牵引供电系统核心对于整个牵引供电系统来说,牵引变电所作用如同人的心脏。

牵引变电所把电力系统传送来的电能,根据对电压和电流不同要求,转变为适用于电力牵引的电能,再分别馈送到铁路轨道上空架设的接触网上,列车通过受电弓取电而产生牵引动力。

在一条电气化铁路沿线上有多个牵引变电所,它们之间距离大约为40Km到50Km,并且每个牵引供电所设置二台牵引变压器,采用双电源供电,提高了供电可靠性。

牵引变电所中,最主要设备当属牵引变压器,因牵引供电需要,牵引变压器与一般变压器有较大差别,采用接线方式有三相Yd11接线、单相V/V接线、三相-两相斯科特接线等。

牵引变压器将电力系统高电压降低至适合列车运行的电压等级,还起着将三相电转换为单相电功能。

牵引变电所除了牵引变压器之外,还包括与牵引变压器配套的其它设备,如高压断路器、隔离开关、电压电流互感器、高低压开关柜、全封闭组合电器、电容补偿装置等。

高速铁路列车牵引系统设计与性能研究

高速铁路列车牵引系统设计与性能研究

高速铁路列车牵引系统设计与性能研究一、引言高速铁路作为一种现代化、高效率的交通运输方式,正逐渐取代传统的铁路运输方式成为人们出行的首选。

而高速铁路列车的牵引系统作为其核心技术之一,对列车的运行安全、舒适性和效率具有重要影响。

本文将对高速铁路列车牵引系统的设计与性能进行研究和分析。

二、牵引系统的设计原理高速铁路列车的牵引系统主要是指电力牵引系统。

该系统由电力机车或高速列车的牵引逆变器、牵引变压器、驱动电机和控制系统等组成,其主要功能是提供适量的牵引力,使列车正常运行。

1. 牵引逆变器牵引逆变器是牵引系统的核心组成部分,它将直流电源转换为交流电源,通过调节电压和频率控制驱动电机的转速和扭矩。

逆变器的设计应考虑效率高、噪音低、体积小以及电磁兼容性等因素。

2. 牵引变压器牵引变压器用于将高压电网供电的电能转换为适合列车牵引电机的低电压和高电流的电能。

牵引变压器的设计应考虑功率损耗、温升等因素,以确保高效率和安全性能。

3. 驱动电机高速铁路列车一般采用三相异步电动机或同步电动机作为牵引电机。

驱动电机的设计与选型应考虑其额定功率、转速范围、效率和可靠性等因素。

4. 控制系统牵引系统的控制系统包括驱动控制器、牵引力控制器和牵引力反馈系统等。

控制系统的优化设计可以改善列车的牵引性能、提高安全性和乘坐舒适度。

三、牵引系统性能研究高速铁路列车的牵引系统性能对列车的运行安全和乘坐舒适度至关重要。

对牵引系统的性能进行科学研究和优化设计,可以提高列车的牵引能力、降低能耗、改善运行稳定性。

1. 牵引力控制牵引力控制是牵引系统的关键性能之一。

合理控制牵引力的大小,可以提高列车的启动加速度和爬坡能力,并保证列车在不同路况下的牵引力稳定性。

通过控制系统对牵引力进行精确调节和反馈控制,可以有效降低列车的能耗和磨损。

2. 制动控制制动控制是牵引系统的另一个重要性能参数。

合理的制动控制可以确保列车在运行过程中的平稳减速和停车操作。

牵引系统应具备快速响应的制动控制能力,能够根据不同速度和负载条件下的制动需求进行精确调节。

高速铁路牵引供电系统研究设计

高速铁路牵引供电系统研究设计

高速铁路牵引供电系统研究设计一调研目的世界已进入建设高速电气化铁路的新时期。

特别是欧洲已经突破了国界,向路网化、国际化发展。

高速电气化铁路已经成为国家社会经济发展水平和铁路现代化的主要标志之一。

按照铁道部的《中长期铁路网规划》,从2005年到2020年,铁道部将投入两万亿元资金进行铁路建设,近期每年投资在2000亿元以上。

到2020年,全国铁路营业里程达到10万公里,电化率均达到50%以上。

所以对高速铁路牵引供电系统研究,是为了保证在牵引变电所发生事故、故障情况下,抢修人员能够迅速出动,以最佳的抢修方案、最快的抢修速度、最好的抢修组织,最大限度地减少对运输的影响。

因此如何结合哈局电气化铁路的设备现状和运行实际,结合哈大电气化铁路牵引供电系统研究,消除牵引变电所供电设备隐患,缩小故障影响范围、减少对运输干扰,恢复列车正常的运行秩序,为本次调研的目的。

二调研方法深入学习哈大高速铁路牵引供电系统的流程及其原理,确定高速铁路牵引供电系统调研的必要性,通过到王岗牵引变电所参与变电所的运作,通过当地监控主机Micro-SCADA 的事件列表中,查找年至今的全部故障跳闸的详细记录以及其它的报警信息,进行分类,进行对比,同故抢修负责人了解实际故障情况并探讨一般故障判断及处理程序,并在得知有设备故障情况后,积极深入现场,参与整个故障查找及其排除处理的过程。

三调研内容及过程自从2010年1月9日确定调研题目后,亲自来到哈尔滨供电段王岗牵引变电所进行现场调查研究。

在整个调研期间,首先认真学习牵引供电系统的原理,熟悉如何才能使变电所处于正常的运作状况,并使接触网设备能持续地、不间断地得到25KV接触网电压供应。

并向主管工程师请教牵引变电所本地控制系统、远动系统、继电保护系统运行情况进行初步的掌握。

二是通过当地监控主机Micro-SCADA的事件列表中,所有故障调整的详细记录以及其它报警信息,其中出现最多最为频繁的故障跳闸和Z-COM1远方错误,对全部事件进行分类,分析对比,查找引起保护系统启动而使断路器跳闸和通道故障的真正原因。

高速铁路列车牵引供电系统设计与优化

高速铁路列车牵引供电系统设计与优化

高速铁路列车牵引供电系统设计与优化随着高铁运输业的快速发展,高速铁路列车牵引供电系统设计与优化成为一个重要的课题。

本文将从供电系统的设计原理、优化方法和未来发展趋势等方面进行探讨,以期为高速铁路列车的牵引供电系统提供指导和建议。

一、设计原理高速铁路列车的牵引供电系统主要由接触网、集电装置和牵引变压器等组成。

接触网主要是通过电源线和接触线连接,将电能供给给集电装置。

集电装置则将接触线传输的电能送至牵引变压器,再由牵引变压器将电能输出给列车的牵引电动机。

因此,设计一个稳定可靠、高效能的供电系统对于高速铁路的运行至关重要。

在供电系统设计中,需考虑以下几个关键因素:1. 设计负荷:根据列车的牵引功率需求和列车运行速度,确定设计负荷。

考虑到高速列车的大功率需求和高运行速度,供电系统需要具备较高的供电能力和快速响应的特点。

2. 供电稳定性:供电系统需要确保在列车运行过程中,能够提供稳定的电能输出,防止因电压波动或电能供应不足而影响列车的正常运行。

3. 供电可靠性:供电系统设计应考虑到可能遇到的故障情况,并采取相应的措施来保障供电系统的可靠运行,例如设计备用供电装置等。

4. 能耗效率:供电系统应尽可能地提高能耗效率,减少能源浪费。

可以采用高效能电力器件,通过优化集电装置和牵引变压器的设计等方式来提高能耗效率。

二、优化方法为了优化高速铁路列车牵引供电系统的设计,可以采取以下几个方法:1. 供电设备升级:使用先进的电力设备和技术来提高供电系统的性能。

例如,采用高效能的牵引变压器和集电装置,使用电能质量检测设备来确保供电的稳定性和可靠性。

2. 供电线路优化:通过对供电线路的优化设计,减少电能传输过程中的电压损失和功率损耗。

可以通过调整线路参数、改进导线材料等方法来提高供电线路的效能。

3. 能量回收利用:针对高速铁路列车所具备的制动能量回收特点,可以设计并安装能量回收装置,将列车制动所释放的能量回收转化为电能,用于给列车的供电系统提供能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计摘要高速列车与牵引供电系统直接相关,是进行牵引供电系统研究的最重要的基础。

为此,文首先对牵引供电系统组成进行了详细介绍,然后结合牵引供电系统供电方式及牵引供电回路的特点,对牵引供电系统供电分析论证,针对无功功率、谐波电流、负序电流,分析了牵引供电系统存在问题提出了解决办法。

然后提出了理想牵引供电系统,根据运行方式与同相供电系统,研究并分析牵引变电所的(最小)补偿容量,并提出研究后的自耦变压器(AT)供电模式,从而进行新型AT供电模式的研究。

关键词:牵引供电系统、牵引变电所、供电系统、供电回路目录第1章绪论 (1)1.1 本文研究的目的和意义 (1)1.2 国外研究现状 (2)1.2.1 概况 (2)1.2.2 日本 (3)1.2.3 法国 (5)1.2.4 德国 (6)1.3 本文主要工作 (6)第2章高速铁路牵引供电系统系统介绍 (7)2.1 牵引供电部分 (7)2.2 牵引网供电方式 (9)2.2.1 直接供电方式 (9)2.2.2 吸流变压器—回流线装置BT (9)2.2.3 自耦变压器供电方式(AT) (10)2.2.4 带回流线的直接供电方式(DN) (11)2.3 牵引供电回路 (12)第3章高速铁路牵引供电系统相关问题 (14)3.1 铁道牵引供电系统的组成 (14)3.2 铁道牵引供电系统存在的问题 (14)3.2.1 无功功率 (14)3.2.2 谐波电流 (15)3.2.3 负序电流 (15)3.2.4 解决方法 (15)第4章高速铁路牵引供电发展的若干关键技术问题 (17)4.1 理想牵引供电系统 (17)4.1.1 系统构成 (17)4.1.2 运行过程 (18)4.2 现行方式与同相供电系统 (19)4.2.1 同相供电系统 (19)4.2.2 牵引变电所的(最小)补偿容量 (20)致 (21)参考文献 (22)第1章绪论1.1 本文研究的目的和意义随着我国国门经济的持续稳定发展,人口城镇化进程加速,国际交往急剧增加,旅游事业日益兴旺,诱发了大量的困运需求。

人民生活水平的提高,时间价值观念的增强,客观上提出了发展高速铁路客运系统的社会需求。

之前国家批准铁道部报送的《中国铁路发展中,长期规划》,规划中,明确了将建设四纵,四横快速客运通道,升级速度喂350km/h的客运专线就是四纵中京广客运通道的重要组成部分。

高速客运专线的设计在我国相对完善,单设计中还存在很多没有解决的课题,就牵引供电系统设计而言,也同样存在很多目前国还未掌握和解决的难题。

告诉客运专线速度高,运量大,行车密度,供电系统出送的功率势必很大。

如今高速铁路飞速发展,在高铁动车组列车大幅投入运营的同时,对高铁安全可靠性也提出了更高要求。

在高铁运行各技术系统中,牵引供电系统尤其重要,因牵引供电系统直接关系高铁的可靠运行。

高速铁路之所以受到广泛青睐,在于其本身具有显著优点:缩短了旅客旅行时间,产生了巨大的社会效益;对沿线地区经济发展起到了推进和均衡作用;促进了沿线城市经济发展和国土开发;沿线企业数量增加使国税和地税相应增加;节约能源和减少环境污染。

随着京津城际铁路、武广高速铁路、西高速铁路、沪宁城际高速铁路等相继开通运营,中国高铁正在引领世界高铁发展.进入本世纪,随着环境问题的日益严峻,专家们认为,交通运输各行业中,从单位运量的能源消耗、对环境资源的占用、对环境质量的保护、对自然环境的适应以及运营安全等方面来综合分析,铁路的优势最为明显。

因此欧洲各发达国家在经历了一段曲折的道路之后,重新审视和调整其运输政策,把重点逐步移回铁路,其策略中重要的一环是规划和发展高速铁路。

专家们纷纷指出,发展中国高速铁路势在必行。

1.2 国外研究现状1.2.1 概况(1)供电制式电气化铁道最早采用直流和低频交流(以15kV、16 2/3Hz为主),有的也曾采用单项交流供电,后来居上的是单相工频交流供电。

低频交流和直流供电电压都较低,变电所间距较短,有多一套变频和整流设备,因而供电设备的投资比单相工频供电要大。

单相工频交流供电可以利用公共电力系统,经降压后直接使用,并且由于采用比较高的25kV 或2×25kV电压,在输送相同功率时,接触网的电流减少,接触网上的压损和电能损失也减少,延长了牵引变电所的间距,接触悬挂也可选用轻型结构,支柱容量也可降低,从而大大节省牵引网的投资。

目前高速电气化铁路也是以单相工频供电为主。

法国、日本、西班牙高速铁路采用了单相工频交流供电方式;德国沿用了15kV,16 2/3Hz低频交流供电;意大利沿用了直流供电方式。

(2)减少负序和通信干扰的主要措施高速电气化铁路牵引负荷为大容量单相负荷,其产生的不平衡电压和电流对公共电力系统构成危害,供电臂上不稳定的负荷,更加重了不平衡度;以钢轨为回流通路的地中电流对沿线通信和信号设备产生电磁干扰,危及设备和人身安全,影响通信质量;电力机车整流产生的高次谐波对电力系统和通信线路也产生严重的影响。

减少单相交流供电的不平衡电压和电流,有以下方法:①改变主变压器接线采用Scott和变形伍德桥接线,实现三相-两相平衡交换。

当两供电臂负荷电流和功率因数相同时,电力系统中三相电流平衡。

即使在两供电臂电流不同的情况下,不平衡度也大大降低。

②无功补偿实现三相-单相平衡在列车高速运行情况下,为克服不平衡电压和电流的影响,应增大电力系统的短路容量,但这往往需要加长输电线的距离,增加建设费用。

而高速电动车组的再生制动的采用,使原理降低不平衡电压和电流的方法变得更加困难。

采用任何接线变压器都做不到三相-单相的平衡对称变换,必须辅以适当的并联无功补偿设备。

日本研究开发了一种静态不平衡馈线补偿装置。

该装置是在Scott接线变压器的M座和T座接上电容器和电抗器组成的平衡补偿装置,借助并联无功补偿方法,实现三相-单相对称变换,从而降低牵引供电系统对电力系统锻炼容量的要求,以利用附近较弱的电源,并且不必考虑馈线负荷的不平衡问题。

1.2.2 日本(1)牵引供电系统概况日本1964年东海道新干线开通时,采用BT供电方式,变电所间隔20km左右,最大供电电流1000A。

但BT供电方式存在很多问题,如在通过接触网电分段时产生很大的电弧,极易烧坏滑板及解除导线,加之牵引网单位阻抗很大,在大负荷情况下磨损很大,牵引网电能损失很大。

1972年山阳新干线正式采用日本铁道研究所开发的AT供电方式,在这之后的其他新干线均采用AT供电方式,变电所间距约60km左右,最大供电电流约2000~3000A。

日本东海道新干线供电电压为25kV、60Hz,山阳新干线供电电压25kV、60Hz,东北,上越新干线供电电压25kV、50Hz,山形新干线供电电压20kV、50Hz,北陆新干线供电电压25kV、60Hz。

新干线AT供电方式的变电所容量在100~150MVA,供电电压的允许波动围为:19~27.5kV,额定电压为25kV,瞬时最低17.5kV,在22.5~27.5kV列车可满功率运行。

为了提高功率因数,变电所端设置了并联电容,容量约为6000kVar/单位电臂,为了增强供电能力,变电所还设置了静止无功率补偿装置(SVC),进行综合补偿。

(2)高次谐波、功率因数、再生制动对牵引供电设备的影响300系、700系、500系、E1系、E2系、E3系、E4系及300X、STAR21型试验车等均采用PWM变流器和VVVF逆变器。

该变流回流的特点是:采用再生制动、次数较高的谐波含量高、功率因数高。

①高次谐波的特点和减少影响的措施交直交传动与交直传动相比,由于采用的主元件性能有很大的改善,以及动力分散型列车各单元之间采用不同相位、保持一定的相角差来补偿一部分谐波,总体上谐波是比较低的。

但由于采用PWM技术,1500~1800Hz的高次谐波含量明显增加。

采用AT 供电方式,供电臂增长,电源阻抗增加,电源电感L和馈线回路电容C在较低频率时会产生共振,当与机车输出频率接近时,产生高次谐波放大。

新干线供电回路的共振频率约为1000~2000Hz。

高次谐波共振的危害有:a、恶化系统电气设备的绝缘能力;b、车辆主回路和辅助回路误动作;c、通信杂音干扰;d、设备烧损。

通过模拟分析和现场测试,认为共振主要是高次谐波在供电臂末端反射形成的,为了抑制高次谐波共振,在供电臂末端安装HMCR装置;在供电臂21.5km的复线区间实验结果为:共振频率为1550Hz,放大倍数为14.66倍,在分区亭设置HMCR装置后,共振频率移至500Hz。

为了防止高次谐波放大,协调并减少车辆、供电设备和环境设备的干扰,日本制定了高次谐波含有率标准,具体如表1.1所示。

表1.1 日本新干线高次谐波含有率标准②功率因数特点与减少影响的措施交直交传动机车功率因数牵引时接近1,再生制动时接近-1,STAR21型实验车实际测量的结果为:牵引时0.95~1,再生制动时0.9.符合的阻抗特性也发生变化,不再分布于第I象限40左右,而是在第I、II象限随机出现,这样容易引起保护误动作。

推出的交流电气化贴到用保护围转换继电器,该继电器仍为四边形特性,但R、X可以进行分别整定,在任意R、X整定值下,保护都有两个动作围,小围对应于正常运行状态,大围对应于馈线故障状态,保护灵敏度高,高阻保护性能好。

这两种方式成功的解决了新干线供电保护设备与车辆的协调。

③再生制动对牵引供电设备的影响a、自动过分相的切换开关故障当牵引工况的车辆位于中性区时,供电臂恰有一列车处于再生工况,而此时,自动过分相切换开关正处于向备用开关切换的状态,如果开断与切换真空断路器串联的隔离开关,就有可能产生大的电弧。

b、变电所供电臂停电,再生产不能及时撤除再生制动供电臂中只有一列车时,如果供电臂停电,通过检测竭诚为电压和换流装置的电压,可立即中断再生。

但如果同一供电臂中,再生车与牵引车的功率发生平衡时,供电臂停电,再生车不能马上检测出,此时对停电的反应时间是0-100ms。

c、再生工况电路系统故障战场牵引变压器已座过电压再生工况,电力系统故障,以此侧断路器跳开后而馈线断路器未跳开,再生车尚未停止再生前,经由主变的一次线圈,对另一座产生过电压。

SCOTT变压器如T座车辆再生时发生以此相间短路,M座将产生√3倍的过电压。

1.2.3 法国(1)牵引供电系统概况法国TGV东南线的运行速度为270km/h,追踪间隔时分为5min,大西洋的运行数的为300km/h,追踪间隔时分为3min,英吉利还写谁的客货混运,追踪间隔时分为2.5min。

法国TGV告诉铁路在东南线第一次采用AT供电方式,而后大西洋高速线、北方高速线等高速铁路均采用AT供电方式。

(2)东南线供电系统东南线的牵引变电所是法国电力公司通过双回225kV供电,主要供电设备均采用100%备用。

相关文档
最新文档