八年级勾股定理教学反思
勾股定理优秀教学反思(精选5篇)

勾股定理教学反思作为一名人民老师,我们的任务之一就是课堂教学,通过教学反思可以有效提升自己的课堂经验,如何把教学反思做到重点突出呢?下面是小编为大家收集的勾股定理优秀教学反思(精选5篇),仅供参考,希望能够帮助到大家。
勾股定理教学反思1通过复习让学生充分回忆前面学习的有关三角形的内容,使学生加深对知识的理解,从而为本节课的学习打下良好的基础。
同时,学生回忆的过程也是一个思考的过程,特别是面积法来验证勾股定理,是本章教学的难点,对此学生应该先形成一个印象、概念,然后才能学习掌握好。
已知直角三角形中的两条直角边求斜边,这是上节课学习的内容。
在上节课学习过程中,学生已经练习过。
但为什么本节课中仍然有部分学生出错呢?究其原因,是因为上节课学习的内容太多,方法也较多、较灵活,因而学生对每一个内容与方法都仍是一种感性的认识,而仍没达到理解掌握的程度。
因此,当让学生自己独立完成问题时,往往就产生了思维上存在的缺点,从而出现各种错误。
另一方面,教学中我们往往会采用一种“一问齐答”的问答形式,这样会容易掩盖学生的真实想法。
其实,在解答此问题时,教师很容易就走进了这样的问答方式,原因在于我们认为这样的问题太简单了,上节课学生也似学会了,于是便产生了一种忽视的教学。
可现实却往往不是这样的,我们认为简单的知识对于学生(特别是基础较弱的学生)来说,往往是不简单的。
因此,教学中应尽量少用“一问齐答”的欺骗教师的问答方式,让学生充分发表自己的意见,同时引导学生分析错误,养成反思的意识,只有这样,才能真正使学生学有所获。
同一个问题的不同变式,可以让学生自我检查对知识与方法是否能真正达到理解、掌握与运用,从而提高学生学习的自信心。
解答这个问题的方法其实就是验证勾股定理所用到的方法——面积法。
在课堂教学之初始让学生回忆上一堂课的方法,有了一个初步的印象,在这里再提出来时学生就不会感到突然和陌生,达到承上启下的作用。
另一方面,教师在讲解问题的解答时,并不是把问题的解答方法与过程全部一下子出来,而是引导学生经过一步步的思考,让学生自己在思考与感悟中得到问题的解答,这样可以培养学生思考问题的方法,提高学生的思维能力。
勾股定理的教学反思

勾股定理的教学反思勾股定理的教学反思「篇一」一、教学的成功体验《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆,学生学习数学的重要方式是动手实践、自主探索与合作交流,以促进学生自主、全面、可持续发展”.数学教学是数学活动的教学,是师生之间、学生之间相互交往、积极互动、共同发展的过程,是“沟通”与“合作”的过程.本节课我结合勾股定理的历史和毕答哥拉斯的发现直角三角形的特性自然地引入了课题,让学生亲身体验到数学知识来源于实践,从而激发学生的学习积极性.为学生提供了大量的操作、思考和交流的学习机会,通过“观察“——“操作”——“交流”发现勾股定理。
层层深入,逐步体会数学知识的产生、形成、发展与应用过程.通过引导学生在具体操作活动中进行独立思考,鼓励学生发表自己的见解,学生自主地发现问题、探索问题、获得结论的学习方式,有利于学生在活动中思考,在思考中活动。
二、信息技术与学科的整合在信息社会,信息技术与课程的整合必将带来教育者的深刻变化.我充分地利用多媒体教学,为学生创设了生动、直观的现实情景,具有强列的吸引力,能激发学生的学习欲望.心理学专家研究表明:运动的图形比静止的图形更能引起学生的注意力.在传统教学中,用笔、尺和圆规在纸上或黑板上画出的图形都是静止图形,同时图形一旦画出就被固定下来,也就是失去了一般性,所以其中的数学规律也被掩盖了,呈现给学生的数学知识也只能停留在感性认识上.本节课我通过Flash动画演示结果和拼图程以及呈现教学内容。
真正体现数学规律的应用价值.把呈现给学生的数学知识从感性认识提升到理性认识,实现一种质的飞跃。
勾股定理的教学反思「篇二」在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。
这样可以加深学生的参与,也让师生间、生生间有了互动。
然后老师再利用电脑演示直角三角形中勾股定理的探索过程。
《勾股定理》教学反思(精选6篇)

《勾股定理》教学反思《勾股定理》教学反思(精选6篇)作为一名到岗不久的老师,我们的任务之一就是课堂教学,借助教学反思我们可以快速提升自己的教学能力,那么什么样的教学反思才是好的呢?以下是小编帮大家整理的《勾股定理》教学反思(精选6篇),欢迎大家借鉴与参考,希望对大家有所帮助。
《勾股定理》教学反思1数学学习中工作量最大的部分就是解数学习题,这也是讲所学基础知识转化为基本技能的必经之路,没有大量习题的跟进是不可能很好的形成基本解题技能的。
习题课就是通过各种相关习题的练习,期望能够巩固和深化对所学基础知识的理解和认识,将这些基础知识尽快的转化为基本技能。
今天是第十七章《勾股定理》的一节全章小结部分的习题课,在学生讲解习题的时候,讲的最不好的地方就是这个或这类习题的解题思路和解题的方法,还有就是解题的基本入手点。
也就是说很多的孩子,他们在做课后习题的时候,没有在分析、思考各类习题的解题思路或方法或入手点方面投入更多的精力,这一点也是我们的学生学习一直不能有大幅度提高的主要问题,也是制约他们有效学习的基本因素。
新的课程理念把教师的角色定义为“教师是学生学习的组织者、引导者和合作者”,教师的主要作用是组织、引导、参与学生的课堂学习活动。
而教师在学生的学习活动中更多的是一种指导的作用,而教师的指导更多的应该侧重于方法、思想的指导。
教师必须介入的就是解题的思路和方法。
在这一点上应该是必须的。
特别是习题课,教师可以完全不讲题,但是在解题方法、思路、入手点这些方面必修介入,以提高学生学习的效率和效果。
另外,学生讲题过程中的语言的运用也需要不断地加以指导,争取能够用较为简练的语言讲清楚一个问题的解决过程。
《勾股定理》教学反思2新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。
为学生的终身学习及可持续发展奠定坚实的基础。
八年级勾股定理教学反思(四篇)

八年级勾股定理教学反思在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。
这样可以加深学生的参与,也让师生间、生生间有了互动。
然后老师再利用电脑演示直角三角形中勾股定理的探索过程。
反复演示几遍,让学生自己感觉并最后体会到勾股定理的结论。
通过动画演示体会到解决问题的方法是多种多样,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的解决问题的能力和创新能力。
学生在这一过程中各显神通,都得到了解决问题的满足感和自豪感。
在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。
同学们一看,兴趣来了。
最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。
最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。
只是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。
这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。
这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。
这就达到了新课标新理念的预定目标。
八年级勾股定理教学反思(二)我用了___课时讲授了八年级下册数学人教版的第十八章第一节勾股定理,第一课时我主要讲授的是勾股定理的探究和验证,并举例计算有关直角三角形已知两边长求第三边的问题;第二课时我主要讲授了各种类型的有关直角三角形边长或者面积相关问题;第三课时讲授了如何用勾股定理解决生活中的实际问题;第四课时主要讲授了怎样在数轴上找出无理数对应的点。
这___个课时我采用的教学方法是:引导—探究—发现法;为学生设计的学习方法是:自主探究与合作交流相结合。
八年级勾股定理教学反思

八年级勾股定理教学反思八年级勾股定理教学反思身为一位优秀的老师,我们要有一流的课堂教学能力,教学的心得体会可以总结在教学反思中,那么写教学反思需要注意哪些问题呢?以下是小编帮大家整理的八年级勾股定理教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
八年级勾股定理教学反思1时光稍纵即逝,转眼间一个新的学期又要结束了,回顾已逝的教学时光,可谓百味俱全,其间有一节课我上得最投入、最值得回忆与反思。
记得那是期末的展示汇报课,(主任说可能会有校外的教师来听课。
)我当时很有压力,晚上也难以入睡。
我选的是《勾股定理》一课。
为了上好这节课,我反复研究了去洋思学习的一些记录,努力用新理念新手段来打造我的这节课。
当我满怀信心地上完这节课时,我心情愉悦,因为我教态自然得体,与学生合作默契,基本上获得了教学的成功。
1、从生活出发的教学让学生感受到学习的快乐在“勾股定理”这节课中,一开始引入情景:平平湖水清可鉴,荷花半尺出水面。
忽来一阵狂风急,吹倒荷花水中偃。
湖面之上不复见,入秋渔翁始发现。
花离根二尺远,试问水深尺若干。
知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。
2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求蚂蚁爬的最短距离,这些都是勾股定理应用的典型例题。
3、名题欣赏:首尾呼应,用“代数方法”解决“几何问题”。
印度数学家婆什迦罗(1141—1225年)提出的“荷花问题”比我国的“引葭赴岸”问题晚了一千多年。
“引葭赴岸”问题,是我国数学经典著作《九章算术》中的一道名题。
《九章算术》约成书于公元一世纪。
该书的第九章,即勾股章,详细讨论了用勾股定理解决应用问题的方法。
这一章的第6题,就是“引葭赴岸”问题,题目是:“今有池一丈,葭生其中央,出水一尺。
引葭赴岸,适与岸齐。
问水深、葭长各几何?” “荷花问题”的解法与“引葭赴岸”问题一样。
它的出现却足以证明,举世公认的古典数学名著《九章算术》传入了印度。
《勾股定理》教学反思

《勾股定理》教学反思范文〔精选7篇〕《勾股定理》教学反思1通过本节课的教学,我采用了合作探究、操作体验的教学方式。
在课堂教学中,首先创设情境,提出问题;再让学生通过做一做、测量、判断、找规律,猜测出一般性的结论;然后由学生想、做、量一量、猜一猜、去验证结论……使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣。
这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的根底,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气。
要想真正搞好以探究活动,小组合作为主的课堂教学,必须不断更新教学观念,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会开展的公民《勾股定理》教学反思2这节课重在导入,引起学生的兴趣,现谈谈本节课的反思:1、从生活出发的教学让学生感受到学习的快乐。
在“勾股定理〞这节课中,一开始引入情景:平平湖水清可鉴,荷花半尺出水面。
忽来一阵狂风急,吹倒荷花水中偃。
湖面之上不复见,入秋渔翁始发现。
花离根二尺远,试问水深尺假设干。
知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。
2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求蚂蚁爬的最短距离,这些都是勾股定理应用的典型例题。
3、在教学应用勾股定理时,老是运用公式计算,学生感觉比拟厌倦,为了吸引学生注意力,活泼课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷〞出的思考题:即折竹抵地问题。
并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。
同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。
最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生之间的合作。
2023年《勾股定理》教学反思(通用6篇)

2023年《勾股定理》教学反思(通用6篇)《勾股定理》教学反思1本节课的设计目的是培养学生准确地将实际问题转化为数学问题,建立几何模型(即直角三角形),能正确远用勾股定理解释生活中问题,通过运用勾股定理对实际问题的解释和应用,进一步加强培养学生注意从身边的事物中抽象出几何模型(直角三角形)的能力,使学生更加深刻地认识到数学的本质:“数学________于生活,同时又能服务于生活”,激起广大学生对数学对生活的热爱。
这节课主要是围绕“课前预习?—设置问题—几何建模—解决问—拓展延伸”这一主线轴展开教学工作。
其中主要体现在:首先,创设情境,激发兴趣。
由教材中的实例引入,让学生猜一猜,梯的顶端下滑0、5米,问梯的底端将滑动多少米?也是滑动0、5米吗?学生将会得出不同的反应,甚至争论;这时教师就恰到好处地引导学生建立几何模型(即直角三角形)再运用勾股定理解决问题,最终来验证彼此的猜想,这样一来,课堂气氛特别轻松,学生解决问题的兴趣也格外浓。
其次,注重学生自主探究,合作交流。
在探讨例1、例2时都是先让学生根据生活经验,猜一猜结论,然后再动手建摸、验证、质疑、讨论,充分体现了学生的主体地位,学生是发现者、探索者,教师是参入学习的启发者、协调者、激励者,体现出了教师的主导作用。
第三,创设机会,让学生学会思考,乐于思考、善于思考。
在教学中有意识地安排一些问题让学生多途径思考,发现答案多种多样,让他们体味出教学的精彩,享受做数学的成功喜悦。
通过备课、上课后,虽然取得一定成功,但感到作为一位数学教师,要不断地及时学习新的知识,接受新信息;不断地及时充电、更新、常常使用诙谐幽默的语言;既要有领导者组织指导、调控能力,又要有被学生欣赏佩服的魅力;要让学生课堂上配合你、信任你、喜欢你,只要达到了这一高度,我们才能轻松自如地驾御课堂,高效、高质、高量地完成教学预设目标。
《勾股定理》教学反思2《勾股定理》是人教版教材八年级数学(下)的内容,第一课时的教学重点是让学生经历勾股定理的探索和证明过程,了解勾股定理的背景知识,在学习知识的同时,感受勾股定理的丰富文化内涵,激发学生的学习兴趣,对学生进行思想品德教育。
初中教学反思-八年级勾股定理教学反思

八年级勾股定理教学反思八年级勾股定理教学反思一我用了4课时讲授了八年级下册数学人教版的第十八章第一节勾股定理,第一课时我主要讲授的是勾股定理的探究和验证,并举例计算有关直角三角形已知两边长求第三边的问题;第二课时我主要讲授了各种类型的有关直角三角形边长或者面积相关问题;第三课时讲授了如何用勾股定理解决生活中的实际问题;第四课时主要讲授了怎样在数轴上找出无理数对应的点。
这4个课时我采用的教学方法是:引导—探究—发现法;为学生设计的学习方法是:自主探究与合作交流相结合。
第一课时的课堂教学中,我始终注意了调动学生的积极性.兴趣是最好的老师,所以无论是引入、拼图,还是历史回顾,我都注意去调动学生,让学生满怀激情地投入到活动中.因此,课堂效率较高.勾股定理作为“千古第一定理”,其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破了本节课的难点.第二课时我依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习。
教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点。
为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.第三课时在课堂教学中,始终注重学生的自主探究,由实例引入,激发了学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高,切实体现了学生是数学学习的主人的新课程理念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级勾股定理教学反思范文一
在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。
这样可以加深学生的参与,也让师生间、生生间有了互动。
然后老师再利用电脑演示直角三角形中勾股定理的探索过程。
反复演示几遍,让学生自己感觉并最后体会到勾股定理的结论。
通过动画演示体会到解决问题的方法是多种多样,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的解决问题的能力和创新能力。
学生在这一过程中各显神通,都得到了解决问题的满足感和自豪感。
在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。
同学们一看,兴趣来了。
最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。
最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。
只是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。
这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。
这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。
这就达到了新课标新理念的预定目标。
八年级勾股定理教学反思范文二
我用了4课时讲授了八年级下册数学人教版的第十八章第一节勾股定理,第一课时我主要讲授的是勾股定理的探究和验证,并举例计算有关直角三角形已知两边长求第三边的问题;第二课时我主要讲授了各种类型的有关直角三角形边长或者面积相关问题;第三课时讲授了如何用勾股定理解决生活中的实际问题;第四课时主要讲授了怎样在数轴上找出无理数对应的点。
这4个课时我采用的教学方
法是:引导—探究—发现法;为学生设计的学习方法是:自主探究与合作交流相结合。
第一课时的课堂教学中,我始终注意了调动学生的积极性.兴趣是最好的老师,所以无论是引入、拼图,还是历史回顾,我都注意去调动学生,让学生满怀激情地投入到活动中.因此,课堂效率较高.勾股定理作为“千古第一定理”,其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破了本节课的难点.
第二课时我依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习。
教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点。
为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.
第三课时在课堂教学中,始终注重学生的自主探究,由实例引入,激发了学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高,切实体现了学生是数学学习的主人的新课程理念。
对于拼图验证,学生还没有接触过,所以,教学中,教师给予了学生适当的指导与鼓励,教师较好地充当了学生数学学习的组织者、引导者、合作者。
另外教会学生思维,培养学生多种能力。
课前查资料,培养了学生的自学能力及归类总结能力;课上的探究培养了学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。
因此,在今后的教学中还需要进一步关注学生的实验操作活动,提高其实践能力。
第四课时我另外向学生介绍了勾股定理的证明方法:以赵爽的“弦图”为代表,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系;以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明;以刘徽的“青朱出入图”为代表,“无字证明”。
总的来看,学生掌握的情况比较好,都能够达到预期要求,但介于有关勾股定理的类型题很多,不能一一为学生讲解,但我还是建议将北师大版本中的《蚂蚁怎样走最近》的类型题加入本教材。
八年级勾股定理教学反思范文三
时光稍纵即逝,转眼间一个新的学期又要结束了,回顾已逝的教学时光,可谓百味俱全,其间有一节课我上得最投入、最值得回忆与反思。
记得那是期末的展示汇报课,(主任说可能会有校外的教师来听课。
)我当时很有压力,晚上也难以入睡.我选的是《勾股定理》一课。
为了上好这节课,我反复研究了去洋思学习的一些记录,努力用新理念新手段来打造我的这节课。
当我满怀信心地上完这节课时,我心情愉悦,因为我教态自然得体,与学生合作默契,基本上获得了教学的成功。
1、从生活出发的教学让学生感受到学习的快乐
在“勾股定理”这节课中,一开始引入情景:
平平湖水清可鉴,荷花半尺出水面。
忽来一阵狂风急,吹倒荷花水中偃。
湖面之上不复见,入秋渔翁始发现。
花离根二尺远,试问水深尺若干。
知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。
2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求蚂蚁爬的最短距离,这些都是勾股定理应用的典型例题。
3、名题欣赏:首尾呼应,用“代数方法”解决“几何问题”。
印度数学家婆什迦罗(1141-1225年)提出的“荷花问题”比我国的“引葭赴岸”问题晚了一千多年。
“引葭赴岸”问题,是我国数学经典著作《九章算术》中的一道名题。
《九章算术》约成书于公元一世纪。
该书的第九章,即勾股章,详细讨论了用勾
股定理解决应用问题的方法。
这一章的第6题,就是“引葭赴岸”问题,题目是:“今有池一丈,葭生其中央,出水一尺。
引葭赴岸,适与岸齐。
问水深、葭长各几何?”“荷花问题”的解法与“引葭赴岸”问题一样。
它的出现却足以证明,举世公认的古典数学名著《九章算术》传入了印度。
《九章算术》中的勾股定理应用方面的内容,涉及范围之广,解法之精巧,都是在世界上遥遥领先的,为推动世界数学的发展作出了贡献。
鼓励学生可以自己利用课余时间查阅相关资料,丰富知识。
4、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。
并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。
同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。
最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生之间的合作。
5、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。
这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。
这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。
这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。
这就达到了新课标新理念的预定目标。
通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。
真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。
这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。
不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。