运筹学部分课后习题解答
运筹学习题及答案

当 0,目标函数在B点有最大值;
当 0,目标函数在原点最大值。
k 0时, , 同号。
当 0时,目标函数在A点有最大值
当 0时,目标函数在原点最大值。
k 0时, , 异号。
当 0, 0时,目标函数在A点有最大值;
当 0, 0时,目标函数在C点最大值。
k= 时, , 同号
当 0时,目标函数在AB线断上任一点有最大值
+ + 2000
化成标准形:
Max =-2 -3 - +0 +0 -M -M
S.T.
+4 +2 - + =4
3 +2 - + =6
, , , , , , 0
(单纯性表计算略)
线性规划最优解X=(4/5,9/5,0,0,0,0
目标函数最优值min z=7
非基变量 的检验数 =0,所以有无穷多最优解。
两阶段法:
第一阶段最优解X=(4/5,9/5,0,0,0,0 是基本可行解,min w=0
(1)min z=-3 +4 -2 +5
4 - +2 - =-2
+ +3 - 14
-2 +3 - +2 2
, , 0, 无约束
(2)max
0 (i=1…n; k=1,…,m)
(1)解:设z=- , = - , , 0
标准型:
Max =3 -4 +2 -5( - )+0 +0 -M -M
s. t .
-4 + -2 + - + =2
最大值为 =117/5;最优解 =(34/5,0,0,7/5 。
(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →10 5B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。
运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
第四版运筹学部分课后习题解答

第四版运筹学部分课后习题解答篇一:运筹学基础及应用第四版胡运权主编课后练习答案运筹学基础及应用习题解答习题一P461.1(a)41的所有?x1,x2?,此时目标函数值2该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。
(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。
1.2(a)约束方程组的系数矩阵?1236300A??81?4020??30000?1最优解x??0,10,0,7,0,0?T。
(b) 约束方程组的系数矩阵?1234?A2212?????211?最优解x??,0,,0?。
5??5T1.3(a)(1) 图解法最优解即为??3x1?4x2?935?3?的解x??1,?,最大值z?5x?2x?822??2?1(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z?10x1?5x2?0x3?0x4?3x?4x2?x3?9s.t. ?1?5x1?2x2?x4?8则P3,P4组成一个基。
令x1?x2?0得基可行解x??0,0,9,8?,由此列出初始单纯形表?1??2。
??min?,89??53?8 5?2?0,??min??218?3,??142?2?335?1,?2?0,表明已找到问题最优解x1?1, x2?,x3?0 ,x4?0。
最大值z*?22(b)(1) 图解法6x1?2x2x1?x2?最优解即为??6x1?2x2?2417?73?的解x??,?,最大值z?2?22??x1?x2?5(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z?2x1?x2?0x3?0x4?0x5?5x2?x3?15?s.t. ?6x1?2x2?x4?24?x?x?x?5?125则P3,P4,P5组成一个基。
令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表?1??2。
??min??,??245?,??461?3?3?15,24,??2?2?5?2?0,??min?新的单纯形表为篇二:运筹学习题及答案运筹学习题答案第一章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
《运筹学》(第二版)课后习题参考答案

生产工序
所需时间(小时)
每道工序可用时间(小时)
1
2
3
4
5
成型
3
4
6
2
3
3600
打磨
4
3
5
6
4
3950
上漆
2
3
3
4
3
2800
利润(百元)
2.7
3
4.5
2.5
3
解:设 表示第i种规格的家具的生产量(i=1,2,…,5),则
s.t.
通过LINGO软件计算得: .
11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表2—10所示。
-10/3
-2/3
0
故最优解为 ,又由于 取整数,故四舍五入可得最优解为 , .
(2)产品丙的利润 变化的单纯形法迭代表如下:
10
6
0
0
0
b
6
200/3
0
1
5/6
5/3
-1/6
0
10
100/3
1
0
1/6
-2/3
1/6
0
0
100
0
0
4
-2
0
1
0
0
-20/3
-10/3
-2/3
0
要使原最优计划保持不变,只要 ,即 .故当产品丙每件的利润增加到大于6.67时,才值得安排生产。
答:(1)唯一最优解:只有一个最优点;
(2)多重最优解:无穷多个最优解;
(3)无界解:可行域无界,目标值无限增大;
运筹学课后习题答案

6
5
6
3
σ34=15+50=1;至此;六个闭回路全部计算完 ;σ11=4;σ14=2;σ22=0;σ31=2;σ32=2;σ34=1;即全部检验数σ均 大于或等于0 即用上述三种方法计算中;用沃格尔法计算所
得结果z*=35为最优解
2024/1/10
16
表329
销地 B1
B2
B3
B4
产量
产地
A1
3
7
22
4
A3 销量
4
33
3
3
B3
6 3 28 2
B4 B5 产量
1 4 30
5
⑤
2
0
2②
15 0
6⑧
2
3
③
④
⑦
⑥
①
x11=1;x14=1;x15=3;x21=2;x32=3;x33=2;x34=1;总费用=1×3 +1×4+3×0+2×2+3×3+2×8+1×5=41
2024/1/10
18
②西北角法求解:
3 2 运输问题的基可行解应满足什么条件 试判断形表 326和表327中给出的调运方案是否作为表上作业法迭 代时的基可行解 为什么
2024/1/10
1
表326
销地 B1
B2
B3
B4
产量
产地
A1
0
A2
A3
5
销量
5
15
15
15
10
25
5
15
15
10
解:表326产地个数m=3;销地个数n=4;m+n1=3+41=6个;而 表326中非零个数的分量为5个≠6个;所以表326不可作为表上 作业法时的基可行解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →10 5B CB X b 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。
解:(1)该线性规划问题的对偶问题为:1234124123434131234min8669223411,,,0w y y y y y y y y y y y y y y y y y y y =+++++≥⎧⎪+++≥⎪⎪+≥⎨⎪+≥⎪≥⎪⎩(2)由原问题最优解为)0,4,2,2(*=X ,根据互补松弛性得:12412343422341y y y y y y y y y ++=⎧⎪+++=⎨⎪+=⎩把)0,4,2,2(*=X 代入原线性规划问题的约束中得第四个约束取严格不等号,即4224890y ++=<⇒=从而有12123322341y y y y y y +=⎧⎪++=⎨⎪=⎩得123443,,1,055y y y y ====所以对偶问题的最优解为*43(,,1,0)55T y =,最优值为min 16w =P79 2.7 考虑如下线性规划问题:123123123123123min 6040803224342223,,0z x x x x x x x x x x x x x x x =++++≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩(1)写出其对偶问题;(2)用对偶单纯形法求解原问题; 解:(1)该线性规划问题的对偶问题为:123123123123123max 2433426022403280,,0w y y y y y y y y y y y y y y y =++++≤⎧⎪++≤⎪⎨++≤⎪⎪≥⎩(2)在原问题加入三个松弛变量456,,x x x 把该线性规划问题化为标准型:123123412351236max 60408032243422230,1,,6j z x x x x x x x x x x x x x x x x j =------+=-⎧⎪---+=-⎪⎨---+=-⎪⎪≥=⎩*max (,,0),604080063633T x z ==⨯+⨯+⨯=P81 2.12 某厂生产A 、B 、C 三种产品,其所需劳动力、材料等有关数据见下表。
要求:(a )确定获利最大的产品生产计划;(b )产品A 的利润在什么范围内变动时,上述最优计划不变;(c )如果设计一种新产品D ,单件劳动力消耗为8单位,材料消耗为2单位,每件可获利3元,问该种产品是否值得生产? (d ) 如果劳动力数量不增,材料不足时可从市场购买,每单位0.4 元。
问该厂要不要购进原材料扩大生产,以购多少为宜。
解:由已知可得,设j x 表示第j 种产品,从而模型为:123123123123max 3463545..34530,,0z x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎨⎪≥⎩a) 用单纯形法求解上述模型为:得到最优解为*(5,0,3)T x =;最优值为max 354327z =⨯+⨯=b )设产品A 的利润为3λ+,则上述模型中目标函数1x 的系数用3λ+替代并求解得:要最优计划不变,要求有如下的不等式方程组成立20310533053λλλ⎧-+≤⎪⎪⎪--≤⎨⎪⎪-+≤⎪⎩解得:3955λ-≤≤ 从而产品A 的利润变化范围为:393,355⎡⎤-+⎢⎥⎣⎦,即242,455⎡⎤⎢⎥⎣⎦C )设产品D 用6x 表示,从已知可得16661/5B c c B P σ-=-='1661128334122555P B P -⎡⎤-⎡⎤⎢⎥⎡⎤⎢⎥===⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦把6x 加入上述模型中求解得:从而得最优解*(0,0,5,0,0,5/2)T x =;最优值为max 45327.5272z =⨯+⨯=> 所以产品D 值得生产。
d )P101 3.1已知运输问题的产销量与单位运价如下表所示,用表上作业法求各题的最优解及最小运费。
表3-35B 1 B 2 B 3 B 4 产量 A 1 A 2 A 3 10 12 2 2 7 14 20 9 16 11 20 18 15 25 5 销量5151510解:由已知和最小元素法可得初始方案为B1 B2 B3 B4 产量 A1A2 A3 5 15 0 15 0 10 15 25 5 销量5151510检验:B1 B2 B3 B4 产量 A1 A2 A3 5 15 0 15 10 0 15 25 5 销量5151510检验:产地 销地 产地 销地产地销地由于还有检验数小于零,所以需调整,调整二:B1 B2 B3 B4 产量 A1A2 A3 5 5 10 15 10 0 15 25 5 销量5151510检验:从上表可以看出所有的检验数都大于零,即为最优方案 最小运费为:min 25257109151110180335z =⨯+⨯+⨯+⨯+⨯+⨯=表 B 1 B 2 B 3 B 4 产量 A 1 A 2 A 3 8 6 5 4 9 3 1 4 4 2 7 3 7 25 26 销量10102015解:因为34115855i j i j a b ===>=∑∑,即产大于销,所以需添加一个假想的销地,销量为3,构成产销平衡问题,其对应各销地的单位运费都为0。
产地销地产地 销地A1A2 A3 8 6 54 9 31 4 42 7 30 0 0 7 25 26 销量10 10 20 153由上表和最小元素法可得初始方案为 B1 B2 B3 B4 B5 产量 A1A2 A3 9 1 10 7 13 15 3 7 25 26 销量101020153检验:从上表可以看出所有的检验数都大于零,即为最优方案最小运费为:min 69513101741331503193z =⨯+⨯+⨯+⨯+⨯+⨯+⨯=表3-37B1 B2 B3 B4 B5 产量 A1A2 A3 8 5 6 6 M 3 3 8 9 7 4 6 5 7 8 20 30 30 销量2525201020解:因为351180100i j i j a b ===<=∑∑,即销大于产,所以需添加一个假想的产地,产量为20,构成产销平衡问题,其对应各销地的单位运费都为0。
产地 产地 销地产地 销地A1A2 A3 A4 8 5 6 0 6 M 3 0 3 8 9 0 7 4 6 0 5 7 8 0 20 30 30 20 销量2525201020由上表和最小元素法可得初始方案为 B1 B2 B3 B4 B5 产量 A1A2 A3 A4 5 20 25 20 0 10 15 5 20 30 30 20 销量2525201020检验:B1 B2 B3 B4 B5 产量 A1 A2 A3 A420 5 25 20 0 10 5 15 20 30 30 20 销量 25 25201020产地 产地 销地产地销地由于还有检验数小于零,所以需调整,调整二: B1 B2 B3 B4 B5 产量 A1 A2 A3 A420 5 25 20 0 10 0 20 20 30 30 20 销量 2525201020检验:从上表可以看出所有的检验数都大于零,即为最优方案最小运费为:min 320520410653258002000305z =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=P127 4.8 用割平面法求解整数规划问题。
a ) 12121212max 7936735,0,z x x x x x x x x =+-+≤⎧⎪+≤⎨⎪≥⎩且为整数解:该问题的松弛问题为:产地销地12121212max 7936735,0z x x x x x x x x =+-+≤⎧⎪+≤⎨⎪≥⎩割平面1为:234(31/2)(07/22)(01/22)x x x +=++++3421713022222x x x ⇒--=-≤34571122222x x x ⇒+-=割平面2为:145(44/7)(01/7)(16/7)x x x +=+++-+451541640x x x x ⇒--=--≤456164x x x ⇒+-= ()*4,3Tx =,最优值为max 749355z =⨯+⨯=P144 5.3 用图解分析法求目标规划模型c )解:由下图可知,满足目标函数的满意解为图中的A 点。
x 1 + x 2 + d 1- - d 1+= 40x 1 + x 2 + d 2- - d 2+= 40+10=50 x 1 + d 3- - d 3+= 24 x 2 + d 4- - d 4+= 30min Z = P 1 d 1-+ P 2 d 2++ P 3(2d 3- +1d 4-)s.t.x 1 、x 2 、d 1+、d 1-、d 2+、d 2- 、d 3+、d 3- 、d 4+、d 4- ≥ 0用图解分析法求目标规划模型⎪⎪⎩⎪⎪⎨⎧=≥≥=-++=-+-=-++-++=+-+-+-+-+++3,2,10;0,824242min 21332122211121233211i d d x x d d x x d d x x d d x x d P d P d P z i i 、的满意解。