高中数学必修2《直线与方程》教案
高中数学必修二《直线与方程》教案设计

高中数学必修二《直线与方程》教案设计一、教学目标1.知识目标:o学生能够掌握直线的点斜式、两点式和一般式方程的表达形式及其相互转换。
o学生能够理解直线方程中斜率、截距的概念,并能根据给定条件求出直线方程。
o学生能够运用直线方程解决简单的几何问题,如求两直线的交点、判断两直线是否平行或垂直。
2.能力目标:o培养学生的逻辑思维能力和抽象思维能力,通过直线方程的学习,提高数学建模能力。
o提高学生的运算能力,能够熟练进行直线方程的推导和计算。
o增强学生的问题解决能力,能够运用所学知识解决实际问题。
3.情感态度价值观目标:o培养学生严谨的数学学习态度,注重逻辑推理和证明过程。
o激发学生的学习兴趣,鼓励学生积极探索数学奥秘,培养数学学习的自信心。
o培养学生的合作精神,通过小组讨论和合作学习,提高团队协作能力。
二、教学内容-重点:直线的点斜式、两点式和一般式方程的表达及相互转换;斜率、截距的概念及应用。
-难点:直线方程的应用,如求两直线的交点、判断两直线的位置关系。
三、教学方法-讲授法:用于直线方程的基本概念和理论的讲解。
-讨论法:通过小组讨论,加深学生对直线方程的理解和应用。
-案例分析法:通过具体案例分析,提高学生解决实际问题的能力。
-多媒体教学法:利用多媒体资源,如、动画等,直观展示直线方程的图形和推导过程。
四、教学资源-教材:《高中数学必修二》-教具:黑板、粉笔、直尺、圆规-多媒体资源:课件、直线方程推导动画、几何画板软件-实验器材:无需特定实验器材五、教学过程六、课堂管理1.小组讨论:每组4-5人,确保每组成员水平均衡,指定小组长负责协调讨论和记录。
2.维持纪律:明确课堂规则,如举手发言、不打断他人讲话等,对违规行为及时提醒和处理。
3.激励策略:对积极参与讨论、表现突出的学生给予表扬和奖励,如加分、小礼品等。
七、评价与反馈1.课堂小测验:每节课结束前进行小测验,检查学生对本节课内容的掌握情况。
2.课后作业:布置适量的课后作业,巩固所学知识,要求学生按时完成并提交。
人教版高中必修二《直线与方程》教学案例

人教版高中必修二《直线与方程》教学案例《人教版高中必修二《直线与方程》教学案例》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!第1节直线与方程复习目标:1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式,了解斜截式与一次函数的关系.一、课前预习基础回顾考点1 直线的倾斜角与斜率1.直线的倾斜角(1)定义:x轴_____与直线_____的方向所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为0°.动态定义:旋转(2)倾斜角的范围为_______________.2.直线的斜率(1)定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k表示,即k=______,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=_________.考点2 直线方程的几种形式关键要素:点,斜率,截距名称条件方程适用范围点斜式斜率k与点(x1,y1)y-y1=k(x-x1)不含直线x=x1斜截式斜率k与直线在y轴上的截距by=kx+b不含垂直于x轴的直线两点式两点(x1,y1),(x2,y2)=不含直线x=x1(x1=x2)和直线y=y1(y1=y2)截距式直线在x轴、y轴上的截距分别为a、b+=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A,B不同时为0)平面直角坐标系内的直线都适用[双基夯实]一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”)1.直线的倾斜角越大,其斜率越大.( )2.当直线的斜率不存在时,其倾斜角存在.( )3.过点P(x1,y1)的直线方程一定可设为y-y1=k(x-x1).( )4.直线方程的截距式+=1中,a,b均应大于0.( )二、小题快练1.[2017·贵州模拟]已知直线l经过点P(-2,5),且斜率为-,则直线l的方程为( )A.3x+4y-14=0B.3x-4y+14=0C.4x+3y-14=0D.4x-3y+14=02.[课本改编]直线x+y+1=0的倾斜角是( )A.B.C.D.3.[课本改编]过两点(0,3),(2,1)的直线方程为( )A.x-y-3=0B.x+y-3=0C.x+y+3=0D.x-y+3=04.若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为______.考向1 直线的倾斜角与斜率看菜如图,比较直线,,的斜率、、的大小.1.直线2x-y+4=0同时过第()象限A.一,二,三B.二,三,四C.一,二,四D.一,三,四2.直线l1:ax-y+b=0,l2:bx-y+a=0,在同一坐标系下l1和l2的图像是()3.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(-2,0),则k的取值范围是_______.拓展:(1)若M在第二象限,则k的取值范围是_______.(2)若M在第四象限,则k的取值范围是_______.【变式训练3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;例1 直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为_______________________.探究1若将题中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.直线l的斜率直线l的倾斜角α区别直线l垂直于x轴时l的斜率不存在直线l垂直于x轴时l的倾斜角是90°联系①直线的斜率与直线的倾斜角(90°除外)为一一对应关系.②当α∈[0°,90°)时,α越大,l的斜率越大;当α∈(90°,180°)时,α越大,l的斜率越大.③所有直线都有倾斜角,但不是所有直线都有斜率.【变式训练1】如果直线l经过A(2,1),B(1,m2)(m∈R)两点,那么直线l的倾斜角α的取值范围是( )A.0≤α≤πB.0≤α≤或<α<πC.0≤α≤D.≤α<或<α<π考向2 求直线的方程例2 根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;(3)直线过点(5,10),且到原点的距离为5.【变式训练2】已知△ABC的三个顶点分别为A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上中线AD所在直线的方程;(3)BC边的垂直平分线DE的方程.触类旁通求直线方程的两种方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.(2)待定系数法,即设定含有参数的直线方程,由条件列出方程(组),再求出参数,最后将其代入直线方程.考向3 直线方程的应用例3 已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点.求:(1)当|OA|+|OB|取得最小值时,直线l的方程;(2)当|MA|2+|MB|2取得最小值时,直线l的方程.【变式训练3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.核心规律1.明确直线方程各种形式的适用条件点斜式、斜截式方程适用于不垂直于x轴的直线;两点式方程不能表示垂直于x、y轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法.满分策略1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.1.直线的倾斜角与斜率(1)在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕着交点按__________方向旋转到和直线重合时所转过的____________称为这条直线的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为__________.(2)倾斜角的范围为________________.(3)倾斜角与斜率的关系:α≠90°时,k=________,倾斜角是90°的直线斜率________.(4)过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=_____________________.2.直线方程的五种基本形式名称方程适用范围点斜式不含直线x=x0斜截式不含垂直于x轴的直线两点式不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)截距式不含垂直于坐标轴和过原点的直线一般式平面直角坐标系内的直线都适用自我检测1.若A(-2,3),B(3,-2),C三点共线,则m的值为________.2.直线l与两条直线x-y-7=0,y=1分别交于P、Q两点,线段PQ的中点为(1,-1),则直线l的斜率为_______________________________________________________.3.下列四个命题中,假命题是________(填序号).①经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示;②经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;③与两条坐标轴都相交的直线不一定可以用方程+=1表示;④经过点Q(0,b)的直线都可以表示为y=kx+b.4.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过第________象限.5.已知直线l的方向向量与向量a=(1,2)垂直,且直线l过点A(1,1),则直线l的方程为______________.二、教学过程探究点一倾斜角与斜率例1 已知两点A(-1,-5)、B(3,-2),直线l的倾斜角是直线AB 倾斜角的一半,求l的斜率.变式迁移1直线xsinα-y+1=0的倾斜角的变化范围是______________.探究点二直线的方程例2 过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.变式迁移2 求适合下列条件的直线方程:(1)经过点P(3,2)且在两坐标轴上的截距相等;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.探究点三直线方程的应用例3 过点P(2,1)的直线l交x轴、y轴正半轴于A、B两点,求使:(1)△AOB面积最小时l的方程;(2)PA·PB最小时l的方程.变式迁移3 为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m,应如何设计才能使草坪面积最大?拓展延伸:例4 已知实数x,y满足y=x2-2x+2(-1≤x≤1).试求的最大值与最小值.三、回顾与反思:人教版高中必修二《直线与方程》教学案例这篇文章共9802字。
2023年直线与方程教案高三【精选4篇】

2023年直线与方程教案高三【精选4篇】直线与方程教案高三篇一《直线的方程》教案一、教学目标知识与技能:理解直线方程的点斜式的特点和使用范围过程与方法:在知道直线上一点和直线斜率的基础上,通过师生探讨得出点斜式方程情感态度价值观:养成数形结合的思想,可以使用联系的观点看问题。
二、教学重难点教学重点:点斜式方程教学难点:会使用点斜式方程三、教学用具:直尺,多媒体四、教学过程1、复习导入,引入新知我们确定一条直线需要知道哪些条件呢?(直线上一点,直线的斜率)那么我们能不能用直线上这一点的坐标和直线的斜率把整条直线所有点的坐标应该满足的关系表达出来呢?这就是我们今天所要学习的课程《直线的方程》。
2、师生互动,探索新知探究一:在平面直角坐标系中,直线l过点p(0,3),斜率k=2,q(x,y)是直线l上不同于点p的任意一点,如ppt上图例所示。
通过上节课所学,我们可以得出什么?由于p,q都在这条直线上,我们就可以用这两点的坐标来表示直线l的斜率,可以得出公式:y-3x-0=2 那我们就可以的出方程y=2x+3 所以就有l上的任意一点坐标(x,y)都满足方程y=2x=3,满足方程y=2x+3的每一个(x,y)所对应的点都在直线l上。
因此我们可以的出结论:一般的如果一条直线l上任意一点的坐标(x,y)都满足一个方程,满足该方程的每一个数对(x,y)所确定的点都在直线l上,我们就把这个方程称为l的直线方程,因此,当我们知道了直线上的一点p(x,y),和它的斜率,我们就可以求出直线方程。
3、知识剖析,深化理解我们刚刚知道了如何来求直线方程,那现在同学来做做这一个例子。
设q(x,y)是直线l上不同于点p的任意一点,由于点p,q都在l,求直线的方程。
设点p(x0,,y0),先表示出这个直线的额斜率是y-y0x-x0=k,然后可以推得公式y-y0=k(x-x0)那如果当x=x0,这个公式就没有意义,还有就是分母不能为零,所以这里要注意(x不能等于x0)1)过点,斜率是k的直线l上的点,其坐标都满足方程(1)吗?p(x0,y0)(x0,y0),斜率为k的直线l上吗?2)坐标满足方程(1)的点都在经过p那么像这种由直线上一个点和一个斜率所求的方程,就称为直线方程的点斜式。
高中数学直线与方程教案

高中数学直线与方程教案教学目标:学生能够掌握直线方程的求解方法,了解直线方程与几何的关系,能够灵活运用直线方程解决实际问题。
教学重点:直线方程的基本概念和求解方法。
教学难点:直线方程与几何问题的应用。
教学内容:一、直线的方程形式及性质1. 直线的一般方程:Ax + By + C = 02. 直线的斜率与截距3. 直线的截距式和点斜式二、直线的方程求解1. 通过已知点和斜率求直线方程2. 通过两点求直线方程3. 通过截距求直线方程三、直线方程的应用1. 直线与圆的位置关系2. 直线与直线的位置关系3. 直线方程解决实际问题的应用教学方法:讲解结合练习,引导学生自主发现问题,并通过实际问题进行实践。
教学过程:一、直线的方程形式及性质1. 引出直线的一般方程Ax + By + C = 0的定义及性质,让学生理解直线方程的意义。
2. 通过实例演示直线的斜率与截距的计算方法。
3. 探讨直线的截距式和点斜式的应用及意义。
二、直线的方程求解1. 通过已知点和斜率求直线方程的例题演练,让学生灵活掌握解题方法。
2. 通过两点和截距求直线方程的练习,引导学生掌握不同情况下的求解方法。
三、直线方程的应用1. 通过例题演示直线与圆的位置关系,让学生理解直线与曲线的相互关系。
2. 引导学生通过实际问题应用直线方程解决难题,培养学生的问题解决能力。
教学总结:通过本节课的学习,学生应该能够掌握直线方程的基本概念和求解方法,了解直线方程与几何问题的关系,能够灵活运用直线方程解决实际问题。
同时,希望同学们能够通过实际问题的解答,感受到数学在生活中的应用和意义。
高一数学必修二第三章直线与方程教案

高一数学必修二第三章直线与方程教案第三章直线与方程(1)直线的倾斜角定义:_轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与_轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是080(2)直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用表示。
即。
斜率反映直线与轴的倾斜程度。
当直线l与_轴平行或重合时,=0,k=tan0=0;当直线l与_轴垂直时,=90,k不存在.当时,;当时,;当时,不存在。
注意:一条直线必有一个确定的倾斜角,但不一定有斜率,当时,;当时,;当时,不存在,当时即:斜率的取值范围为例1、给出下列命题:若直线倾斜角为,则直线斜率为;若直线倾斜角为,则直线的倾斜角为;直线的倾斜角越大,它的斜率越大;直线的斜率越大,其倾斜角越大;直线的倾斜角的正切值叫做直线的斜率。
其中正确命题的序号为例2、已知直线的倾斜角为,且,求直线的斜率过两点的直线的斜率公式:(P(_,y),P2(_2,y2),__2)注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
例3、已知点,求直线的斜率并判断倾斜角的范围。
例4、(三点共线问题)已知三点,证明这三点在同一条直线上例5、(最值问题)已知实数,满足,当时,求的最大值和最小值(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y。
当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于_,所以它的方程是_=_。
斜截式:,直线斜率为k,直线在y轴上的截距为b 两点式:直线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
例6、根据条件写出下列各题中的直线的方程和值经过点,倾斜角2.经过点,且与轴垂直3.求倾斜角是直线的倾斜角的,且在轴上的截距为的直线的方程。
人教版高中必修2第三章直线与方程课程设计

人教版高中必修2第三章直线与方程课程设计一、课程背景直线与方程是高中数学中重要的一部分,是建立高中数学基础的核心概念之一。
本章节的学习将为学生日后的学习打下深厚的基础,并在其它领域如物理和工程学中提供必不可少的应用。
二、学习目标1.学会描述直线所用的各种方法,并能尝试解决各种相关问题。
2.理解并掌握直线的斜率和截距的概念。
3.熟悉各种直线的性质及其方程的不同形式。
4.能运用直线的相关概念和应用来解决复杂的问题。
三、教学内容和步骤1. 直线的表示方法教学目标学生能够理解直线的各种描述方式,并能用这些方式描述一条直线。
教学步骤1.引入直线的概念及其定义。
2.以图形和数学表示的方式教授直线的描述方法。
3.给予学生练习并解释它们的应用场景。
教学方法1.讲解法,结合实例让学生理解各种描述方式。
2.实验演示和练习,让学生动手的体会直线的不同描述方法。
2. 直线的斜率和截距教学目标1.学生能够掌握直线的斜率和截距的概念。
2.能用斜率和截距确定直线的方程。
教学步骤1.介绍斜率和截距的概念及定义。
2.通过实例和图像说明斜率和截距的作用。
3.在实例和图片中演示如何用斜率和截距确定直线的方程。
4.给予学生练习并运用知识解决相关问题。
教学方法1.讲解法,结合实例和图像让学生理解概念。
2.练习法,让学生动手计算和确定方程。
3. 直线的不同形式的方程教学目标学生能够熟悉各种类型的直线方程形式,并能在不同的应用场景中灵活转换。
教学步骤1.介绍各种类型的直线方程。
2.演示如何将不同类型的方程转换为标准直线方程。
3.给予学生练习,让他们在不同的情况中灵活运用。
教学方法1.讲解法,结合实际问题让学生理解不同类型的方程。
2.计算和转换法,让学生灵活认识转换不同类型的方程。
4. 直线的性质和应用教学目标1.学生能够理解直线的各种性质。
2.能够解决与直线有关的问题。
教学步骤1.介绍与直线相关的其他数学和物理理论。
2.演示如何将这些理论与直线相结合以解决相关问题。
高中数学必修2第三章直线与方程全套教案

第三章直线与方程直线的倾斜角和斜率教学目标:知识与技能(1)正确理解直线的倾斜角和斜率的概念.(2)理解直线的倾斜角的唯一性.(3)理解直线的斜率的存在性.(4)斜率公式的推导过程,掌握过两点的直线的斜率公式.情感态度与价值观(1) 通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2) 通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.重点与难点:直线的倾斜角、斜率的概念和公式.教学用具:计算机教学方法:启发、引导、讨论.教学过程:(一)直线的倾斜角的概念我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, …易见,答案是否定的.这些直线有什么联系呢?(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同?引入直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角....特别地,当直线l与x轴平行或重合时, 规定α= 0°.问: 倾斜角α的取值X围是什么? 0°≤α<180°.当直线l与x轴垂直时, α= 90°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度,引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.如图, 直线a∥b∥c, 那么它们YXcbaO的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点...P.和一个倾斜角......α..(二)直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.例如, α=45°时, k = tan45°= 1;α=135°时, k = tan135°= tan(180°-45°) = - tan45°= - 1.学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.(三) 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率?可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略)斜率公式:对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°, 直线与x轴垂直;(2)k与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x 轴平行或重合. (5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.(四)例题:例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA 的斜率, 并判断它们的倾斜角是钝角还是锐角.(用计算机作直线, 图略)分析: 已知两点坐标, 而且x1≠x2, 由斜率公式代入即可求得k 的值; 而当k = tanα<0时, 倾斜角α是钝角; 而当k = tanα>0时, 倾斜角α是锐角; 而当k = tanα=0时, 倾斜角α是0°.略解: 直线AB 的斜率k1=1/7>0, 所以它的倾斜角α是锐角; 直线BC 的斜率k2=-0.5<0, 所以它的倾斜角α是钝角; 直线CA 的斜率k3=1>0, 所以它的倾斜角α是锐角.例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 与-3的直线a, b, c, l. 分析:要画出经过原点的直线a, 只要再找出a 上的另外一点M. 而M 的坐标可以根据直线a 的斜率确定; 或者k=tanα=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边, 在x 轴的上方作45°的角, 再把所作的这一边反向延长成直线即可. 略解: 设直线a 上的另外一点M 的坐标为(x,y),根据斜率公式有 1=(y -0)/(x -0)所以 x = y可令x = 1, 则y = 1, 于是点M 的坐标为(1,1).此时过原点和点 M(1,1), 可作直线a.同理, 可作直线b, c, l.(用计算机作动画演示画直线过程)(五)练习: P91 1. 2. 3. 4. (六)小结:(1)直线的倾斜角和斜率的概念. (2) 直线的斜率公式. (七)课后作业: P94 习题3.1 1. 3. (八)板书设计:两条直线的平行与垂直教学目标 (一)知识教学理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直. (二)能力训练通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力,以与数形结合能力.(三)学科渗透通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题.教学过程(一)先研究特殊情况下的两条直线平行与垂直上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时, 两直线的平行与垂直设直线L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tanα1=tanα2.即k1=k2.反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°,0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出: α1=90°+α2.L1⊥L2.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.(借助计算机, 让学生通过度量, 感知k1, k2的关系, 并使L1(或L2)转动起来, 但仍保持L1⊥L2, 观察k1, k2的关系, 得到猜想, 再加以验证. 转动时, 可使α1为锐角,钝角等).例题例1已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.分析: 借助计算机作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5, 直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5, 因为k1=k2=0.5, 所以直线BA∥PQ.例2 已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明. (借助计算机作图, 通过观察猜想:四边形ABCD是平行四边形,再通过计算加以验证)解同上.例3已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,直线PQ的斜率k2= (6-3)(-2-0)=-3/2, 因为k1·k2 = -1 所以AB⊥PQ.例4已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)课堂练习P94 练习 1. 2.课后小结(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 判定两条直线平行或垂直.(3) 应用直线平行的条件, 判定三点共线.布置作业 P94 习题3.1 5. 8. 板书设计直线的点斜式方程一、教学目标 1、知识与技能〔1〕理解直线方程的点斜式、斜截式的形式特点和适用X 围; 〔2〕能正确利用直线的点斜式、斜截式公式求直线方程。
必修2第三章直线与方程两条直线的交点坐标教案

3.3.1两条直线的交点坐标一、教学目标(一)知识教学点知道两条直线的相交、平行和重合三种位置关系,对应于相应的二元一次方程组有唯一解、无解和无穷多组解,会应用这种对应关系通过方程判断两直线的位置关系,以及由已知两直线的位置关系求它们方程的系数所应满足的条件.(二)能力训练点通过研究两直线的位置关系与它们对应方程组的解,培养学生的数形结合能力;通过对方程组解的讨论培养学生的分类思想;求出x后直接分析出y的表达式,培养学生的抽象思维能力与类比思维能力.(三)学科渗透点通过学习两直线的位置关系与它们所对应的方程组的解的对应关系,培养学生的转化思想.二、教材分析1.重点:两条直线的位置关系与它们所对应的方程组的解的个数的对应关系,本节是从交点个数为特征对两直线位置关系的进一步讨论.2.难点:对方程组系数中含有未知数的两直线的位置关系的讨论.3.疑点:当方程组中有一个未知数的系数为零时两直线位置关系的简要说明.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)两直线交点与方程组解的关系设两直线的方程是l1: A1x+B1y+c1=0, l2: A2x+B2y+C2=0.如果两条直线相交,由于交点同时在两条直线上,交点的坐标一定是这两个方程的公共解;反之,如果这两个二元一次方程只有一个公共解,那么以这个解为坐标的点必是直线l1和l2的交点.因此,两条直线是否相交,就要看这两条直线的方程所组成的方程组是否有唯一解.(二)对方程组的解的讨论若A1、A2、B1、B2中有一个或两个为零,则两直线中至少有一条与坐标轴平行,很容易得到两直线的位置关系.下面设A1、A2、B1、B2全不为零.解这个方程组:(1)×B2得 A1B2x+B1B2y+B2C1=0,(3)(2)×B1得 A2B1x+B1B2y+B1C2=0.(4)(3)-(4)得(A1B2-A2B1)x+B2C1-B1C2=0.下面分两种情况讨论:将上面表达式中右边的A1、A2分别用B1、B2代入即可得上面得到y可把方程组写成即将x用y换,A1、A2分别与B1、B2对换后上面的方程组还原成原方程组.综上所述,方程组有唯一解:这时l1与l2相交,上面x和y的值就是交点的坐标.(2)当A1B2-A2B1=0时:①当B1C2-B2C1≠0时,这时C1、C2不能全为零(为什么?).设C2②如果B1C2-B2C1=0,这时C1、C2或全为零或全不为零(当C1、(三)统一通过解方程组研究两直线的位置关系与通过斜率研究两直线位置关系的结论说明:在平面几何中,我们研究两直线的位置关系时,不考虑两条直线重合的情况,而在解析几何中,由于两个不同的方程可以表示同一条直线,我们把重合也作为两直线的一种位置关系来研究.(四)例题例1 求下列两条直线的交点:l1:3x+4y-2=0, l2: 2x+y+2=0.解:解方程组∴l1与l2的交点是M(-2,2).例2已知下列各对直线的位置关系,如果相交,求出交点的坐标:(1)l: x-y=0, l: 3x+3y-10 ;(2)l: 3x-y+4=0 l: 6x-2y=0 ;(3)l: 3x+4y-5=0, l: 6x+8y-10=0解:(1)解方程组, 得所以,l与l相交,交点是M(, )(2)解方程组(1)×2-(2)得 9=0, 矛盾,方程组无解,所以量直线无公共点,l∥ l.(3)解方程组(1)×2得 6x+8y-10=0因此,(1)和(2)可以化成同一个方程,即(1)和(2)表示同一条直线,l与l重合(五)课堂练习:由学生完成,教师讲评课后小结(1)两直线的位置关系与它们对应的方程的解的个数的对应关系.(2)求两条直线交点的一般方法..五、布置作业1.教材第116页,习题3.3A组第1题六、板书设计1.判断下列各对直线的位置关系,如果相交,则求出交点的坐标:2. A和C取什么值时,直线Ax-2y-1=0和直线6x-4y+c=0(1)平行;(2)重合;(3)相交.解:(1)A=3,C≠-2;(2)A=3,C=-2;(3)A≠3.3.已知两条直线:l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8.m为何值时,l1与l2:(1)相交;(2)平行;(3)重合.解:(1)m≠1且m≠-7;(2)m=-7;(3)m=-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)直线m平行于x轴,且通过点(-2,2);
(2)y轴所在的直线.
练习
(1)写出垂直于x轴且过点(5,-1)的直线方程.
(2)已知点(a,3)在方程为y=x+1的直线上,求a的值.
师:y=x+3是一个代数方程,而直线AB是一个几何图形,也就是说,代数方程可以用几何图形表示,几何图形也可以用代数方程来表示.
学生在教师引导下理解代数方程与几何图形的对应关系.
师:既然直线是点的集合,那么我们就可以利用集合的特征性质来解决这一问题.
师:如图,在直线l上的点的横坐标有什么特点?横坐标是2的点也一定在直线l上吗?
直线l的特征性质能用x=2来表述吗?
学生回答教师提出的问题.
师:对于平面直角坐标系中的任意一点,只要看它的坐标是否满足x=2,就能判断出点是否在直线l上.
2.直线的特征性质
问题:平面直角坐标系中的任意一条直线,都是由点组成的集合.但是,已知任意一点的坐标,到底怎样才能判断它是不是在给定直线上呢?
例如,通过点(2,0)且垂直于x轴的直线l.
3.直线的方程
一般地,在平面直角坐标系中,给定一条直线,如果直线上点的坐标都满足某个方程,而且满足这个方程的坐标所表示的点都在直线上,那么这个方程叫做直线的方程.
点A(2,1)的坐标满足方程x=2吗?点A在直线l上吗?
点B(强调要从两方面来说明某个方程是不是给定直线的方程.
师:由上面分析,通过点(2,0)且垂直于x轴的直线l的方程是什么?
学生回答.
教师引导学生解答.引导过程中进一步强调直线上的点的坐标都满足方程,而且满足这个方程的坐标所表示的点都在直线上.
高中数学必修2《直线与方程》教案
1.理解直线的方程的概念,会判断一个点是否在一条直线上.
2.培养学生勇于发现、勇于探索的精神,培养学生合作交流等良好品质.
【教学重点】
直线的特征性质,直线的方程的概念.
【教学难点】
直线的方程的概念.
【教学方法】
这节课主要采用分组探究教学法.本节首先利用一次函数的解析式与图象的关系,揭示代数方程与图形之间的关系,然后用集合表示的性质描述法阐述直线与方程的对应关系,进而给出直线的方程的概念.本节教学中,要突出用集合的观点完成由形到数、由数到形的转化.
【教学过程】
环节
教学内容
师生互动
设计意图
引入
1.用性质描述法表示大于0的偶数构成的集合,并判断-1和6在不在这个集合中.
2.作函数y=x+3的图象,并判断点(0,1)和(-2,1)在不在函数的图象上.
教师提出问题,学生解答.
教师点评.
复习本节相关内容.
新课
1.函数与图象
一次函数的图象是一条直线,如y=x+3的图象是直线AB,如图所示.
师生共同回顾本节内容,进一步深化对概念的理解.
总结本节内容.
作业
教材P73练习A组题.
教材P73练习B组题(选做).
学生标记作业.
针对学生实际,对课后书面作业实施分层设置.
学生小组合作完成练习,教师巡视了解学生掌握情况.
由特殊到一般,为引入直线的方程提供基础.
提出解决问题的方法.
引导学生分析直线l的坐标特点,为概念的引入打下基础.
通过具体的例子来说明判断某点是否在给定直线上的方法.
通过例题进一步加强学生对概念的理解.
小结
1.直线的方程的概念.
2.判断一个点是否在直线上的方法.