数据结构课程设计报告(图的遍历)

合集下载

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。

图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。

图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。

本文将详细讲解图的遍历算法及其应用。

二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。

(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。

(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。

(4)重复步骤(2)和(3),直到栈为空。

2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。

(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。

(3)重复步骤(2),直到队列为空。

三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。

1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。

图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。

具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。

(2)重复步骤(1),直到所有顶点都被访问。

2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。

图的遍历 实验报告

图的遍历  实验报告

图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。

图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。

图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。

本实验旨在通过实际操作,掌握图的遍历算法。

在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。

二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。

三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。

实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。

四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。

具体实现时,我们可以使用递归或栈来实现深度优先搜索。

算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。

2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。

具体实现时,我们可以使用队列来实现广度优先搜索。

算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。

3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。

数据结构实验报告图的遍历

数据结构实验报告图的遍历

数据结构实验报告图的遍历一、实验目的本实验旨在通过实践的方式学习图的遍历算法,掌握图的深度优先搜索(DFS)和广度优先搜索(BFS)的实现方法,加深对数据结构中图的理解。

二、实验步骤1. 创建图的数据结构首先,我们需要创建一个图的数据结构,以方便后续的操作。

图可以使用邻接矩阵或邻接表来表示,这里我们选择使用邻接矩阵。

class Graph:def__init__(self, num_vertices):self.num_vertices = num_verticesself.adj_matrix = [[0] * num_vertices for _ in range(num_vertic es)]def add_edge(self, v1, v2):self.adj_matrix[v1][v2] =1self.adj_matrix[v2][v1] =1def get_adjacent_vertices(self, v):adjacent_vertices = []for i in range(self.num_vertices):if self.adj_matrix[v][i] ==1:adjacent_vertices.append(i)return adjacent_vertices2. 深度优先搜索(DFS)DFS是一种遍历图的算法,其基本思想是从图的某一顶点开始,沿着一条路径一直走到最后,然后返回尚未访问过的顶点继续遍历,直到所有顶点都被访问过为止。

def dfs(graph, start_vertex):visited = [False] * graph.num_verticesstack = [start_vertex]while stack:vertex = stack.pop()if not visited[vertex]:print(vertex)visited[vertex] =Truefor neighbor in graph.get_adjacent_vertices(vertex):if not visited[neighbor]:stack.append(neighbor)3. 广度优先搜索(BFS)BFS同样是一种遍历图的算法,其基本思想是从图的某一顶点开始,首先访问其所有邻接点,然后再依次访问邻接点的邻接点,直到所有顶点都被访问过为止。

数据结构课程设计报告样本(图的存储与遍历)

数据结构课程设计报告样本(图的存储与遍历)

这是最后提交的文档资料格式,必须包含几个部分完成要求不少于50页。

《数据结构》课程设计题目图的存储与遍历学生姓名指导教师学院专业班级完成时间目录(要求自动生成)第一章课程设计目的 (2)第二章课程设计内容和要求 (2)第三章课程设计分析 (3)第四章算法描述 (4)第五章源代码 (8)第六章运行结果分析 (13)第七章结束语 (15)第八章参考文献 (15)第一章课程设计目的本学期我们对《数据结构》这门课程进行了学习。

这门课程是一门实践性非常强的课程,为了让大家更好地理解与运用所学知识,提高动手能力,我们进行了此次课程设计实习。

这次课程设计不但要求实习者掌握《数据结构》中的各方面知识,还要求实习者具备一定的C语言基础和编程能力。

具体说来,这次课程设计主要有两大方面目的。

一是让实习者通过实习掌握《数据结构》中的知识。

对于《图的存储与遍历》这一课题来说,所要求掌握的数据结构知识主要有:图的邻接表存贮结构、队列的基本运算实现、邻接表的算法实现、图的广度优先搜索周游算法实现、图的深度优先搜索周游算法实现。

二是通过实习巩固并提高实习者的C语言知识,并初步了解Visual C++的知识,提高其编程能力与专业水平。

第二章课程设计内容和要求2.1课程设计内容该课题要求以邻接表的方式存储图,输出邻接表,并要求实现图的深度、广度两种遍历。

2.1.1图的邻接表的建立与输出对任意给定的图(顶点数和边数自定),并且对有向图与无向图都应进行讨论,根据邻接表的存储结构建立图的邻接表并输出之。

尽量用图形化的方式输出邻接表。

2.1.2 图的遍历的实现图的遍历包括图的广度优先遍历与深度优先遍历。

对于广度优先遍历应利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)来实现。

首先建立一空队列,从初始点出发进行访问,当被访问时入队,访问完出队。

并以队列是否为空作为循环控制条件。

对于深度优先遍历则采用递归或非递归算法来实现。

数据结构实验报告-图的遍历

数据结构实验报告-图的遍历

数据结构实验报告实验:图的遍历一、实验目的:1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表2、掌握图的构造方法3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法4、掌握图的深度优先遍历和广度优先原理二、实验内容:1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。

2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图3、深度优先遍历第一步中构造的图G,输出得到的节点序列4、广度优先遍历第一部中构造的图G,输出得到的节点序列三、实验要求:1、无向图中的相关信息要从终端以正确的方式输入;2、具体的输入和输出格式不限;3、算法要具有较好的健壮性,对错误操作要做适当处理;4、程序算法作简短的文字注释。

四、程序实现及结果:1、邻接矩阵:#include <stdio.h>#include <malloc.h>#define VERTEX_MAX 30#define MAXSIZE 20typedef struct{intarcs[VERTEX_MAX][VERTEX_MAX] ;int vexnum,arcnum;} MGraph; void creat_MGraph1(MGraph *g) { int i,j,k;int n,m;printf("请输入顶点数和边数:");scanf("%d%d",&n,&m);g->vexnum=n;g->arcnum=m;for (i=0;i<n;i++)for (j=0;j<n;j++)g->arcs[i][j]=0;while(1){printf("请输入一条边的两个顶点:\n");scanf("%d%d",&i,&j);if(i==-1 || j==-1)break;else if(i==j || i>=n || j>=n){printf("输入错误,请重新输入!\n");}else{g->arcs[i][j]=1;g->arcs[j][i]=1;}}}void printMG(MGraph *g) {int i,j;for (i=0;i<g->vexnum;i++){for (j=0;j<g->vexnum;j++)printf(" %d",g->arcs[i][j]);printf("\n");}printf("\n");}main(){int i,j;int fg;MGraph *g1;g1=(MGraph*)malloc(sizeof(MGraph));printf("1:创建无向图的邻接矩阵\n\n");creat_MGraph1(g1);printf("\n此图的邻接矩阵为:\n"); printMG(g1);}2、邻接链表:#include<stdio.h>#include<malloc.h>#define MAX_SIZE 10typedef struct node{int vertex;struct node *next;}node,adjlist[MAX_SIZE];adjlist g;int visited[MAX_SIZE+1];int que[MAX_SIZE+1];void creat(){int n,e;int i;int start,end;node *p,*q,*pp,*qq;printf("输入无向图的顶点数和边数:");scanf("%d%d",&n,&e);for(i = 1; i <= n ; i++){visited[i] = 0;g[i].vertex = i;g[i].next = NULL;}printf("依次输入边:\n");for(i = 1; i <= e ; i++){scanf("%d%d",&start,&end);p=(node *)malloc(sizeof(node));p->vertex = end;p->next = NULL;q = &g[start];while(q->next)q = q->next;q->next = p;p1=(node*)malloc(sizeof(node));p1->vertex = start;p1->next = NULL;q1 = &g[end];while(qq->next)q1 = q1->next;q1->next = p1;}}void bfs(int vi){int front,rear,v;node *p;front =0;rear = 1;visited[vi] = 1;que[0] = vi;printf("%d ",vi);while(front != rear){v = que[front];p = g[v].next;while(p){if(!visited[p->vertex]){visited[p->vertex]= 1;printf("%d",p->vertex);que[rear++] = p->vertex;}p = p->next;}front++;}}int main(){creat();bfs(1);printf("\n");return 0;}五.实验心得与体会:(1)通过这次实验,使我基本上掌握了图的存储和遍历,让我弄清楚了如何用邻接矩阵和邻接链表对图进行存储(2)深度优先遍历和广度优先遍历都有着各自的优点,通过程序逐步调试,可以慢慢的理解这两种遍历方法的内涵和巧妙之处。

数据结构实验报告九—图的遍历

数据结构实验报告九—图的遍历

问题描述:若用有向网表示网页的链接网络,其中顶点表示某个网页,有向弧表示网页之间的链接关系。

试设计一个网络蜘蛛系统,分别以广度优先和深度优先的策略抓取网页。

一、需求分析:1.本程序要求采用利用图实现广度优先搜索。

2.首先输入顶点的数量,然后是各顶点对应的字母,再输入各条弧(权值都置为1)。

3.在Dos界面输出从首个顶点开始的广度优先遍历序列。

4.测试数据输入输入顶点数和弧数:8 9输入8个顶点.输入顶点0:a输入顶点1:b输入顶点2:c输入顶点3:d输入顶点4:e输入顶点5:f输入顶点6:g输入顶点7:h输入9条弧.输入弧0:a b 1输入弧1:b d 1输入弧2:b e 1输入弧3:d h 1输入弧4:e h 1输入弧5:a c 1输入弧6:c f 1输入弧7:c g 1输入弧8:f g 1输出广度优先遍历: a b d h e c f g深度优先遍历: a b c d e f g h二、概要设计:抽象数据类型:图的定义:ADT Graph {数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。

数据关系R:R={VR}VR={<v,w>|v,w∈v且P(v,w),<v,w>表示从v到w的弧,谓词P(v,w)定义了弧<v,w>的意义或信息}基本操作P:CreateGraph(&G,V,VR)初始条件:V是图的顶点集,VR是图中弧的集合操作结果:按V和VR的定义构造图GFirstAdjV ex(G,v)初始条件:图G存在,v是G中某个顶点操作结果:返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回“空”Next AdjV ex(G,v,w)初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点操作结果:返回v的(相对于w的)下一个邻接顶点,若w是v的最后一个邻接点,则返回“空”visit(G, k)初始条件:图G存在操作结果:访问图G中的第K个节点Locate(G, c)初始条件:图G存在操作结果:访问图G中的c顶点DFS(G, v)初始条件:图G存在操作结果:以图G中的第v个节点为起点深度优先访问图GBFS(G)初始条件:图G存在操作结果:广度优先访问图G} ADT Graph算法的基本思想:(1)图的特点是没有首尾之分,所以算法的参数要指定访问的第一个顶点。

图的遍历的实验报告

图的遍历的实验报告

图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。

图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。

图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。

本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。

二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。

2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。

(2)接下来,我们实现深度优先搜索算法。

深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。

(3)然后,我们实现广度优先搜索算法。

广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。

(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

其中,V表示图中的节点数,E表示图中的边数。

五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。

(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。

但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告图的遍历算法实验报告一、引言图是一种常用的数据结构,用于描述事物之间的关系。

在计算机科学中,图的遍历是一种重要的算法,用于查找和访问图中的所有节点。

本实验旨在探究图的遍历算法,并通过实验验证其正确性和效率。

二、实验目的1. 理解图的基本概念和遍历算法的原理;2. 实现图的遍历算法,并验证其正确性;3. 比较不同遍历算法的效率。

三、实验方法1. 实验环境:使用Python编程语言进行实验;2. 实验步骤:a. 构建图的数据结构,包括节点和边的定义;b. 实现深度优先搜索(DFS)算法;c. 实现广度优先搜索(BFS)算法;d. 验证算法的正确性,通过给定的图进行遍历;e. 比较DFS和BFS的效率,记录运行时间。

四、实验结果1. 图的构建:我们选择了一个简单的无向图作为实验对象,包含6个节点和7条边。

通过邻接矩阵表示图的关系。

```0 1 1 0 0 01 0 1 1 0 01 1 0 0 1 10 1 0 0 0 00 0 1 0 0 00 0 1 0 0 0```2. DFS遍历结果:从节点0开始,遍历结果为0-1-2-4-5-3。

3. BFS遍历结果:从节点0开始,遍历结果为0-1-2-3-4-5。

4. 算法效率比较:我们记录了DFS和BFS算法的运行时间。

经实验发现,在这个图的规模下,DFS算法的运行时间为0.001秒,BFS算法的运行时间为0.002秒。

可以看出,DFS算法相对于BFS算法具有更高的效率。

五、讨论与分析1. 图的遍历算法能够帮助我们了解图中的节点之间的关系,有助于分析和解决实际问题。

2. DFS算法和BFS算法都可以实现图的遍历,但其遍历顺序和效率有所不同。

DFS算法会优先访问深度较大的节点,而BFS算法会优先访问离起始节点最近的节点。

3. 在实验中,我们发现DFS算法相对于BFS算法具有更高的效率。

这是因为DFS算法采用了递归的方式,遍历过程中不需要保存所有节点的信息,而BFS 算法需要使用队列保存节点信息,导致额外的空间开销。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学课程设计报告题目数据结构课程设计学生姓名指导教师漆华妹学院信息科学与工程学院专业班级学号完成时间 2011年07月目录第一章、需求分析 (2)第二章、概要设计 (2)2.1设定图的抽象数据类型 (2)2.2设定队列的抽象数据类型 (3)2.3本程序包含的功能模块 (3)第三章、详细设计 (3)3.1顶点、边和图的类型 (6)3.2队列类型 (8)3.3主程序和其他伪码算法 (9)第四章、调试分析 (9)第五章、用户手册 (9)第六章、测试结果 (10)第七章、心得体会 (10)附:源程序代码 (11)图遍历的演示题目:试设计一个程序,演示在连通的无向图上访问全部结点的操作第一章、需求分析1、以邻接多重表为存储结构;2、实现连通和非连通的无向图的深度优先和广度优先遍历;3、要求利用栈实现无向图的深度优先遍历;4、以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和生成树的边集;5、用凹入表打印生成树;6、求出从一个结点到另外一个结点,但不经过另外一个指定结点的所有简单路径;6、本程序用C语言编写,在C-Free3.5环境下通过。

第二章、概要设计1、设定图的抽象数据类型:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为点集.数据关系R:R={VR}VR={(v,w)|v,w属于V,(v,w)表示v和w之间存在的路径} 基本操作P:CreatGraph(&G,V,VR)初始条件:V是图的顶点集,VR是图中弧的集合.操作结果:按V和VR是定义构造图G.DestroyGraph(&G)初始条件:图G存在操作结果:销毁图GLocateVex(G,u)初始条件: 图G存在,u和G中顶点有相同的特征操作结果:若图G中存在顶点u,则返回该顶点在图中的位置;否则返回其他信息GetVex(G,v)初始条件: 图G存在,v是G中顶点操作结果:返回v的值FirstAjvex(G,v)初始条件: 图G存在,v是G中顶点操作结果:返回v的第一个邻接顶点,若顶在图中没有邻接顶点,则返回为空NextAjvex(G,v,w)初始条件: 图G存在,v是G中顶点,w是v的邻接顶点操作结果:返回v的下一个邻接顶点,若w是v的最后一个邻接顶点,则返回空DeleteVexx(&G,v)初始条件: 图G存在,v是G中顶点操作结果:删除顶点v已经其相关的弧DFSTraverse(G,visit())初始条件: 图G存在,visit的顶点的应用函数操作结果: 对图进行深度优先遍历,在遍历过程中对每个结点调用visit函数一次,一旦visit失败,则操作失败BFSTraverse(G,visit())初始条件: 图G存在,visit的顶点的应用函数操作结果:对图进行广度优先遍历,在遍历过程中对每个结点调用visit函数一次,一旦visit失败,则操作失败}ADT Graph2、设定队列的抽象数据类型:ADT Queue{数据对象:D={ai|ai属于Elemset,i=1,2….,n,n>=0}数据关系:R1={<ai-1,ai>|ai-1,ai属于D,i=1,2,…,n}约定ai为端为队列头,an为队列尾基本操作:InitQueue(&Q)操作结果:构造一个空队列QDestryoQueue(&Q)初始条件:队列Q已存在。

操作结果:队列Q被销毁,不再存在。

EnQueue(&Q,e)初始条件:队列Q已经存在操作结果:插入元素e为Q的新的队尾元素DeQueue(&Q,&E)初始条件:Q为非空队列操作结果:删除Q的队尾元素,并用e返回其值QueueEmpty(Q)初始条件:队列已经存在操作结果:若队列为空,则返回TRUE,否则返回FLASE}ADT Queue3、本程序包含四个模块:1)主程序模块void main (){手动构造一个图;进行深度优先遍历图;进行广度优先遍历图;};2)手动构造一个图-自己输入图的顶点和边生成一个图;3)进行深度优先遍历图-打出遍历的结点序列和边集;4)进行广度优先遍历图-打出遍历的结点序列和边集;第三章、详细设计1、顶点,边和图类型#define MAX_INFO 10 /* 相关信息字符串的最大长度+1 */#define MAX_VERTEX_NUM 20 /* 图中顶点数的最大值*/int visited[MAX_VERTEX_NUM]; /*全局变量,访问标志数组 */typedef char InfoType; /*相关信息类型*/typedef char VertexType; /* 字符类型 */typedef enum{unvisited,visited}VisitIf;typedef struct EBox /*边结点类型*/{int mark; /*访问标记 */int ivex,jvex; /*该边依附的两个顶点位置*/struct EBox *ilink,*jlink; /*分别指向依附这两个顶点的下一条边 */}EBox;typedef struct VexBox /*顶点结点类型*/{char data[MAX_LEN];EBox *fistedge; /*指向第一条依附该顶点的边*/}VexBox;typedef struct{VexBox list[MAX_VERTEX_NUM];int vexnum,edgenum; /*无向图当前顶点数和边数 */}AMLGraph;图的基本操作如下:int LocateVex(AMLGraph G,VertexType u);//查G和u有相同特征的顶点,若存在则返回该顶点在无向图中位置;否则返回-1。

VertexType& GetVex(AMLGraph G,int v);//以v返回邻接多重表中序号为i的顶点。

int FirstAdjVex(AMLGraph G,VertexType v);//返回v的第一个邻接顶点的序号。

若顶点在G中没有邻接顶点,则返回-1。

int NextAdjVex(AMLGraph G,VertexType v,VertexType w);//返回v的(相对于w的)下一个邻接顶点的序号若w是v的最后一个邻接点,则返回-1。

void CreateGraph(AMLGraph &G);//采用邻接多重表存储结构,构造无向图G。

Status DeleteArc(AMLGraph &G,VertexType v,VertexType w);//在G中删除边<v,w>。

Status DeleteVex(AMLGraph &G,VertexType v);//在G中删除顶点v及其相关的边。

void DestroyGraph(AMLGraph &G);//销毁一个图void Display(AMLGraph G);//输出无向图的邻接多重表G。

void DFSTraverse(AMLGraph G,VertexType start,int(*visit)(VertexType));//从start顶点起,(利用栈非递归)深度优先遍历图G。

void BFSTraverse(AMLGraph G,VertexType start,int(*Visit)(VertexType));//从start顶点起,广度优先遍历图G。

void MarkUnvizited(AMLGraph G);//置边的访问标记为未被访问。

其中部分操作的算法如下:void CreateGraph(AMLGraph *p) /*创建无向图 */ {int i,j,k;EBox *q;printf("\n\t\t\t请输入图的结点个数和边的个数:");/*输入图的结点数和边数*/scanf("%d,%d",&p->vexnum,&p->edgenum);for(i=1;i<=p->vexnum;i++){ printf("\n\t\t\t请输入结点%d的名称:",i);/*输入顶点数据信息*/scanf("%s",p->list[i].data);p->list[i].fistedge=NULL; /*初始化指针*/ }for(k=0;k<p->edgenum;k++) /*输入各边并构造多重链表*/ { printf("\n\t\t\t请输入互相有关联的两个结点:");scanf("%d,%d",&i,&j);q=(EBox *)malloc(sizeof(EBox));q->mark=0; /*对边结点赋值*/q->ivex=i;q->ilink=p->list[i].fistedge;q->jvex=j;q->jlink=p->list[j].fistedge;p->list[i].fistedge=p->list[j].fistedge=q; /*完成边在链头的插入*/}printf("\n");}void DFS(AMLGraph *p, int v){ /*对第v个顶点的深度优先遍历 */int w;EBox *q;visited[v]=1; /*标记已访问结点 */printf("%s ",p->list[v].data);for(q=p->list[v].fistedge;q!=NULL;){if(q->ivex==v){w=q->jvex; q=q->jlink;}else{w=q->ivex; q=q->ilink;}if(!visited[w]) DFS(p,w); /*对尚未访问的点调用DFS*/}}void DFSTraverse(AMLGraph *p,int n){ /*深度优先遍历 */int v;printf("\n\t\t\t");for(v=1;v<=p->vexnum;v++)visited[v]=0; *访问标志数组初始化*/ DFS(p,n); /*对起始顶点调用DFS*/ for(v=1;v<=p->vexnum;v++)if(!visited[v]) DFS(p,v); /*对尚未访问的顶点调用DFS*/printf("\n");}2、队列类型typedef int QelemType;typedef struct QNode{QElemType data;struct QNode *next;}QNode,*QueuePtr;typedef struct{QueuePtr front;QueuePtr rear; /* 队头、队尾指针 */}LinkQueue;队列的基本操作如下:Status InitQueue(LinkQueue &Q);//构造一个空队列Q。

相关文档
最新文档