中考数学一轮复习教案: (整式方程)
中考数学专题复习《整式方程(组)的应用》经典题型讲解

中考数学专题复习《整式方程(组)的应用》经典题型讲解类型之一一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t,还剩下8 t未装;若每辆车装4.5 t,恰好装完.这个车队有多少辆车?解:设这个车队有x辆车,依题意,得4x+8=4.5x,解得x=16.答:这个车队有16辆车.【思想方法】利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是(C) A.25台B.50台C.75台D.100台【解析】设今年购置计算机的数量是x台,去年购置计算机的数量是(100-x)台,根据题意可得x=3(100-x),解得x=75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎪⎨⎪⎧4x +3y =2 000,x +2y =1 000,解得⎩⎪⎨⎪⎧x =200,y =400.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8 cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎪⎨⎪⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎪⎨⎪⎧2x +4y =560,4x +4y =800,解得⎩⎪⎨⎪⎧x =120,y =80.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min).∵5<458,∴该教学楼建造的这4个门不符合安全规定.【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值; (2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎪⎨⎪⎧8p +8q =12,10p +12q =16,解得⎩⎨⎧p =1,q =12;(2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝ ⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3. 答:此批次蛋糕属第3档次产品.⎝⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品. (2)设该烘焙店生产的是第x 档次的产品,根据题意,得[10+2(x -1)][76-4(x -1)]=1 080,解得x 1=5,x 2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B 卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg ,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】(1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.。
初中数学复习整式方程教案

第7课整式方程〖知识点〗等式及基本性质、方程、方程的解、解方程、一元一次方程、一元二次方程、简单的高次方程〖大纲要求〗1.理解方程和一元一次方程、一元二次方程概念;2.理解等式的基本性质,能利用等式的基本性质进行方程的变形,掌握解一元一次方程的一般步骤,能熟练地解一元一次方程;3.会推导一元二次方程的求根公式,理解公式法与用直接开平方法、配方法解一元二次方程的关系,会选用适当的方法熟练地解一元二次方程;4.了解高次方程的概念,会用因式分解法或换元法解可化为一元一次方程和一元二次方程的简单的高次方程;5.体验“未知”与“已知”的对立统一关系。
内容分析:1.方程的有关概念含有未知数的等式叫做方程.使方程左右两边的值相等的未知数的值叫做方程的解(只含有—个未知数的方程的解,也叫做根).2.一次方程(组)的解法和应用只含有一个未知数,并且未知数的次数是1,系数不为零的方程,叫做一元一次方程.解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化成1.3.一元二次方程的解法(!)直接开平方法形如(mx+n)2=r(r≥o)的方程,两边开平方,即可转化为两个一元一次方程来解,这种方法叫做直接开平方法.(2)把一元二次方程通过配方化成(mx+n)2=r(r≥o)的形式,再用直接开平方法解,这种方法叫做配方法.(3)公式法通过配方法可以求得一元二次方程ax2+bx+c=0(a≠0)的求根公式:a acbbx24 2-±-=用求根公式解一元二次方程的方法叫做公式法.(4)因式分解法如果一元二次方程ax2+bx+c=0(a≠0)的左边可以分解为两个一次因式的积,那么根据两个因式的积等于O,这两个因式至少有一个为O,原方程可转化为两个一元一次方程来解,这种方法叫做因式分解法.〖考查重点与常见题型〗考查一元一次方程、一元二次方程及高次方程的解法,有关习题常出现在填空题和选择题中。
考查题型1.方程x2 = x +1的根是()(A)x = x+1 ( B) x = 1± 52(C) x = ±x+1 (D) x =-1± 522.方程 2 x2 + x = 0 的解为()(A) x1 = 0 x2=12(B) x1= 0 x2= - 2 (C) x= -12(D) x1= 0 x2= -123. p x2 – 3x + p2 – p= 0 是关于x的一元二次方程,则()(A) p=1 (B) p>0 (C)p≠0 (D) p为任何实数4.下列方程中,解为x = 2的是()(A)3x = x+3 (B)- x + 3 = 0 (C) 2 x = 6 (D) 5 x –2 = 8 5.关于x的方程x2- 3 m x + m2–m = 0 的一个根为-1,那么m的值是()6.已知2 x – 3和1 + 4x 互为相反数,则x = 。
中考一轮复习教案:一元一次方程与二元一次方程组

一元一次方程与二元一次方程组辅导教案1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质.2.掌握一元一次方程的标准形式,熟练掌握一元一次方程和二元一次方程组的解法.3.会列方程(组)解决实际问题.3.我州某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲,乙两种树苗成活率分别是90%和95%.(1)若购买这种树苗共用去28000元,则甲、乙两种树苗各购买多少株?(2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.4.海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?五、牛刀小试1、若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣32、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x3、某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚(2)甲的套餐费用为199元,其中含600MB 的月流量;丙的套餐费用为244.2元,其中包含1GB 的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m 的值.巩固练习1.方程x +5=4的解是( )A .B .C .D . 2.方程3x+2(1-x)=4的解是( )A.x=52B.x=65C.x=2D.x=13.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .(9﹣7)x =1B .(9+7)x =1C .11()179x -= D .11()179x += 4.若单项式22a bx y+与413a b x y --是同类项,则a ,b 的值分别为( ) A .a=3,b=1 B .a=﹣3,b=1 C .a=3,b=﹣1 D .a=﹣3,b=﹣1 5.方程2x 13-=的解是( ) A .-1 B .C .1D .2 6.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组33-11-12强化提升1.某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为元.2.已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为.3.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为.4.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多元.5.方程组的解是.6.已知:若代数式x﹣5与2x﹣1的值相等,则x的值是.7.某城市现有42万人口,计划一年后城镇人口增加0.8%,农人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数与农村人口数.若设城镇现有人口为x万,农村现有人口为y万,则所列方程组为。
数学第二十一章整式方程复习课教案—

20XX年K8(下)数学第二十一章整式方程复习课教案注:很多题目都是两种方法相结合的。
一般先因式分解,再用代入法。
二.基础练习1、已知方程组与有相同的解,则= ,= 。
2、解方程:023961222=+--+--x x x x x 。
3、解方程0212122=+⎪⎭⎫ ⎝⎛+-+x x x x ,设x x y 1+=,那么原方程变形为( ) (A )032=-y y (B )0232=+-y y (C )0432=--y y (D )0432=+-y y4.如果=2,则=____________.5.若x +=3,则x 2+=____________.6.当x =____________时,分式的值为零.7.=成立的条件是8.已知分式的值为零,则 。
9、解方程⎩⎨⎧=+--=-01101222x y x y x 三.巩固练习1、当k=_____时,方程12+x +13-x =12-x k 无解 2、解方程⎩⎨⎧==+67xy y x ;3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。
则a 的值为( )(A ) 1 (B)-l (C) 1 或-1 (D)12 4、方程x +2-x x =x--22的解为 ( ) (A ) 2; (B ) -1; (C ) -1或2; (D ) 1或2.5.若a 的值使得x 2+4x+a=(x+2)2-1成立,则a 的值为 ( )A.5B.4C.3D.26.(20XX 年·吉林省)已知m 是方程x 2-x-2=0的一个根,则代数式m 2-m 的值等于 。
7. 若实数x 满足条件:(x 2+4x-5)2+|x 2-x-30|=0,求 的值四.课堂小结1.解一元二次方程常见的思维误区是忽略几个关键:用因式分解法解方程的关键是先使方程的右边为0;用公式法解方程的关键是先把一元二次方程化为一般形式,正确写出a 、b 、c 的值;用直接开平方法解方程的关键是先把方程化为(mx-n)2=h 的形式;用配方法解方程的关键是先把二次项系数化为1,再把方程的两边都加上一次项系数一半的平方.2.一元二次方程解法的顺序:先特殊,后一般;即先考虑能否用直接开平方法和因式分解法,否则再用公式法,配方法一般不用.七.课后作业1.已知:,求的值;2、下列各式从左边到右边的变形中,是因式分解的是( )A .223()33ab a b a b ab +=+B .2222421x x x x ⎛⎫+=+ ⎪⎝⎭C .224(2)(2)a b a b a b -=+-D .23633(2)x xy x x x y -+=-3、分解因式⑴33x y xy - (2)249a -(3)22()()x m x n +-+ (4)24129x x ++22)1()2(--+x x。
九年级数学 整式方程复习教案

初三数学复习教案(整式方程)一、知识梳理:1、 整式方程和分式方程的区别;一元一次方程和一元二次方程的区别。
2、 解一元一次方程的步骤。
3、 一元二次方程的解法有哪些?4、 一元二次方程根的判别式作用。
二、典型例题:例1、解方程81314112+--=-+x x例2、某条船从A 地顺流而下至B 地,然后逆流而上到C 地,共用4小时,已知水流速度为2.5千米/小时,船在静水中的速度为7.5千米/小时,A 、C 两地之间相距离10千米,求A 、B 两地间的距离。
例3、若关于x 的方程kx 2-6x+9=0有两个不相等的实数根,求k 的取值范围。
例4、m 取何值时,关于x 的方程mx 2+2(m -1)x+ m -3=0有两个实数根?例5、已知a,b,c 是三角形的三边,判别方程b 2x 2+(b 2+c 2-a 2)x+c 2=0根的情况。
例6、正数m 为何值时,方程组⎩⎨⎧+-==+2222mx y y x 只有一组实数解?求出这个方程组的实数解。
三、练习题:1、两年期定期储蓄的年利率为2.25%,按国家规定,所得利息要缴纳20%的利息税.王大爷于2002年6月存入银行一笔钱,两年到期时,共得税后利息540元,则王大爷2002年6月存款额为( )元.(A)20000 (B)18000 (C)15000 (D)128002、解下列方程:(1)5134)!(23-=-+x x x (2))1(2)1(2121-=⎥⎦⎤⎢⎣⎡--x x x 3、已知关于x 方程3x+2m=2x+1和方程41347+=-x m 的解相同,求代数式(2m+1)2004的值。
4、是否存在整数k,使关于x 的方程(k+1)x -1=-2x+3在整数范围内有解?为什么?5、解下列方程:(1)3x 2-4x -2=0 (2)x 2-22x+2=o(3)3(2x+1)2-5(2x+1)+2=06、如果关于x 的方程x 2+b 2-16=0和x 2-3b+12=0有相同的实数根,求b 的7、若一元二次方程022=--m x x 无实数根,则一次函数1)1(-++=m x m y 的图象不经过第 象限( )A .一B .二C .三D .四 8、函数c bx ax y ++=2的图象如图5所示,则a 、b 、ac b 42-的取值范围是( )A .04002<->>ac b b aB .04002>-<>ac b b a9、将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元的利润,售价应定为多少,这时应进货多少个?10、甲、乙二人合干某项工作,合干4天后,乙另有任务调出,甲单独干2天才能完成,已知单独完成这项工作,甲比乙少用3天,问甲、乙单独干各用几天完成?。
2025年九年级中考数学一轮复习考点突破课件:第2讲代数式与整式

变式1 (2024广安)下列对代数式-3x的意义表述正确的是(
A.-3与x的和
B.-3与x的差
C.-3与x的积
D.-3与x的商
C )
变式2 甲、乙两个商贩去同一批发商场购买了两次白糖,两次白糖的价
格有变化,甲每次购买200 kg的白糖,乙每次购买1 000元钱的白糖,若两
次购买的白糖的价格分别为m元/kg和n元/kg(m,n均为正整数,且m≠n),
(2)同类项的判定与系数无关,与字母的排列顺序无关.
2 m-1
n 3
变式 3 若单项式 2x y 与- x y 是同类项,则 m+n 的值是
命题点3
6
.
幂的运算(易错点)
例4 (2024德阳)下列计算正确的是(Βιβλιοθήκη B )A.a2·a3=a6
B.-(a-b)=-a+b
C.a(a+1)=a2+1
D.(a+b)2=a2+b2
上解方程求m,n的值可得到结论.
5 3y-4
4x+1 2
例 3 如果单项式 3a b 与- a b 可以合并为一项,那么 x 与 y 的值应分
别为 1和2
.
思路点拨 由单项式可以合并得两个单项式为同类项,根据同类项的定
义可知相同字母的指数相等,从而列出方程组求解.
归律总结
(1)同类项中,相同字母的指数相等;
球数为m,下列代数式表示正方体棱上小球总数,则表达错误的是( A )
A.12(m-1)
B.4m+8(m-2)
C.12(m-2)+8
D.12m-16
思路点拨 正方体有12条棱,每条棱上的小球数为m,则有12m个小球,而
中考数学专题复习课件:整式方程

的值.
解:根据题意得 x2+4x-5=0,且x2-x-30=0 ∴x=-5或x=1,且x=6或x=-5 ∴x=-5
( x 2 ) 2 ( x 1 ) 2 ( 5 2 ) 2 ( 5 1 ) 2 3
【例5】(2008年· 绍兴)若一个三角形的三边长均满 足x2-6x+8=0,则此三角形周长为 6,10,12 .
课时训练
6.(2008年· 新疆)用配方法解方程x2+6x-7=0. 解:x2+6x-7=0 x2+6x+9=7+9 (x+3)2=16 x+3=±4 x =1,x =-7 1 2
课时训练
1. (2008年·河南省)已知一元二次方程x2-2x=0,它的 解是 ( D ) A.0 B.2 C.0,-2 D.0,2 2. (2008年· 厦门市)一元二次方程x2+x-1=0的根是.
1 5 x 2Байду номын сангаас
3. (2008年·陕西省)方程(x+1)2=9的解是 ( C ) A.x=2 B.x=-4 C.x1=2,x2=-4 D.x1=-2,x2=4
2a
④因式分解法.
课前热身
1. (2008年·黑龙江)如果代数式4y2-2y+5的值为7, 那么代数式2y2-y+1的值等于 ( A ) A.2 B.3 C.-2 D.4 2. (2008年·北京海淀区)若a的值使得x2+4x+a=(x+2)2-1 成立,则a的值为 ( C ) A.5 B.4 C.3 D.2 3.(2008年· 吉林省)已知m是方程x2-x-2=0的一个根,则 2 代数式m2-m的值等于 。
初中数学整式教案模板

初中数学整式教案模板一、课题:(填写课题名称,如“初中数学整式”)二、教学目标:1. 知识与技能:通过本节课的学习,使学生掌握整式的基本概念、性质和运算方法,提高学生在实际问题中运用整式解决问题的能力。
2. 过程与方法:通过自主学习、合作交流的过程,培养学生分析问题、解决问题的能力,提高学生的逻辑思维和归纳总结能力。
3. 情感态度与价值观:通过本节课的学习,激发学生对数学的兴趣,培养学生积极的学习态度,将数学知识应用到实际生活中,增强学生的数学应用意识。
三、教学重难点:1. 教学重点:整式的概念、性质和运算方法。
2. 教学难点:整式的运算规律和实际问题中的运用。
四、教学方法:1. 讨论法:通过小组讨论,促进学生之间的交流与合作,提高学生的分析问题和解决问题的能力。
2. 情境教学法:结合实际问题,引导学生运用整式进行解决,提高学生的数学应用能力。
3. 问答法:教师提问,学生回答,引导学生主动思考,提高学生的逻辑思维能力。
五、教学过程:1. 导入:通过复习已学知识,如代数式、多项式等,引导学生自然过渡到整式学习。
2. 新授课程:a. 整式的概念:介绍整式的定义,引导学生理解整式的基本组成和特征。
b. 整式的性质:讲解整式的基本性质,如加减乘除运算规则,引导学生进行实际操作。
c. 整式的运算方法:介绍整式的运算方法,如合并同类项、分解因式等,引导学生进行练习。
3. 巩固练习:设计一些具有代表性的练习题,让学生独立完成,检验学生对整式的理解和掌握程度。
4. 应用拓展:结合实际问题,让学生运用整式进行解决,提高学生的数学应用能力。
5. 总结:对本节课的主要内容进行归纳总结,强调重点知识,提醒学生注意易错点。
六、课后作业:布置一些有关整式的练习题,让学生巩固所学知识,提高学生的独立解题能力。
七、教学反思:在课后对教学效果进行反思,分析学生的掌握情况,针对存在的问题调整教学策略,以提高教学效果。
通过以上教案模板,教师可以根据具体的教学内容和学生的实际情况进行调整和完善,从而实现对初中数学整式的有效教学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学复习教案(整式方程)
一、知识梳理:
1、 整式方程和分式方程的区别;一元一次方程和一元二次方程的区别。
2、 解一元一次方程的步骤。
3、 一元二次方程的解法有哪些?
4、 一元二次方程根的判别式作用。
二、典型例题:
例1、解方程81
3141
12+--=-+x x
例2、某条船从A 地顺流而下至B 地,然后逆流而上到C 地,共用4小时,已知水流速度为2.5千米/小时,船在静水中的速度为7.5千米/小时,A 、C 两地之间相距离10千米,求A 、B 两地间的距离。
例3、若关于x 的方程kx 2-6x+9=0有两个不相等的实数根,求k 的取值范围。
例4、m 取何值时,关于x 的方程mx 2+2(m -1)x+ m -3=0有两个实数根? 例5、已知a,b,c 是三角形的三边,判别方程b 2x 2+(b 2+c 2-a 2)x+c 2=0根的情况。
例6、正数m 为何值时,方程组⎩
⎨⎧+-==+2222mx y y x 只有一组实数解?求出这个方程组的实数解。
三、练习题:
1、两年期定期储蓄的年利率为2.25%,按国家规定,所得利息要缴纳20%的利息税.王大爷于2002年6月存入银行一笔钱,两年到期时,共得税后利息540元,则王大爷2002年6月存款额为( )元.
(A)20000 (B)18000 (C)15000 (D)12800
2、解下列方程:
(1)5134)!(23-=-+x x x (2))1(2)1(2121-=⎥⎦
⎤⎢⎣⎡--x x x 3、已知关于x 方程3x+2m=2x+1和方程4
1347+=-x m 的解相同,求代数式(2m+1)2004的值。
4、是否存在整数k,使关于x 的方程(k+1)x -1=-2x+3在整数范围内有解?为什么?
5、解下列方程:
(1)3x 2-4x -2=0 (2)x 2-22x+2=o
(3)3(2x+1)2-5(2x+1)+2=0
6、如果关于x 的方程x 2+b 2-16=0和x 2-3b+12=0有相同的实数根,求b 的
7、若一元二次方程022=--m x x 无实数根,则一次函数1
)1(-++=m x m y 的图象不经过第 象限( )
A .一
B .二
C .三
D .四 8、函数c bx ax y ++=2的图象如图5所示,则a 、b 、ac b 42-的取值范围是
( )
A .04002<->>ac b b a
B .04002>-<>ac b b a
9、将进货单价为40元的商品按50元出售时,能卖500个,已知该
商品每涨价1元时,其销售量就减少10个,为了赚8000元的利润,售价应定为多少,这时应进货多少个?
10、甲、乙二人合干某项工作,合干4天后,乙另有任务调出,甲单独干2天才能完成,已知单独完成这项工作,甲比乙少用3天,问甲、乙单独干各用几天完成?。