最新中考数学总复习 一元一次方程教案 新人教版新版
《一元一次方程》的优秀教案(9篇)精选全文完整版

可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
一元一次方程教案人教版

一元一次方程教案人教版教案标题:一元一次方程教案(人教版)教案目标:1. 学生能够理解一元一次方程的概念和基本性质。
2. 学生能够解决一元一次方程的实际问题。
3. 学生能够应用一元一次方程解决简单的应用题。
教学准备:1. 教材:人教版数学教材(适用于所教年级)。
2. 教具:黑板、白板、彩色粉笔/白板笔、教学PPT或投影仪、学生练习册。
教学步骤:Step 1: 引入(10分钟)1. 利用教学PPT或黑板上的例子,引导学生回顾方程的概念。
2. 提问学生:你们在之前的学习中是否遇到过方程?方程有哪些特点?3. 引入一元一次方程的概念,并解释其基本形式和含义。
Step 2: 理解一元一次方程(15分钟)1. 通过教材中的例题,解释一元一次方程的定义和基本性质。
2. 引导学生理解方程中的未知数、系数、常数项等概念。
3. 通过实例演示,教授如何将一元一次方程转化为标准形式。
Step 3: 解一元一次方程(20分钟)1. 教授解一元一次方程的基本方法,如逆运算法、等式性质法等。
2. 通过教材中的例题,引导学生运用所学方法解决一元一次方程。
3. 给予学生足够的练习时间,让他们巩固所学的解方程方法。
Step 4: 应用一元一次方程(15分钟)1. 引导学生分析实际问题,并将其转化为一元一次方程。
2. 通过教材中的应用题,演示如何应用一元一次方程解决实际问题。
3. 让学生尝试解决一些简单的应用题,并与同伴进行讨论。
Step 5: 总结与作业布置(10分钟)1. 总结一元一次方程的基本概念、解法和应用。
2. 布置相关的作业,巩固学生的学习成果。
3. 鼓励学生提出问题和疑惑,并承诺在下节课解答。
教学辅助:1. 利用教学PPT或投影仪展示相关例题和解题步骤。
2. 在黑板或白板上进行示范和解题演示。
3. 发放学生练习册,让学生在课后进行巩固练习。
教学评估:1. 在课堂上通过提问、讨论和解题演示等方式,检查学生对一元一次方程的理解和解题能力。
2024一元一次方程教案人教版数学七年级上册教案

2024一元一次方程教案人教版数学七年级上册教案一、教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够运用一元一次方程解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
二、教学重难点重点:一元一次方程的解法。
难点:实际问题中的一元一次方程的应用。
三、教学准备1.教学课件2.实物投影仪3.小组讨论材料四、教学过程(一)导入新课1.情景引入:同学们,你们在生活中有没有遇到过这样的问题,比如:一个物品的价格是多少?一个物品的重量是多少?这些问题都可以通过一元一次方程来解决。
2.提问:同学们,你们知道什么是一元一次方程吗?(二)探究新知1.讲解一元一次方程的定义(1)引导学生观察一元一次方程的一般形式:ax+b=0(a、b是常数,a≠0)。
(2)讲解一元一次方程的解法:将方程两边同时加上或减去一个常数,使得方程的左边变为未知数的系数,右边变为常数。
2.讲解一元一次方程的解法(1)教师示范:解方程2x6=0。
(2)引导学生模仿:解方程3x+4=7。
(3)学生独立完成:解方程5x9=2。
3.小组讨论:如何将实际问题转化为方程?(1)引导学生观察实际问题,找出未知数和等量关系。
(2)小组讨论,给出解决方案。
4.练习:解下列方程(1)2x5=3(2)3x+4=11(3)4x7=5(4)5x+2=0(2)教师点评,强调注意事项。
(三)巩固提高1.小组讨论:如何运用一元一次方程解决实际问题?2.学生展示:展示解题过程,讲解思路。
3.练习:解决实际问题(1)一个物品的价格是50元,如果降价x元后,售价为45元,求x的值。
(2)一个水果摊上的苹果每斤5元,小明买了3斤,花费了y元,求y的值。
(3)一个长方形的长是宽的2倍,如果宽为x厘米,求长方形的长。
(四)课堂小结五、课后作业1.解下列方程(1)3x4=7(2)4x+5=9(3)5x3=2(4)2x+7=02.解决实际问题(1)一辆汽车行驶了x小时,平均速度为60千米/小时,求行驶的距离。
一元一次方程教案人教版

一元一次方程教案最新人教版一、教学目标1. 让学生理解一元一次方程的概念,掌握一元一次方程的解法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 一元一次方程的定义及特点2. 一元一次方程的解法3. 应用一元一次方程解决实际问题三、教学重点与难点1. 重点:一元一次方程的概念、解法及应用。
2. 难点:一元一次方程在实际问题中的运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究一元一次方程的定义、解法。
2. 利用实例分析,让学生学会将实际问题转化为一元一次方程。
3. 运用小组合作学习,培养学生团队合作精神。
五、教学过程1. 导入新课:通过生活实例引入一元一次方程,激发学生的学习兴趣。
2. 自主学习:让学生自主探究一元一次方程的定义、特点及解法。
3. 课堂讲解:讲解一元一次方程的概念、解法,并通过例题演示解题过程。
4. 应用拓展:让学生尝试解决实际问题,运用一元一次方程进行分析。
5. 小组讨论:分组讨论一元一次方程在实际问题中的应用,分享解题心得。
7. 课后作业:布置适量作业,巩固所学知识。
六、教学评估1. 课堂讲解过程中,观察学生对一元一次方程概念和解法的掌握情况。
2. 通过课后作业和课堂练习,评估学生对一元一次方程的实际应用能力。
3. 收集学生的小组讨论材料,了解学生在解决实际问题时的思维过程。
七、教学反思1. 反思教学过程中是否存在难以理解的地方,如有,考虑如何改进讲解方式。
2. 反思教学内容是否符合学生实际需求,如有,考虑如何调整教学内容。
3. 反思教学方法是否有效,如有,考虑如何改进教学方法。
八、教学拓展1. 引导学生思考:一元一次方程在实际生活中有哪些应用场景?2. 介绍一元一次方程的相关历史背景,激发学生对数学的兴趣。
3. 引导学生进行一元一次方程的变形练习,提高学生的数学思维能力。
九、教学资源1. 教材:最新人教版数学教材。
中考数学 一元一次方程和应用复习教案 新人教版

一元一次方程的应用
教学分析
重点:寻找和、差、倍、分问题的量与量之间的相等关系,列出一元一次方程。
难点:寻找和、差、倍、分问题的相等关系。
突破:从已知量和未知量之间的关系中找到相等关系。
教学过程
一、复习
1、什么是等式?什么叫方程?一元一次方程的标准形式是什么?
2、什么是代数式?
3、列代数式:
(1)x的0.15,(2)比x多0.15,(3)比x的2倍小1。
二、新授
1、导课
在这一单元,我们将进一步学习设未知数列出方程来解应用题,我们将逐渐体会到,用代数方法解应用题,要比算术方法在列式上容易得多,而且可以解出用算术方法不易解出的或无法解出的实际问题。
例1(课本P212)
某面粉仓库存放的面粉运出15%后,还剩下42500千克,这个仓库原来有多少面粉?
分析:已知运出面粉为原来面粉的15%,剩余面粉42500千克,未知原来有面粉重量与运出面粉重量。
相等关系是:
原来有面粉重量运出面粉重量=剩余面粉重量
设原来有面粉x千克,则运出面粉重量为15%x千克,这样左右两边都列出了代数式,放入相等关系中,即可得出方程:
x-15%x=42500
完成求解过程,作出答案,强调4个注意点。
解:略
三、练习
P216习题:1,2。
四、小结
1、列方程解应用题应分析题中的数量关系,找出一个相等关系。
2、列方程解应用题比算术方法在列式上容易得多。
五、作业
1、P221 4.4A:1,2,3,4,5。
2、基础训练:同步练习1。
一元一次方程复习课教案

一元一次方程复习课教案第一章:一元一次方程的定义及解法一、教学目标1. 理解一元一次方程的定义及其基本形式;2. 掌握一元一次方程的解法及其应用。
二、教学内容1. 一元一次方程的定义:讨论方程中未知数的个数、次数和系数等概念;2. 一元一次方程的基本形式:ax + b = 0;3. 一元一次方程的解法:移项、合并同类项、系数化为1。
三、教学方法1. 采用讲解法,讲解一元一次方程的定义及解法;2. 利用例题,演示一元一次方程的解题步骤;四、教学步骤1. 引入新课,回顾一元一次方程的定义及解法;2. 讲解例题,让学生跟随老师一起解题,理解解题步骤;3. 布置练习题,让学生独立完成,巩固所学知识;五、课后作业1. 复习一元一次方程的定义及解法;2. 完成课后练习题,加深对一元一次方程解法的理解。
第二章:一元一次方程的解法与应用一、教学目标1. 掌握一元一次方程的解法,并能灵活运用;2. 了解一元一次方程在实际问题中的应用。
二、教学内容1. 一元一次方程的解法:加减法、乘除法、代入法等;2. 一元一次方程的实际应用:长度、面积、体积等问题。
三、教学方法1. 采用案例教学法,让学生通过实际问题学习一元一次方程的解法;2. 利用多媒体演示,直观展示一元一次方程在实际问题中的应用;3. 引导学生通过小组合作,探讨一元一次方程的解题策略。
四、教学步骤1. 讲解一元一次方程的解法,如加减法、乘除法、代入法等;2. 利用多媒体展示实际问题,引导学生运用一元一次方程解决问题;3. 布置练习题,让学生独立完成,巩固所学知识;4. 组织小组合作,让学生共同探讨一元一次方程的解题策略;五、课后作业1. 复习一元一次方程的解法;2. 完成课后练习题,加深对一元一次方程解法的理解;3. 思考实际生活中的一元一次方程问题,提高运用能力。
第三章:一元一次方程的检验与解的存在性一、教学目标1. 学会检验一元一次方程的解是否正确;2. 理解一元一次方程解的存在性。
一元一次方程教案(人教版)

一元一次方程教案(最新人教版)一、教学目标1. 让学生掌握一元一次方程的定义、解法和应用。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生合作学习、积极探究的精神。
二、教学内容1. 一元一次方程的定义:含有一个未知数,未知数的次数为1,系数不为0的方程。
2. 一元一次方程的解法:移项、合并同类项、系数化为1。
3. 一元一次方程的应用:解决实际问题。
三、教学重点与难点1. 重点:一元一次方程的定义、解法和应用。
2. 难点:一元一次方程的解法步骤和应用。
四、教学方法1. 采用问题驱动法,引导学生探究一元一次方程的解法。
2. 运用案例分析法,让学生学会将实际问题转化为一元一次方程。
3. 采用合作学习法,培养学生团队协作精神。
五、教学过程1. 导入:通过生活实例,引导学生认识一元一次方程。
2. 新课讲解:讲解一元一次方程的定义、解法和应用。
3. 案例分析:分析实际问题,引导学生学会将问题转化为方程。
4. 课堂练习:布置练习题,让学生巩固所学知识。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评价2. 评价内容:一元一次方程的定义、解法、应用以及解决实际问题的能力。
3. 评价标准:准确理解概念,熟练掌握解法,能够灵活应用到实际问题中。
七、教学资源1. 教材:最新人教版数学教材。
2. 课件:教学课件,包含图片、动画、例题等。
3. 练习题:课后练习题及拓展题。
4. 实际问题案例:生活中的相关问题案例。
八、教学进度安排1. 第1周:引入一元一次方程,讲解定义和简单解法。
2. 第2周:深入学习一元一次方程的解法,解题步骤,以及解的意义。
3. 第3周:应用一元一次方程解决实际问题,案例分析。
4. 第4周:练习题讲解,巩固知识,拓展应用。
九、教学拓展1. 对比二元一次方程:引导学生思考二元一次方程与一元一次方程的区别和联系。
2. 探索其他方程类型:引导学生了解并探究其他类型的方程,如二次方程等。
3. 数学历史:介绍一元一次方程在数学发展史上的地位和作用。
新人教版一元一次方程全章教案

新人教版一元一次方程全章教案第三章一元一次方程单元要点分析方程是将众多实际问题“教学化”的一个重要模型。
因此,本章从学生熟悉的实际问题开始,展开方程的研究,使学生认识到方程的出现源于解决问题的需要,体会研究方程的意义和作用。
本章内容主要分为以下三个部分:1.通过丰富实例,从算式到建立一元一次方程,展开方程是刻画现实生活的有效数学模型。
2.运用等式的基本性质解方程,归纳移项法则,运用分配律,归纳“合并”、“去括号”等法则,逐步展现求解方程的一般步骤,这些内容的研究始终从实际问题出发,使学生经历模型化的过程,激发学生的好奇心和主动研究的欲望。
3.运用方程解决丰富多彩的、贴近学生生活的实际问题,展现运用方程解决实际问题的一般过程。
为了使学生经历“建立方程模型”这一数学化的过程,理解研究方程的意义,培养学生的抽象概括等能力,课本内容的呈现都以求解决一个实际问题为切入点,让学生经历抽象、符号变化、应用等活动,在活动中培养学生解决问题的兴趣和能力,提高学生的思维水平和应用数学知识去解决实际问题的意识。
三维目标1.知识与技能根据具体问题中的数量关系,经历形成方程模型,解方程和运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型。
2.过程与方法1)了解一元一次方程及其相关概念,会解一元一次方程(数学系数)。
2)能以一元一次方程为工具解决一些简单的实际问题,包括列方程,求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力。
3.情感态度与价值观培养学生求实的态度。
培养学生获取信息,分析问题,处理问题的能力。
激发学生的好奇心和主动研究的欲望,体会数学的应用价值。
重、难点与关键1.重点:使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题。
2.难点:正确地列出一元一次方程的解决实际问题。
3.关键:1)熟练地解一元一次方程的关键在于正确地了解方程、方程解的意义和运用等式的两个性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—————————— 新学期 新成绩 新目标 新方向 ——————————
一元一次方程
知识结构
等式与方程 等式性质
⎩
⎨
⎧≠÷=÷==+=+=))0((,,c c b c a bc ac b a c
b c a b a 则若则若 方程 ⎪⎩
⎪⎨⎧解方程方程的解方程的定义
一次方程的解法:去分母、去括号、移项、合并同类项、系数化为1 目标要求
1. 了解等式和方程的相关概念,掌握等式
性质,会对方程的解进行检验.
2. 灵活运用等式性质和移项法则解一元一
次方程.
【典型例析】
例 1 (2000 湖北十堰)解方程
16
1
10312=+-+x x 时,去分母后正确的结果是( ).
A . 4x+1-10x+1=1
B .4x+2-10x -1 =1
C .4x+2―10x ―1=6
D .4x+2-10x+1=6
【特色】此题设计旨在考查学生对于解一元一次方程的去分母、去括号等步骤的理解.
【解答】去分母是根据等式性质,方程两边同乘以6.
去分母,得 6161103126⨯=⎪⎭
⎫
⎝⎛+-+⨯x x 2(2x+1)-(10x+1)=6.
去括号,得 4x+2―10x ―1=6. 选 C
【拓展】用去分母解方程时 , 根据等式性质,方程两边同乘最简公分母这一步不要省略. 例2(2001年 泰州) 解方程:(0.1x-0.2)/0.02-(x+1)/0.5=3
分析:利用解一元一次方程方法和步骤完成本题。
解:(0.1x-0.2)/0.02-(x+1)/0.5=3
去分母,得5x-10-2(x+1)=3,去括号得 5x-10-2x-2=3
移项,合并同类项,得3x=15 系数化为1,得x=5
例3 (2002年 宁夏) 某乡中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.6%,那么该学校现有女生和男生人数分别是( )
(A )200和300 (B)300和200 (C )320和180 (D )180和320
分析:可列一元一次方程或列二元一次方程组: 解法一:设该校有女生x 人,则男生有(500-x )人,
依题意有:x (1+3%)+(500-x )(1+4%)=500(1+3.6%)
1.03x+500×1.04-1.04x =500×1.036
-0.01x
=-2
x =
200
则500-x =500-200=300
因此女生有200人,男生有300人,∴选(A ) 解法二:设该校有女生x 人,男生有y 人 x+y=500 依题意有
x(1+3%)+y(1+4%)=500(1+3.6%) x=200 解之有
y=300
∴该校有女生200人,男生有300人,故选(A ) 课堂练习:
1、 若53-x 与x 21-互为相反数,求x 。
2、 若()6321
=---a x
a 是关于x 的一元
一次方程,求a
a 1
2
--的值。
3、 求方程1123=+y x 在自然数范围内的
解。
4、 ()43
121
1
1=--x 2+-=+a
b
x b x a ()b a ≠
5、(03海淀)某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?。