高分子材料成型加工的发展趋势
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一种由大量重复单元组成的聚合物材料,具有轻质、高强度、耐腐蚀等优点,广泛应用于塑料、橡胶、纤维等领域。
本文将从高分子材料的发展历程和未来发展趋势两个方面进行探讨。
一、发展历程1.1 早期发展阶段在20世纪初,高分子材料的概念开始逐渐形成,人们开始研究合成聚合物材料的方法,如合成橡胶。
1.2 工业化生产20世纪中叶,高分子材料进入了工业化生产阶段,塑料、橡胶等产品开始大规模应用于工业生产和生活中。
1.3 高分子材料的应用拓展近年来,高分子材料的应用领域不断拓展,如高性能聚合物材料、生物可降解材料等新型材料的研究逐渐成为热点。
二、未来发展趋势2.1 绿色环保未来高分子材料的发展将更加注重环保和可持续性,研究生物可降解材料、再生塑料等绿色材料将成为发展趋势。
2.2 高性能材料随着科技的不断进步,高分子材料的性能将不断提升,如高强度、高耐磨、高耐高温等性能的材料将得到更广泛的应用。
2.3 智能材料未来高分子材料将向智能化方向发展,研究开发具有自修复、自感应等功能的智能材料,应用于航空航天、医疗器械等领域。
三、材料设计与制备技术3.1 分子设计未来高分子材料的研究将更加注重分子设计,通过精确设计分子结构,实现材料性能的精准调控。
3.2 先进制备技术随着纳米技术、3D打印技术等的发展,高分子材料的制备技术将更加先进,实现复杂结构的制备和加工。
3.3 多功能材料未来高分子材料将向多功能化发展,研究开发具有多种功能的材料,如导电、光学、传感等功能集于一体的材料。
四、产业应用4.1 化工行业高分子材料在化工行业中的应用将继续扩大,如塑料、橡胶、纤维等产品将得到更广泛的应用。
4.2 医疗领域高分子材料在医疗器械、生物医药等领域的应用将不断增加,如生物可降解材料、人工器官材料等将成为研究热点。
4.3 新兴产业随着新兴产业的发展,高分子材料在新能源、新材料、智能制造等领域的应用将不断拓展,为产业升级注入新动力。
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类重要的工程材料,具有广泛的应用领域,如塑料、橡胶、纤维等。
本文将对高分子材料的发展历程以及未来发展趋势进行详细的探讨。
二、高分子材料的发展历程1. 早期发展阶段高分子材料的早期发展可以追溯到19世纪末的天然高分子材料,如橡胶和纤维素。
这些材料具有一定的弹性和韧性,但存在着一些缺陷,如耐候性差、易老化等。
2. 合成高分子材料的突破20世纪初,合成高分子材料的研究取得了重大突破。
1907年,化学家蔡斯勒发现了合成橡胶的方法,这标志着合成高分子材料的时代的开始。
随后,聚合物的合成方法不断改进,如聚乙烯、聚丙烯等材料的合成,为高分子材料的广泛应用奠定了基础。
3. 高分子材料的工业化应用20世纪中叶,高分子材料开始在工业领域得到广泛应用。
塑料制品、橡胶制品、纤维制品等在日常生活中得到了广泛应用。
高分子材料的特点,如轻质、耐腐蚀、绝缘性能好等,使其成为替代传统材料的理想选择。
4. 高分子材料的改性与功能化近年来,高分子材料的改性与功能化成为研究的热点。
通过添加改性剂、填充剂等,可以改善高分子材料的性能,如增加强度、提高耐热性等。
同时,高分子材料的功能化也受到了广泛关注,如具有自愈合能力的材料、具有导电性能的材料等。
三、高分子材料的未来发展趋势1. 绿色环保随着环保意识的提高,高分子材料的绿色环保性将成为未来发展的重要趋势。
研究人员将致力于开发可降解高分子材料,以减少对环境的影响。
同时,通过改进合成方法和降低能源消耗,减少对环境的污染。
2. 高性能未来高分子材料的发展将注重提高其性能。
研究人员将致力于开发具有更高强度、更好耐热性、更低摩擦系数等性能的高分子材料,以满足不同领域的需求。
3. 智能化高分子材料的智能化将成为未来的发展方向。
研究人员将致力于开发具有自愈合能力、自感应能力、自适应能力等智能功能的高分子材料。
这些材料可以在受到外界刺激时实现自我修复或自我调节,具有广泛的应用前景。
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一种由大量重复单元组成的大分子化合物,具有独特的物理和化学性质,广泛应用于工业、医疗、电子等领域。
本文将探讨高分子材料的发展历程以及未来发展趋势。
一、发展历程1.1 早期发展在20世纪初,高分子材料的研究开始兴起,最早的合成高分子材料是由合成橡胶和塑料开始的。
这些材料在汽车、电器等领域得到广泛应用。
1.2 高分子化学的发展随着高分子化学的发展,人们开始研究高分子材料的结构与性质之间的关系,提出了聚合物的合成方法和理论基础。
这一时期标志着高分子材料的科学化和工程化发展。
1.3 高分子材料的应用拓展随着科学技术的不断进步,高分子材料的应用范围不断拓展,包括纳米材料、生物材料、功能性高分子等,为各行业带来了新的发展机遇。
二、未来发展趋势2.1 绿色环保未来高分子材料的发展趋势将更加注重环保和可持续性发展。
研究人员将致力于开发可降解高分子材料,减少对环境的污染。
2.2 高性能功能材料随着科技的不断进步,人们对高分子材料的性能要求也越来越高。
未来的高分子材料将更加注重高性能、多功能的特性,满足不同领域的需求。
2.3 智能化发展未来高分子材料将更加智能化,具有自修复、自感知等功能。
这将为人们的生活带来更多便利和安全保障。
三、应用领域拓展3.1 医疗领域高分子材料在医疗领域有着广泛的应用,包括医用高分子材料、药物传递系统等。
未来将继续探索高分子材料在医疗领域的应用潜力。
3.2 电子领域高分子材料在电子领域有着独特的应用优势,例如柔性显示器、电池等。
未来高分子材料将在电子领域发挥更大的作用。
3.3 新能源领域高分子材料在新能源领域有着广阔的应用前景,例如太阳能电池、燃料电池等。
未来将继续探索高分子材料在新能源领域的应用可能性。
四、技术创新驱动4.1 材料设计与合成未来高分子材料的发展将更加注重材料设计与合成技术的创新,以提高材料的性能和功能。
4.2 先进加工技术随着先进加工技术的不断发展,高分子材料的加工工艺将更加精密和高效,为材料的应用提供更多可能性。
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类重要的工程材料,具有广泛的应用领域和巨大的市场潜力。
本文将介绍高分子材料的发展历程以及未来的发展趋势。
二、发展历程1. 起源阶段高分子材料的起源可以追溯到19世纪末的天然高分子材料,如橡胶和纤维素。
这些材料具有优异的性能,但受限于资源有限和加工工艺不成熟的问题。
2. 合成阶段20世纪初,人们开始研究合成高分子材料,通过聚合反应将小分子单体转化为高分子链状结构。
1920年代,合成橡胶和聚氯乙烯等合成高分子材料的工业化生产开始。
此后,合成高分子材料的种类不断增加,如聚酰胺、聚酯、聚酰亚胺等。
3. 发展阶段20世纪50年代至70年代,高分子材料得到了快速发展。
新的合成方法和材料改性技术的出现,使高分子材料的性能得到了显著提升。
例如,聚四氟乙烯的发明解决了摩擦学领域的难题,聚碳酸酯的开发推动了光纤通信的发展。
4. 应用阶段20世纪80年代至今,高分子材料开始广泛应用于各个领域。
例如,高分子塑料在包装、建筑、汽车等行业得到了广泛应用;高分子纤维在纺织、医疗、防弹等领域发挥着重要作用;高分子涂料在建筑、家具等领域具有广阔的市场前景。
三、未来发展趋势1. 功能化未来,高分子材料将更加注重功能化的发展。
通过在分子结构中引入特定的功能基团,可以赋予高分子材料特殊的性能,如阻燃、自修复、导电等。
这将进一步扩展高分子材料的应用领域。
2. 绿色环保随着环境保护意识的提高,高分子材料的绿色环保性将成为未来发展的重要方向。
研发可降解高分子材料、循环利用高分子材料等将成为关注的焦点。
3. 多功能复合材料未来,高分子材料将与其他材料进行复合,形成多功能复合材料。
例如,高分子纳米复合材料、高分子陶瓷复合材料等。
这将进一步提升高分子材料的性能和应用范围。
4. 智能化随着人工智能和物联网技术的发展,高分子材料将与智能技术相结合,实现智能化应用。
例如,智能高分子材料可以根据环境变化自动调节性能,实现自适应功能。
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一种具有广泛应用前景的材料,它的发展历程经历了多个阶段,从最初的合成到如今的广泛应用。
本文将介绍高分子材料的发展历程,并展望未来的发展趋势。
一、合成方法的改进1.1 高分子合成方法的起源最早的高分子合成方法可以追溯到19世纪末的酚醛树脂合成,这是高分子材料合成的开端。
1.2 高分子合成方法的改进随着科学技术的进步,高分子合成方法得到了极大的改进。
例如,聚合反应的引入使得高分子合成过程更加高效、可控。
1.3 新型高分子合成方法的出现如今,研究人员正在开发新型高分子合成方法,例如原子转移自由基聚合、可控自由基聚合等,这些方法能够合成出具有更好性能的高分子材料。
二、高分子材料的应用领域2.1 塑料行业高分子材料在塑料行业中有着广泛的应用,如聚乙烯、聚丙烯等,这些塑料制品在包装、建筑、汽车等领域发挥着重要作用。
2.2 纤维行业高分子材料在纤维行业中也有着重要的应用,如聚酯纤维、尼龙纤维等,这些纤维材料在纺织、服装等领域得到了广泛应用。
2.3 电子行业高分子材料在电子行业中的应用也越来越广泛,如聚苯胺、聚合物电解质等,这些材料在电池、光电子器件等领域发挥着重要作用。
三、高分子材料的性能改进3.1 材料强度的提升研究人员通过改变高分子材料的结构和合成方法,提高了材料的强度,使其在应力环境下具有更好的耐久性。
3.2 材料的导电性改进高分子材料的导电性一直是一个研究热点,通过控制材料的结构和添加导电性填料,可以使高分子材料具有优异的导电性能。
3.3 材料的热稳定性改进高分子材料在高温环境下容易分解,研究人员通过添加稳定剂等方法,提高了高分子材料的热稳定性,使其能够在高温环境下长时间稳定运行。
四、高分子材料的环保性能4.1 可降解高分子材料的研究随着环保意识的提高,研究人员开始开发可降解的高分子材料,以减少对环境的污染。
4.2 循环利用高分子材料的研究研究人员致力于开发可循环利用的高分子材料,通过回收和再利用,减少了对资源的浪费。
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一种由大量重复单元构成的大分子化合物,具有轻质、高强度、耐腐蚀等优点,在各个领域得到广泛应用。
本文将从高分子材料的发展历程和未来发展趋势两个方面进行探讨。
一、发展历程1.1 早期发展高分子材料的发展可以追溯到19世纪,当时科学家开始研究天然高分子材料,如橡胶和淀粉等。
1.2 合成高分子材料20世纪初,科学家开始合成高分子材料,如聚乙烯、聚丙烯等,为高分子材料的工业化应用奠定了基础。
1.3 高分子材料的广泛应用随着科技的不断进步,高分子材料在汽车、航空航天、医疗器械等领域得到广泛应用,推动了高分子材料产业的发展。
二、未来发展趋势2.1 绿色环保未来高分子材料的发展将更加注重环保,研发更多可降解、可循环利用的高分子材料,减少对环境的影响。
2.2 高性能随着科技的不断进步,未来高分子材料将更加注重提高材料的性能,如强度、耐热性等,以满足不同领域的需求。
2.3 智能化未来高分子材料将朝着智能化方向发展,研发具有自修复、自感应等功能的高分子材料,为人类生活带来更多便利。
三、应用领域拓展3.1 医疗器械未来高分子材料将在医疗器械领域得到更广泛的应用,如生物可降解材料用于医疗缝合线等。
3.2 航空航天高分子材料在航空航天领域的应用将更加广泛,如轻质高强度的复合材料用于飞机制造。
3.3 汽车工业未来高分子材料在汽车工业中的应用将更加普遍,如高强度塑料用于汽车零部件制造。
四、材料结构设计4.1 多孔结构未来高分子材料的设计将更加注重多孔结构,提高材料的吸附性能和透气性。
4.2 分子链控制通过控制高分子材料的分子链结构,可以调控材料的性能,如强度、硬度等。
4.3 功能性设计未来高分子材料的设计将更加注重功能性,研发具有特定功能的高分子材料,如抗菌、防水等功能。
五、国际合作与竞争5.1 国际合作未来高分子材料领域将更加注重国际合作,共同推动高分子材料的发展,实现互利共赢。
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类具有特殊结构和性质的材料,由于其独特的性能和广泛的应用领域,成为现代材料科学的重要研究方向之一。
本文将从高分子材料的发展历程和未来发展趋势两个方面进行探讨。
二、高分子材料的发展历程1. 起源和发展初期高分子材料的起源可以追溯到19世纪末,当时科学家开始研究天然高分子材料,如橡胶和丝绸。
20世纪初,合成高分子材料的研究逐渐兴起,其中最具代表性的就是合成橡胶和塑料。
20世纪30年代至50年代,高分子材料的研究进一步发展,出现了聚合物材料的合成和改性技术,使高分子材料的应用领域得到了拓展。
2. 高分子材料的应用领域扩展随着科技的进步和社会的发展,高分子材料的应用领域不断扩展。
在电子行业,高分子材料被广泛应用于电子元件的封装和绝缘材料;在汽车工业,高分子材料被用于制造轻量化零部件,提高汽车的燃油效率;在医疗领域,高分子材料被用于制造人工器官和药物传递系统等。
此外,高分子材料还在航空航天、建筑、纺织、包装等领域得到了广泛应用。
3. 高分子材料的研究进展近年来,高分子材料的研究进展主要集中在以下几个方面:(1) 新型高分子材料的合成:研究人员通过改变合成方法和反应条件,设计和合成了许多新型高分子材料,如聚合物纳米复合材料、共聚物、高分子水凝胶等。
(2) 高分子材料的功能化改性:通过添加特定的功能单体或化合物,可以赋予高分子材料特殊的性能,如导电性、光学性能、生物相容性等。
(3) 高分子材料的可持续发展:随着环境保护意识的增强,研究人员开始关注高分子材料的可持续发展,提出了许多可降解高分子材料和可回收利用的研究方向。
三、高分子材料的未来发展趋势1. 功能化高分子材料的发展随着科学技术的进步,人们对高分子材料的功能性要求越来越高。
未来,高分子材料将朝着多功能、智能化的方向发展,例如具有自修复能力、自感应能力和自适应能力的高分子材料将会得到更广泛的应用。
2. 绿色高分子材料的研究环境保护和可持续发展已成为全球研究的热点。
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类具有特殊结构和性能的材料,由于其独特的物理、化学和力学性质,被广泛应用于各个领域。
本文将介绍高分子材料的发展历程以及未来的发展趋势。
二、发展历程1. 早期阶段高分子材料的起源可以追溯到19世纪末的天然高分子材料,如橡胶和纤维素。
这些材料具有良好的弹性和韧性,但其性能受到天然资源的限制。
2. 合成高分子材料的发展20世纪初,合成高分子材料的研究取得了重大突破。
1907年,著名科学家巴赫曼首次合成了具有高分子结构的聚合物。
此后,聚合物的合成方法得到了不断改进,如自由基聚合、阴离子聚合和阳离子聚合等。
这些方法的发展为合成高分子材料提供了广阔的空间。
3. 高分子材料的应用拓展随着合成方法的不断改进,高分子材料的应用领域也得到了拓展。
20世纪中叶,聚合物材料在塑料、橡胶、纤维和涂料等领域得到了广泛应用。
此外,高分子材料还被应用于电子、医药、航空航天和能源等领域,推动了科学技术的发展。
4. 高分子材料的改性与功能化为了满足不同领域对高分子材料性能的需求,人们开始对高分子材料进行改性和功能化。
通过添加填料、控制聚合反应条件和引入功能基团等方法,可以改善高分子材料的力学性能、热稳定性、导电性等特性。
三、未来发展趋势1. 绿色环保未来,高分子材料的发展将趋向绿色环保。
人们将更加注重材料的可持续性和循环利用性,减少对环境的负面影响。
例如,研发可降解高分子材料,提高材料的可回收性和可再利用性。
2. 高性能材料随着科学技术的进步,人们对高分子材料的性能要求也越来越高。
未来,高分子材料将朝着高性能方向发展,如高强度、高导电性和高热稳定性等。
这将推动高分子材料在电子、能源和航空航天等领域的应用。
3. 智能材料随着人工智能和物联网技术的发展,智能材料将成为高分子材料的新方向。
智能材料可以根据外界环境的变化自主调节其性能,具有广泛的应用前景。
例如,温敏性高分子材料可以根据温度变化实现形状记忆效应,用于生物医学和机械领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料加工新技术----高分子材料成型课程大作业学生姓名学生学号************专业方向材料学(金属材料)研究生导师2015年11月26日高分子材料成型加工的发展趋势摘要:随着科学技术的不断进步,经济的发展越来越快,高分子材料成为了发展的关键,同时也是发展高新科技的基础。
高分子材料只有通过加工成型获得所需的形状、结构与性能,才能成为具有实用价值的材料与产品。
高分子材料加工成型是一个外场作用下的形变过程,其技术与装备在很大程度上决定了最终材料与产品的结构与性能。
高分子材料加工成型过程节能降耗、废旧制品循环利用、可再生资源替代是发展趋势,研宄与探索高分子材料加工成型新方法、技术及装备对推动高分子材料产业及相关制造业的发展具有重要意义。
同时可丰富和发展我国高分子产品先进制造理论及其应用关键词:高分子材料;发展;加工高分子材料是当代新材料的后起之秀,但其发展速度与应用范围超过了传统的金属材料和无机材料,已成为工业、农业、国防、科技和日常生活等领域不可缺少的重要材料。
世界合成高分子材料的总产量已达3亿吨,其体积产量超过金属材料。
我国是高分子材料生产和消费的大国,合成高分子材料产量达3000万吨左右,在全球排名第二,年消费量5000万吨左右。
近年来,高分子材料成型加工技术在工业上取得了飞速发展,我国航空工业、国防工业等领域的发展对聚合物材料的性能提出了更高的要求。
高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。
[1]由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。
高分子材料的高分子链通常是由结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。
因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。
高分子结构通常分为链结构和聚集态结构两个部分。
链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。
近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。
远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象.也称二级结构。
聚集态结构是指高聚物材料整体的内部结构.包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。
由于工业化技术的发展和人民生活水平的提高,人们对塑料产品种类和质量的需求也越来越高。
高分子材料是通过制造成各种制品来实现其使用价值的,因此从应用角度来讲,以对高分子材料赋予形状为主要目的成型加工技术有着重要的意义[2]。
高分子材料的主要成型方法有挤出成型、注射成型、吹塑成型、压延成型等,文章综述了高分子材料成型加工技术的最新进展现,着重探讨一下高分子材料成型加工技术的发展前景。
1 高分子材料的发展趋势随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。
总的来说,今后高分子材料的发展趋势是高性能化、高功能化、复合化、智能化以及绿色化[3]。
1 .1 高性能化提高耐高温,耐磨性,耐腐蚀性,耐老化及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、汽车工业、航天、电子信息技术、家用电器领域都有非常重要的作用。
高分子材料高性能化的发展趋势主要有:(1)创造新的高分子聚合物;(2)通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子性能进行改进;(3)通过新的加工方法改变聚合物的聚集态结构;(4)通过微观复合方法,对高分子材料进行性能改变1 .2高功能化高分子材料的高功能化是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,可以作为人造器官的医用高分子材料等。
鉴于以上发展,高分子分离膜、高分子吸水性材料、光致抗蚀性材料、高分子催化剂等都是功能高分子的研究方向[4]。
1 .3 复合化为了发挥不同材料的优点,克服单一材料的缺点和不足,提高经济效益,使高分子材料的应用更为广泛而有了高分子材料的复合化。
高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空造船、航天、海洋工程等方面,今后复合材料的研究方向主要有:(1 )研究并开发高性能、高模量的纤维增强材料;(2)合成具有高强度,优良耐热性和优良成型加工性能的基体树脂;(3)界面性能,粘结性能的提高及评价技术的改进等方面。
1 .4 智能化智能化的高分子材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我修复,自我诊断,自我识别能力等特性,对环境的变化可以做出相应的解答;根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料[5]。
1 .5 绿色化我们的日常生活中虽然高分子材料对起了很大的作用,但是高分子材料也给我们带来了不小的污染。
现在很受关注的从生产到使用能节约能源与资源,排放废弃物少,对环境污染小,又能循环利用的高分子材料,要求高分子材料生产的绿色化。
研究高分子材料的绿色化主要有以下几个方向:(1)开发原子经济的聚合反应;(2)选用无毒无害的原料;(3)利用可再生资源合成高分子材料;(4)高分子材料的再循环利用总的来说,高分子材料对我们的未来影响是不可预测的。
我国虽然在高分子材料的开发和利用方面起步比较晚,然而目前看来进步的速度也是越来越快,高分子材料已经为我国的经济建设做了重要的贡献,我们应该更加提高技术水平,加强对新材料的开发,以提高生活的质量,让高分子材料成长得更加全面,更好地为人类服务。
2 高分子材料加工设备发展趋势2.1精密注射成型设备精密注塑机是指具有成型精密塑料制品能力的注塑机。
20 世纪70 年代,随着电子技术的发展,工业发达国家率先研制出精密注塑机。
尤其是日本,日钢、日精、东芝、新泻等厂家都开发了各具特色的精密注塑机。
我国于80 年代,精密注射机研制也取得一定成绩。
1985 年,上海第一塑料机械厂研制成功SZ---150 / 100 精密注塑机。
同年,杭州四五零九厂制造出微型精密注塑机C4704。
之后,上海电讯器材厂试制成功10 克精密注塑机,浙江塑料机械厂也研制出闭环控制的精密注塑机。
闭环控制的注塑机可以分别对温度、注射速度、注射压力、保压压力、塑化背压、塑化转速等重要工艺参数及过程参数实施闭环控制,大幅度提高控制精度,确保产品质量更加稳定。
1989 年,顺德市秦川恒利塑机有限公司研制出双动模及四缸差动合模注塑机,在此基础上又开发成功全液压四缸直锁二板式精密注塑机[6]2.1.1全电动式注塑机全电动式注塑机是指采用伺服电机取代原来的液压装置,以完成螺杆旋转、注射、开合模等动作过程的注塑机。
全电动式注塑机的机械部分原理与传统注塑机基本机同,只是在控制部分采用伺服电机,代替原来的液压装置。
全电动注塑机的注射装置也包括塑化部件和传动部件两部分。
塑化部件与传统注塑机相同,主要由螺杆、机筒、喷嘴等组成;传动部件由滚珠丝杆、伺服电动、传动齿轮和离合器等组成。
全电动注塑机的合模装置也有肘杆式和直压工两类。
肘杆式合模装置的全电动注塑机结构如图2.1.1所示。
合模装置中也采用了滚珠丝杆和伺服电机,包括动模板、前模板、后模板拉杆及传动齿轮等零部件。
图2.1.1 全电动式注塑机的结构示意图全电动注塑机的合模装置在结构设计中用移模丝杆代替原有的移模油缸。
它利用具有行程升角的螺纹,将旋转动变换为直线运动。
以肘杆式合模机构为例,其工作原理:当电机正向转动时,移模丝杆带动肘杆机构推动模板向前运动。
当模具的分型面接触时,肘杆机构尚未形成一线排列,动模板受到变形阻力的作用。
此时电机的转速降低、扭矩增大,使作用在移模丝杆上的作用力不断增加,直至足以克服变形阴力,使肘杆成为一线排列。
合模机构发生的弹性变形对模具实现了预紧,该预紧力即为合模力。
[7]在开模时,电机反转,在移模螺杆力的作用下,肘杆的一线排列被破坏,动模板被迫与定模板分离并退回合模前的初始位置,从而实现开模。
2.1.2全液压式注塑机全液压式注塑机在成型精密、复杂形状制品方面有许多独特优势,其注射装置与传统注塑机的注射装置类似。
全液压式注塑机的合模装置有很多种结构,从最传统的单缸充液式、多缸充液式到最近几年发展出来的全液压二板直压式。
[8]单缸充液式是传统全液式的代表,图2.1.2充液式合模装置如图2.1.2 所示。
它有一般液压式的优点,如合模精度高、开模力大等,也有明显的缺点,如容易内泄外漏、体积庞大、升压速度慢、耗能多等。
[9]多缸充液式是从单缸充液式那里发展起来的一类结构,包括无拉杆注塑机。
这类结构比单缸充液式有一定程度的改善,具有某些方面的优点,如方便安装顶出油缸等,而且机身较短,在欧洲生产的厂家也不少。
2.1.3精密注塑机的发展方向电液复合式注塑机融合了全液压注塑机高性能的优点和全电动注塑机节能的优点。
从全液压式高性能和全电动式节能相结合的角度来看,电液复合式注塑机将是精密注塑机发展的一个重要方向。
[10]电动/ 液压相结合的复合式注塑机已成为当今精密注塑机发展的新动向。
2 .2高分子材料的3D打印设备3D打印(3D printing),即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。
该技术能够简化产品制造程序,缩短产品研制周期,提高效率并降低成本。
可广泛应用于医疗、文化、国防、航天、汽车及金属制造等产业,被认为是近20年来制造领域的一个重大技术成果。
[11]传统的制造技术如注塑法可以以较低的成本大量制造聚合物产品,而三维打印技术则可以以更快,更有弹性以及更低成本的办法生产数量相对较少的产品。
2.2.1熔融沉积式(FDM)通过将丝状材料如热塑性塑料、蜡或金属的熔丝从加热的喷嘴挤出,按照零件每一层的预定轨迹,以固定的速率进行熔体沉积。
每完成一层,工作台下降一个层厚进行迭加沉积新的一层,如此反复最终实现零件的沉积成型。
[12]FDM工艺的关键是保持半流动成型材料的温度刚好在熔点之上(比熔点高1℃左右)。
[13]其每一层片的厚度由挤出丝的的直径决定,通常是0.25~0.50mm图2.2.1 熔融沉积式2.2.2选择性激光烧结(SLS)SLS技术是一种使用高功率激光(如二氧化碳激光)的添加制造技术,其原理如图所示。
将很小的材料粒子融合成团块,形成所需要的三维形状。
[14]高功率激光根据三维数据(如制作的CAD文件或扫描数据)所生成的切面数据,选择性地融化粉末层表面的粉末材料,然后每扫描一个粉末层,工作平台就下降一个层的厚度,一个新的材料层又被施加在上面,这个过程一直重复至完成制造[15]。