含参不等式解法举例

合集下载

含参数的不等式的解法

含参数的不等式的解法

含参数的不等式的解法解含参数的不等式的一般步骤如下:步骤1:确定参数的取值范围对于含参数的不等式,首先要确定参数可以取哪些值。

常见的含参数的不等式有以下几种类型:1.参数出现在不等式的左右两侧:例如,a,x,<b,x,其中a和b是参数。

如果参数a和b都是非负数,则取值范围为[0,+∞),如果参数a为负数而b为非负数,则取值范围为(-∞,+∞)。

2. 参数出现在不等式的系数中:例如,ax + b > 0,其中a和b是参数。

对于一次不等式,如果参数a为正数,则取值范围为(-∞, -b/a);如果参数a为负数,则取值范围为(-b/a, +∞)。

对于二次不等式,需要讨论a的正负和零的情况,进而确定取值范围。

3.参数出现在不等式的指数中:例如,x^a>b,其中a和b是参数。

对于参数b,需要讨论它的正负和零的情况,进而确定取值范围。

对于参数a,如果它为正数,则不等式的解集为(0,+∞);如果它为负数,则不等式的解集为(-∞,0)。

步骤2:解参数的不等式在确定参数的取值范围之后,可以根据具体的参数取值情况来解不等式。

根据参数的不同取值情况,采用不同的解法。

1.解参数出现在不等式的左右两侧的不等式:-如果参数都是非负数,则可以直接从不等式中消去绝对值符号,并分析绝对值的取值范围,最后得到一个简单的数学不等式。

-如果参数一个是负数一个是非负数,则需要分情况讨论,考虑不等式两侧的符号。

2.解参数出现在不等式的系数中的不等式:-如果参数是一个正数或负数,则根据参数的正负讨论不等式两侧的符号,并得到一个简单的数学不等式。

-如果参数是一个未知数,可以根据参数的取值范围来讨论参数与未知数的关系,然后解不等式。

3.解参数出现在不等式的指数中的不等式:-如果参数b是负数,则需要讨论不等式两侧的符号并得到一个简单的数学不等式。

步骤3:解不等式在解决了参数的不等式之后,可以根据参数的取值范围来解不等式,得到不等式的解集。

人教版七年级下册数学第九章含参不等式以及含参不等式组的解法

人教版七年级下册数学第九章含参不等式以及含参不等式组的解法

含参不等式以及含参不等式组的解法不等式在中考中的运用,往往掺杂参数来增加难度,我们只要读清楚题目找到解题思路便能迎刃而解了。

本节课我们就重点讲讲如何读题去寻找解题思路。

含参不等式:解不等式5(x-1)<3x+1通过去括号、移项、合并同类项等一系列运算可以求出解为:x<3 求不等式57x -<32-x 的最小整数解. 通过去括号、移项、合并同类项等一系列运算可以求出解为:x>831,故可以得出最小整数为4.在这些需要讨论的情况下,等号最后讨论才方便,不会讨论重合。

例题:1、求不等式kx+2>2x-3的解集 移项、合并同类项、讨论取值2、(1)求不等式解集mx+a>nx+b 移项、合并同类项、讨论取值(2)(m-1)x>a 2+1对于任意x 都成立,则参数m 的值为 练习 :1、求不等式kx+2>3的解集2、(1)求不等式mx-2<-7-nx 的解集 (2)求不等式m 2x+1<-x+5的解集3、关于x 的方程5x-2m=-4-x 的解满足2<x<10,求m 的取值范围。

2、解关于x 的不等式组⎩⎨⎧+->+-<-8)21(563x m x mx mxmx3、如果一元一次不等式组⎪⎩⎪⎨⎧≥≤≤-ax x 432(1)有解,求a 的取值范围。

(2)无解,求a 的取值范围。

(3)有且只有一个解,求a 的取值范围。

(4)只有两个整数解,求a 的取值范围。

1、只要朝着一个方向奋斗,一切都会变得得心应手。

20.6.156.15.202021:5021:50:33Jun-2021:502、心不清则无以见道,志不确则无以定功。

二〇二〇年六月十五日2020年6月15日星期一3、有勇气承担命运这才是英雄好汉。

21:506.15.202021:506.15.202021:5021:50:336.15.202021:506.15.20204、与肝胆人共事,无字句处读书。

解答含参不等式问题常用的几种方法

解答含参不等式问题常用的几种方法

考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。

含参数不等式的解法(含答案)

含参数不等式的解法(含答案)

含参数不等式的解法典题探究例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。

例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。

例3:在∆ABC 中,已知2|)(|,2cos )24(sin sin 4)(2<-++=m B f B BB B f 且π恒成立,求实数m 的范围。

例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。

如果把上题稍微改一点,那么答案又如何呢?请看下题: (2)求使不等式)2,0(4,cos sin ππ∈-->x x x a 恒成立的实数a 的范围。

演练方阵A 档(巩固专练)1.设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤+)1(11)11(22)1()1(2x xx x x x ,已知f (a )>1,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞) B.(-21,21) C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)2.已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b),则f (x )·g (x )>0的解集是__________.3.已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________.4. 解不等式)0( 01)1(2≠<++-a x aa x 5. 解不等式06522>+-a ax x ,0≠a6.已知函数f (x )=x 2+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)≥2. (1)求p 、q 之间的关系式;(2)求p 的取值范围;(3)如果f (sin θ+2)的最大值是14,求p 的值.并求此时f (sin θ)的最小值.7.解不等式log a (1-x1)>18.设函数f (x )=a x 满足条件:当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围.9.设124()lg,3x xa f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。

27用含参不等式恒成立问题的解法

27用含参不等式恒成立问题的解法

例1、对于不等式(1-m)x2+(m-1)x+3>0
................
(*)
(1)当| x | ≤2,不等式恒成立,求实数m的取值范围 ;
求谁,谁就是参数; 另一个是自变量
(2)当| m | ≤2,不等式恒成立,求实数x的取值范围 .
变更“主元” 解(2) : 设g(m)=(-x2+x)m+(x2-x+3) (m∈[-2,2])法
(Ⅱ){a|a≥-4}
练 习
设f(x)=x2-2ax+2(a∈R),g(x)=lgf(x) (1)当x∈R时,f(x)≥a恒成立,求a的取值范围; (2)若g(x)的值域为R,求a的取值范围; (3)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
(1){a|-2≤a≤1}; (2){a|a≥ 或a≤2 }2
例1:已知关于x的不等式: (a-2)x2 + (a-2)x +1 ≥ 0恒成立, 试求a的取值范围.
解:由题意知: ①当a -2=0,即a =2时,不等式化为 1 ≥ 0,它恒成立,满足条件. ②当a -2≠0,即a ≠2时,原题等价于
a 2 0 2 ( a 2) 4( a 2) 0
练 已知不等式x2+mx>4x+m-4. 习 (1)若对于0≤m≤4的所有实数m,不等式恒成立,求实数x的取值范围.
(2)若对于x≤1的所有实数x,不等式恒成立,求实数m的取值范围. (1)实数x的取值范围为:(-∞,0)∪(0,2)∪(2,+∞); (2)实数m的取值范围是:{m|m<4}. 求谁,谁就是参数; 另一个是自变量
f 0 >0 则 f 4 >0

(含参不等式的解法)

(含参不等式的解法)

题型2、不等式对x∈R恒成立问题
1、不等式x2 mx m 0恒成立, 2
求m的取值范围。
不等式对x∈R恒成立问题应结合 二次函数的图像求解 2、不等式(a-2)x2 +2(a-2)x-4<0
对一切x R都成立,求a的取值范围
要注意对二次项系数的讨论
题型2、不等式对x∈R恒成立问题
练习1、不等式ax2 5x 4 Байду номын сангаас的 解集是R, 求a的取值范围;
高二数学必修5第三章《不等式》
含参数的一元二次不等式
题型1、已知不等式的解集求参数
1、不等式ax2 bx 4 0的解集是 {x x 1或x 4}, 求a,b的值;
一元二次方程的根就是对应二次不等式 的解集的端点值。
2、已知不等式ax2 bx 4 0的解集 是{x x 1},求a,b的值;
练习2、不等式ax2 5x 4 0 的解集是R, 求a的取值范围.
题型3、解含参数的不等式
1、解关于x的不等式 x2 ax 2a2 0
要注意对方程的根的大小的讨论
2、解关于x的不等式 x a 0 1 x
例3. (1)设一元二次不等式ax2 bx 1 0
的解集为{ x | 1 x 1},求a b的值. 3
(2)已知一元二次不等式(m 2)x2 2(m 2)x 4 0的解集为R,求m的取值范围.
例4.
解关于x的不等式x2 (a a2 )x a3 0.
布置作业

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按$x$项的系数$a$的符号分类,即$a>0$,$a=0$,$a<0$。

例1:解不等式$ax+(a+2)x+1>2$分析:本题二次项系数含有参数,$\Delta=(a+2)^2-4a=a+4>0$,故只需对二次项系数进行分类讨论。

解:当$a>0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2+\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2-\sqrt{a+4}}{2a}$,因为$a>0$,所以$x_1x_2$或$x<x_1$,即$x\in\left(-\infty,\frac{a+2-\sqrt{a+4}}{2a}\right)\cup\left(\frac{a+2+\sqrt{a+4}}{2a},+\infty\right)$。

当$a=0$时,不等式为$2x+1>2$,解得$x>\frac{1}{2}$,即解集为$x>\frac{1}{2}$。

当$a<0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2-\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2+\sqrt{a+4}}{2a}$,因为$a<0$,所以$x_1<x_2$。

所以解集为$x_1<x<x_2$,即$x\in\left(\frac{a+2-\sqrt{a+4}}{2a},\frac{a+2+\sqrt{a+4}}{2a}\right)$。

例2:解不等式$ax-5ax+6a>(a\neq0)^2$分析:因为$a\neq0$,$\Delta>0$,所以我们只需讨论二次项系数的正负。

解:当$a>0$时,解得方程$ax-5ax+6a=0$的两根$x_1=2$,$x_2=3$,因为$a>0$,所以$x_13$,即$x\in\left(-\infty,2\right)\cup\left(3,+\infty\right)$。

含参数不等式的解法

含参数不等式的解法

含参数不等式的解法含参数的不等式是指在不等式中存在一个或多个参数,通过改变参数的取值,使不等式成立或不成立。

解这类不等式通常需要用到代数方法。

一、一元不等式的参数解法对于只含有一个未知数的一元不等式,可以使用参数解法。

首先,我们假设未知数为一个参数,然后求解这个参数的取值范围,使得不等式成立。

举例说明:解不等式,x+2,<1,其中x是实数。

我们将未知数x设为参数t,即x=t。

则原不等式可以改写为,t+2,<1、要使不等式成立,必须有-1<t+2<1,即-3<t<-1所以,参数t的取值范围为-3<t<-1二、含有二元或多元不等式的参数解法对于含有二元或多元的不等式,也可以采用参数解法来求解。

举例说明:解不等式(ax+b)/(cx+d)>0,其中a,b,c,d为实数,且ac≠0。

可以将未知数x设为参数t,即x=t。

则原不等式可以改写为(at+b)/(ct+d)>0。

我们设函数f(t)=(at+b)/(ct+d),其中t为参数。

要使不等式(at+b)/(ct+d)>0成立,需要满足两个条件:1.f(t)不等于0;2.f(t)为正数。

将f(t)=(at+b)/(ct+d)令为0,得到(at+b)/(ct+d)=0,解得t=-b/a。

由于ac≠0,所以c≠0。

将f(t)=(at+b)/(ct+d)分成两种情况讨论:情况1:若c>0,则当t<-d/c或t>-b/a时,f(t)同号,即f(t)>0或f(t)<0。

情况2:若c<0,则当t>-d/c且t<-b/a时,f(t)同号,即f(t)>0或f(t)<0。

综合情况1和情况2,可以得到解不等式(ax+b)/(cx+d)>0的参数t的取值范围。

三、举一反三除了以上例子,还有许多不等式可以采用参数解法来求解。

例如解不等式(sin x-1)/(sin x+1)<0,其中x为实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含参不等式专题(淮阳中学)编写:孙宜俊当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。

我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。

解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。

下面举例说明,以供同学们学习。

解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况:(1) 二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。

一、含参数的一元二次不等式的解法:1.二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥∆) 例1、解关于x 的不等式0)1(2>++-a x a x 。

解:0)1)((2>--x a x1,0)1)((==⇒=--x a x x a x 令 为方程的两个根(因为a 与1的大小关系不知,所以要分类讨论)(1)当1<a 时,不等式的解集为}1|{a x x x <>或(2)当1>a 时,不等式的解集为}1|{<>x a x x 或(3)当1=a 时,不等式的解集为}1|{≠x x综上所述:(1)当1<a 时,不等式的解集为}1|{a x x x <>或(2)当1>a 时,不等式的解集为}1|{<>x a x x 或(3)当1=a 时,不等式的解集为}1|{≠x x变题1、解不等式0)1(2>++-a x a x ;2、解不等式0)(322>++-a x a a x 。

小结:讨论两个根的大小关系,尤其是变题2中2个根都有参数的要加强讨论。

例2、解关于x 的不等式022≤-+k kx x分析 此不等式为含参数k 的不等式,当k 值不同时相应的二次方程的判别式的值也不同,故应先从讨论判别式入手.解 )8(82+=+=∆k k k k(1) 当02,08,02=-+>-<>∆k kx x k k 方程时或既有两个不相等的实根。

所以不等式的解集是022≤-+k kx x :⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-≤≤+--4)8(4)8(k k k x k k k x (2) 当02,0802=-+=-==∆k kx x k k 方程时或即有两个相等的实根, 所以不等式⎭⎬⎫⎩⎨⎧-≤-+4022k k kx x 的解集是,即{}}0{2,; (3) 当02,08,02=-+<<-<∆k kx x k 方程时即无实根所以不等式的022≤-+k kx x 解集为∅。

说明:一元二次方程、一元二次不等式、一元二次函数有着密切的联系,要注意数形结合研究问题。

小结:讨论∆,即讨论方程根的情况。

2.二次项系数含参数(先对二次项系数讨论,分大于、等于或小于0,然后能分解因式先分解因式,不能得先考虑0≥∆)例3、解关于x 的不等式:.01)1(2<++-x a ax解:若0=a ,原不等式.101>⇔<+-⇔x x若0<a ,原不等式ax x a x 10)1)(1(<⇔>--⇔或.1>x 若0>a ,原不等式.0)1)(1(<--⇔x ax )(* 其解的情况应由a1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;(2)当1>a 时,式)(*11<<⇔x a; (3)当10<<a 时,式)(*ax 11<<⇔.综上所述,当0<a 时,解集为{11><x a x x 或}; 当0=a 时,解集为{1>x x };当10<<a 时,解集为{ax x 11<<}; 当1=a 时,解集为φ;当1>a 时,解集为{11<<x a x}. 例4、解关于x 的不等式:.012<-+ax ax解:.012<-+ax ax )(*(1)0=a 时,.01)(R x ∈⇔<-⇔*(2)0≠a 时,则0042>⇔≥+=∆a a a 或4-≤a , 此时两根为a a a a x 2421++-=,aa a a x 2422+--=. ①当0>a 时,0>∆,⇔*∴)(<<+--x aa a a 242a a a a 242++-; ②当04<<-a 时,0<∆,R x ∈⇔*∴)(;③当4-=a 时,0=∆,21)(-≠∈⇔*∴x R x 且; ④当4-<a 时,0>∆,⇔*∴)(或a a a a x 242++->aa a a x 242+--<. 综上,可知当0>a 时,解集为(a a a a 242+--,aa a a 242++-); 当04≤<-a 时,解集为R ;当4-=a 时,解集为(21,-∞-)⋃(+∞-,21); 当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242aa a a ). 例5、解关于的x 不等式2(1)410()m x x m R +-+≤∈分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。

⑵当-1<m<3时,⊿=4(3-m )>0, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。

⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程24410x x -+=的根。

⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 轴的上方,不等式的解集为∅。

解:11,|;4m x x ⎧⎫=-≥⎨⎬⎩⎭当时原不等式的解集为 ⎭⎬⎫⎩⎨⎧+-+≤≤+--<<-⎭⎬⎫⎩⎨⎧+-+≤+--≥-<∆=+-+-≠132132|,31132132|1);34014)1(12m m x m m x m m m x m m x x m m x x m m 原不等式的解集为时当或时,原不等式的解集为则当-(=的判别式时,当 当m=3时,原不等式的解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当m>3时, 原不等式的解集为∅。

小结:⑴解含参数的一元二次不等式可先分解因式再讨论求解,若不易分解,也可对判别式分类讨论。

⑵利用函数图象必须明确:①图象开口方向,②判别式确定解的存在范围,③两根大小。

⑶二次项的取值(如取0、取正值、取负值)对不等式实际解的影响。

牛刀小试:解关于x 的不等式)0(,04)1(22>>++-a x a ax思路点拨:先将左边分解因式,找出两根,然后就两根的大小关系写出解集。

具体解答请同学们自己完成。

二、含参数的分式不等式的解法:例1:解关于x 的不等式0212>---x x ax 分析:解此分式不等式先要等价转化为整式不等式,再对ax -1中的a 进行分类讨论求解,还需用到序轴标根法。

解:原不等式等价于0)1)(2)(1(>+--x x ax当a =0时,原不等式等价于0)1)(2(<+-x x解得21<<-x ,此时原不等式得解集为{x|21<<-x };当a >0时, 原不等式等价于0)1)(2)(1(>+--x x ax , 则:当,21时=a 原不等式的解集为{}21|≠->x x x 且; 当0<,21时<a 原不等式的解集为⎭⎬⎫⎩⎨⎧<<->211|x a x x 或;当,21时>a 原不等式的解集为⎭⎬⎫⎩⎨⎧><<-211|x a x x 或; 当a <0时, 原不等式等价于0)1)(2)(1(<+--x x ax , 则当1-=a 时, 原不等式的解集为{}12|-≠<x x x 且;当01<<-a 时, 原不等式的解集为⎭⎬⎫⎩⎨⎧<<-<211|x a x x 或;当1-<a 时, 原不等式的解集为⎭⎬⎫⎩⎨⎧<<-<211|x a x x 或;小结:⑴本题在分类讨论中容易忽略a =0的情况以及对a1,-1和2的大小进行比较再结合系轴标根法写出各种情况下的解集。

⑵解含参数不等式时,一要考虑参数总的取值范围,二要用同一标准对参数进行划分,做到不重不漏,三要使划分后的不等式的解集的表达式是确定的。

⑶对任何分式不等式都是通过移项、通分等一系列手段,把不等号一边化为0,再转化为乘积不等式来解决。

牛刀小试:解关于x 的不等式)1(,12)1(≠>--a x x a 思路点拨:将此不等式转化为整式不等式后需对参数a 分两级讨论:先按a >1和a <1分为两类,再在a <1的情况下,又要按两根12--a a 与2的大小关系分为100,0<<=<a a a 和三种情况。

有很多同学找不到分类的依据,缺乏分类讨论的意识,通过练习可能会有所启示。

具体解答请同学们自己完成。

上述两题分别代表一元二次不等式中多项式可否直接进行因式分解,其共同点是二次项系数含参数,故需对二次项系数的符号进行讨论.练习:1.解关于x 的不等式0)2)(2(>--ax x2.解关于x 的不等式:.0)2(2>+-+a x a x。

相关文档
最新文档