湖南长沙周南梅溪湖中学2019-2020学年第二学期七年级数学期中测试卷 (PDF 无答案)

合集下载

2019-2020学年七年级第二学期期中教学质量检测数学试卷附答案

2019-2020学年七年级第二学期期中教学质量检测数学试卷附答案

2019-2020学年七年级第二学期期中教学质量检测数学试卷一、选择题(每小题3分,共30分)1.下列各数0.010010001, 3.14π-,0,0.22,33,4,其中无理数的个数有( ) A .1个 B .2个 C .3个 D .4个 2.若a b <,则下列不等式中正确的是( ) A .33a b -+>-+ B .0a b -> C .33a b> D .22a b ->- 3.下列各式中,计算正确的是( )A .623a a a ÷=B .236(2)6a a =C .325()a a a ⋅-=- D .1122aa-=4.16 的平方根是( )A .2B .2±C .4D .4± 5.如图,在数轴上,点A 、点C 到点B 的距离相等,A 、B 两点表示的实数分别是3-和1, 则点C 表示的实数是( )A .13+B .23+C .231-D .231+6.计算2017201820192()( 1.5)(1)3⨯-⨯-的结果是( )A .23 B .32 C .23- D .32- 7.已知5,4a b ab +=-=-,则22a ab b -+ 的值为( )3- 0 1A B CA .29B .37C .21D .33 8.下列各式中,能利用平方差公式计算的是( )A .()()a b b a --B .(1)(1)x x -+-C .(1)(1)a a --+D .()()x y x y ---+9.已知关于x 的不等式组041x a x -≥⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .32a -<≤-B .32a -≤<-C .32a -≤≤-D .32a -<<-10.某学校组织员工去公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,剩下18人无船可乘;每只船坐10人,那么其余的船坐满后,有一只船不空也不满,参加划船的员工共有( )A .48人B .45人C .44人D .42人 二、填空题(每小题3分,共30分)11.一种流感病毒的直径约为0.00000056米,数0.00000056用科学记数法表示为 。

湘教版七年级下册数学期中考试试题及答案

湘教版七年级下册数学期中考试试题及答案

湘教版七年级下册数学期中考试试题及答案湘教版七年级下册数学期中考试试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)计算(-2xy^2)^3的结果是()A。

-2x^3y^6 B。

-6x^3y^6 C。

8x^3y^6 D。

-8x^3y^62.(3分)将多项式-6a^3b^2-3a^2b^2因式分解时,应提取的公因式是()A。

-3a^2b^2 B。

-3ab C。

-3a^2b D。

-3a^3b^33.(3分)下列计算中,正确的是()A。

(m-2)(m+2)=m^2-2 B。

(x-6)(x+6)=x^2-36 C。

y^2 D。

(x+y)(x+y)=x^2+y^24.(3分)下列方程组中,为二元一次方程组的是()A。

B。

C。

D.5.(3分)下列各式从左到右的变形中,为因式分解的是()A。

x(a-b)=ax-bx B。

x^2-1+y^2=(x-1)(x+1)+y^2 C。

y^2-1=(y+1)(y-1) D。

ax+by+c=x(a+b)+c6.(3分)已知 -1 是方程组 4x-3y=11,2x+y=-5 的解,则a-b的值是()A。

-1 B。

3 C。

4 D。

67.(3分)多项式x^2-mxy+9y^2能用完全平方因式分解,则m的值是()A。

3 B。

6 C。

±3 D。

±68.(3分)某商场购进甲、乙两种服装后,都加价40%标价出售。

“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别把标价的八折和九折出售。

某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,则这两种服装的进价各是()A。

50、100 B。

50、56 C。

56、126 D。

100、126二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:(-3x+1)•(-2x)^2=12x^3-4x^210.(3分)因式分解a(b-c)-3(c-b)=a(b-c)+3(b-c)=(a+3)(b-c)11.(3分)解下列方程组:① 3x+2y=5,x-y=1;④ 2x-3y=1,4x-6y=2①解法:x=1,y=1④解法:无解12.(3分)分解因式:(a-b)^2-4b^2=(a-b+2b)(a-b-2b)=(a-3b)(a+b)13.(3分)若x+y=6,xy=5,则x^2+y^2=(x+y)^2-2xy=36-10=2614.(3分)已知x^2-4x+n因式分解的结果为(x+2)(x+m),则n=-4m15.(3分)某宾馆有3人房间和2人房间共20间,总共可以住旅客48人,若设3人房间有x间,2人房间有y间,则可列出方程组为:3x+2y=203x+2y=48解法:无解16.(3分)对于有理数x,y,定义新运算“※”:x※y=ax+by+1,a,b为常数,若3※5=15,4※7=28,则5※9=25a+9b+1解法:将3※5=15和4※7=28带入得到两个方程式:3a+5b+1=154a+7b+1=28解得a=2,b=1,代入5※9=25a+9b+1得到5※9=60.点评】此题考查了多项式因式分解的基本思想和方法,需要掌握提取公因式的技巧和规律。

湖南省长沙市2019-2020学年七年级数学下学期期中试题-附答案(已纠错)

湖南省长沙市2019-2020学年七年级数学下学期期中试题-附答案(已纠错)

湖南省长沙市2019-2020学年七年级数学下学期期中试题总分:120分 时量:120分钟一、选择题(本题共12小题,每题3分,共36分) 1.在平面直角坐标系中,点P (-3,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.下列方程组中,是二元一次方程组的是( )A 、228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 3.已知x <y ,下列不等式不成立的是( )A .x -3< y -3B .5x <5 yC .77y x <D .-x <-y4.为了了解我市参加中考的 120000 学生的视力情况,抽查了 1000 名学生的视力进行统计分析.样本容量是()A .120000 名学生的视力B .1000 名学生的视力C .120000D .10005. 一个关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )A .x >1B .x ≥1C .x >3D .x ≥36.点P 在x 轴上,且到y 轴的距离为5,则点P 的坐标是( )A .(5,0)B .(0,5)C .(5,0)或(-5,0)D .(0,5)或(0,-5)7. 方程组233x y x y -=⎧⎨+=⎩的解是( )A .12x y =⎧⎨=⎩ B .21x y =⎧⎨=⎩ C .11x y =⎧⎨=⎩ D .23x y =⎧⎨=⎩8. 不等式组的解集是( )A .x >2B .x >1C .1<x <2D .无解9. 我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .B .C .D .10. 在一次“数学与生活”知识竞赛中,竞赛题共26道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于70分得奖,那么得奖至少应选对( )道题.A. 22B. 21C. 20D. 1911.已知方程组 的解x 、y 互为相反数,则m 的值为( ).A. -1B. 0C. 5D. -512. 关于x 的不等式组()03121x m x x -<⎧⎪⎨->-⎪⎩无解,那么m 的取值范围为( ) A.m ≤-1 B.m <-1 C.-1<m ≤0 D .-1≤m <0二、填空题(本题共6小题,每题3分,共18分)13.了解全国初三学生每天课后学习时间情况,应采取________(抽样调查/全面调查)方式收集数据. 14.x 的35与12的差小于6,用不等式表示为______________.15. 若代数式1-x 在实数范围内有意义,则x 的取值范围是____________. 16.已知点M (m 21-,1-m )在第四象限,则m 的取值范围是________.17. 在式子c bx ax y ++=2中,当0=x 时,1=y ;,当1=x 时,0=y ;,当1-=x 时,4=y ;则c b a ,,的值分别为 .18.已知点),(y x P 在第一象限,它的坐标满足方程组⎩⎨⎧+=-+=+147332m y x m y x ,则m 的取值范围为__________. 三、解答题(本大题共8小题,共66分) 19.(8分) 解二元一次方程组. (1)⎩⎨⎧=+=-13y x y x(2)⎩⎨⎧=-=+12354y x y x2535222+=+=-m y x m y x20.(8分)(1)解一元一次不等式423312+≤-x x 并把它们的解集在数轴上表示出来 ; (2)解一元一次不等式组210,25;x x x +>⎧⎨>-⎩21.(6分) 如图,△ABC 在直角坐标系中, (1)请写出△ABC 各点的坐标;(2)若把△ABC 向上平移2个单位,再向右平移2个单位得△A ′B ′C ′,并写出A ′、B ′、C ′的坐标.22. (8分)学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了 名学生; (2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?23. (7分)穿越青海境内的兰新高速铁路正在加紧施工.某工程队承包了一段全长1957米的隧道工程,甲、乙两个班组分别从南北两端同时掘进,已知甲组比乙组每天多掘进0.5米,经过6天施工,甲、乙两组共掘进57米.(1)求甲、乙两班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天比原来多掘进0.3米,乙组平均每天比原来多掘进0.2米.按此施工进度,能够比原来少用多少天完成任务?24. (9分)便利店老板从厂家购进A 、B 两种香醋,A 种香醋每瓶进价为6.5元,B 种香醋每瓶进价为8元,共购进140瓶,花了1000元. 且该店A 种香醋售价8元,B 种香醋售价10元。

长沙初一下学期期中考试数学试卷

长沙初一下学期期中考试数学试卷

2019长沙初一下学期期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1、下列各点中,在第二象限的点是()A、(2 ,3)B、(2,-3)C、(-2,3)D、(-2,-3)2、对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A、条形统计图能清楚地反映事物的变化情况B、折线统计图能清楚地表示出每个项目的具体数目C、扇形统计图能清楚地表示出各部分在总体中所占的百分比D、三种统计图不可互相转换3、下列方程组是二元一次方程组的是()A、B、C、D、4、下列判断不正确的是()A、若,则B、若,则C、若,则D、若,则5、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )A、(2,2)B、(3,2)C、(3,3)D、(2,3)6、下列调查适合作抽样调查的是()A、了解长沙电视台“天天向上”栏目的收视率B、了解初三年级全体学生的体育达标情况C、了解某班每个学生家庭电脑的数量D、“辽宁号”航母下海前对重要零部件的检查7、已知点A 在第三象限,则点B 在( )A、第一象限B、第二象限C、第三象限D、第四象限8、关于的方程组的解满足,则的值为()A、1B、2C、3D、49、为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:(1)这6000名学生的数学会考成绩的全体是总体;(2)每个考生的数学会考成绩是个体;(3)抽取的200名考生的数学会考成绩是总体的一个样本;(4)样本容量是6000,其中说法正确的有()A、4个B、3个C、2个D、l个10、已知:正方形ABCD的面积为64,被分成四个相同的长方形和一个面积为4的小正方形,则的长分别是()A、B、C、D、二、填空题(本大题共10个小题,每小题3分,共30分)11、已知一个数的3倍与6的差的不大于3,设这个数为,则可列不等式。

2019-2020学年度第二学期期中考试初一年级数学试卷及答案

2019-2020学年度第二学期期中考试初一年级数学试卷及答案

2019-2020学年度第二学期期中考试初一年级数学试卷考试时间100分钟 满分120分 命题:一、选择题(本大题共8小题,每小题2分,共16分.) 1.下列现象中不属于平移的是 A .滑雪运动员在平坦的雪地上滑雪 B .彩票大转盘在旋转C .高楼的电梯在上上下下D .火车在一段笔直的铁轨上行驶2.化简(–x 3)2的结果是 A .–x 5 B .–x 6 C .x 5D .x 63.如图,∠1=∠2,∠3=40°,则∠4等于A .120°B .130°C .140°D .40°4.在数(–12)–2,(–2)–2,(–12)–1,(–2)–1中,最大的数是 A .(–12)–2 B .(–2)–2 C .(–12)–1D .(–2)–15.长方形的长是31.610cm ⨯,宽是2510cm ⨯,则它的面积是 A .42810cm ⨯ B .52810cm ⨯ 62C 810cm ⨯.72D 810cm ⨯.6.下列说法正确的是( )A .三角形的三条高至少有一条在三角形内B .直角三角形只有一条高C .三角形的角平分线其实就是角的平分线D .三角形的角平分线、中线、高都在三角形的内部7.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线,则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .68.已知:a =﹣226x +2017,b =﹣226x +2018,c =﹣226x +2019,请你巧妙的求出 代数式a 2+b 2+c 2﹣ab ﹣bc ﹣ca 的值( ) A .3B .2C .1D .0二、填空题(本大题共10小题,每小题3分,共30分) 9.计算:0.25×55=__________.10.内角和与外角和相等的多边形的边数是__________.11.光的传播速度约为300000km/s ,太阳光照射到地球上大约需要500s ,则太阳到地球的距离用科学记数法表示为__________km .12.在ABC △中,::2:3:4A B C ∠∠∠=,则B ∠=__________. 13.如图,AB ∥CD ∥EF ,若∠A =35°,∠AFC =15°,则∠C =__________.14.若2x +5y –4=0,则432x y ⨯=__________.15.若(x 2+p )(x 2+7)的展开式中不含有x 2项,则p =__________.16.已知P =m 2–m ,Q =m –1(m 为任意实数),则P 、Q 的大小关系为__________.17.如上中图,边长为8cm 的正方形ABCD 先向上平移4cm ,再向右平移2cm ,得到正方形A′B′C′D′,此时阴影部分的面积为__________cm 2.18.如上右图有一张直角三角形纸片,记作△ABC ,其中∠B =90°.按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC 中,若∠1=165°,则∠2的度数为__________°.三、解答题(本大题共11小题) 19.(本小题满分12分)计算:(1)(b2)3·(b 3)4÷(-b 5)3(2)(12)–1+(π–2018)0–(–1)2019. (3)(3﹣x )(﹣x +3)﹣x (x +1) (4)(2a +b ﹣5)(2a ﹣b ﹣5)20.(本小题满分12分)分解因式:(1)2x 2﹣18 (2)3m 2n ﹣12mn+12n (3)(a+b )2﹣6(a+b )+9 (4)(x 2+4y 2)2﹣16x 2y221.(本小题满分8分)如图,四边形ABCD 中,点E 在BC 上,∠A +∠ADE =180°,∠B =78°,∠C =60°,求∠EDC 的度数.22.(本小题满分8分)已知A =2x 2+3xy –2x –1,B =–x 2+xy –1,(1)计算3A +6B 的值。

2019-2020学年七年级下学期期中数学试题(解析版)

2019-2020学年七年级下学期期中数学试题(解析版)

2019-2020学年七年级下学期期中数学试题一.选择题1.在实数3.1415926,17, 1.010010001……,中,无理数的个数是( )个 A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.,1.010010001……是无理数,故选B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等无限不循环小数(与是否有规律无关).)A4 B. ±4 C. 2 D. ±2【答案】C【解析】【分析】4,4的算术平方根是2,2,故选C .【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.3.下列式子正确的是()A. =7 =5 ﹣3【答案】B【解析】试题分析:根据平方根的意义,可知49=±7,故A 不正确;根据立方根的意义,可知3377-=-,故B 正确;根据算术平方根的意义,可知25=5,故C 不正确;根据平方根的性质2||a a =,可知()23-=3,故不正确.故选B.点睛:此题主要考查了平方根的意义和性质,解题的关键是抓住平方根的意义,算术平方根,立方根的性质的应用,比较简单,但是容易出错,是中考常考题.4.已知:如图, AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角【答案】C【解析】【分析】 根据互余的定义,结合图形解答即可.【详解】∵AB CD ⊥,∴∠BOC=90°,∴∠1+∠COE=90°.∵∠2=∠COE ,∴∠1+∠2=90°,∴1∠与2∠互余.故选C.【点睛】本题考查了垂直的定义,对顶角的性质,以及余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.5.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④同一平面内,垂直于同一条直线的两条直线互相平行.其中真命题的个数为A. 1B. 2C. 3D. 4【答案】B【解析】分析:对4个命题一一判断即可.详解:①相等的角是对顶角;假命题.②两条直线被第三条直线所截,同位角相等;假命题.③等角的补角相等;真命题.④同一平面内,垂直于同一条直线的两条直线互相平行. 真命题.是真命题的有2个.故选B.点睛:考查命题与定理.能够判断真假的陈述句叫做命题,判断为真的命题叫做真命题.6.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【详解】∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.7.已知在同一平面内三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A. a⊥bB. a⊥b或a∥bC. a∥bD. 无法确定【答案】C【解析】【分析】根据平行线的判定得出即可.【详解】解:∵同一平面内三条直线a、b、c,a∥c,b∥c,∴a∥b,故选C.【点睛】本题考查了平行线的性质和判定,平行公理及推理的应用,能熟记知识点(平行于同一直线的两直线平行)是解此题的关键.8. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,9.一个正数的平方根是2a-3与5-a,则这个正数的值是()A. 64B. 36C. 81D. 49【答案】D【解析】【分析】根据正数的两个平方根互为相反数列式求出a的值,进而可求出这个这个数.【详解】∵一个正数的平方根是2a-3与5-a,∴2a-3+5-a=0,∴a=-2,∴5-a=5-(-2)=7,∴这个正数的值是49.故选D.【点睛】本题考查了平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根,正数a 的平方根记作a ±.正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.如图,直线AB 、CD 交于点O ,OT⊥AB 于O ,CE∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 等于( )A. 30°B. 45°C. 60°D. 120°【答案】C【解析】【分析】 由//CE AB ,根据两直线平行,同位角相等,可求得BOD ∠的度数,又由OT AB ⊥求得BOT ∠的度数,然后由DOT BOT BOD ∠=∠-∠即可求得答案.【详解】∵//CE AB ,30ECO ∠=︒∴30BOD ECO ∠=∠=︒(两直线平行,同位角相等)∵OT AB ⊥∴90BOT ∠=︒∴903060DOT BOT BOD ∠=∠-∠=︒-︒=︒故选:C .【点睛】本题考查了平行线的性质、垂直等知识点,熟记并灵活运用平行线的性质是解题关键. 二.填空题11.311-__________,绝对值是_________.【答案】 (1).113, (2). 113.【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据差的绝对值是大数减小数,可得答案.【详解】解:3-11的相反数是-(3-11)= 11-3,绝对值是11-3.故答案为11-3;11-3【点睛】此题考查了实数的性质,熟练掌握相反数及绝对值的定义是解本题的关键.12.已知实数a,b满足a1-+|1-b|=0,则a2012+b2013=______【答案】2【解析】【分析】根据二次根式与绝对值的非负性即可求出a,b,故可求解.【详解】解:由题意可知:a-1=0,1-b=0,∴a=1,b=1,∴原式=2,故答案为:2.【点睛】本题考查非负数的性质,解题的关键是熟练运用非负数的性质,本题属于基础题型.13.把命题“对顶角相等”改写成“如果⋯那么⋯”的形式:_____.【答案】如果两个角是对顶角,那么它们相等.【解析】【分析】先把命题分解为题设和条件,再改写成“如果⋯那么⋯”的形式,即可.【详解】题设为:对顶角,结论为:相等,故写成“如果⋯那么⋯”的形式是:如果两个角是对顶角,那么它们相等.故答案为:如果两个角是对顶角,那么它们相等.【点睛】本题主要考查把命题改写成“如果⋯那么⋯”的形式,理解命题的题设和结论是解题的关键.14.如图所示,想在河的两岸搭建一座桥,沿线段________搭建最短,理由是___【答案】(1). PM(2). 垂线段最短【解析】【分析】连接直线外一点与直线上所有点的连线中,垂线段最短,据此进行解答即可. 【详解】∵PM⊥EN,垂足为M,∴PM为垂线段,∴想在河的两岸搭建一座桥,沿线段PM搭建最短(垂线段最短),故答案为PM,垂线段最短.【点睛】本题考查了垂线段的性质在生活中的应用,熟练掌握垂线段最短的知识是解题的关键.__________________.【答案】(1). 3(2).32【解析】【分析】,再求出立方根即可.,3,32,故答案为3,32.【点睛】此题考查了算术平方根、立方根的定义及表示方法,熟练掌握这些定义是解题的关键.16.的所有整数值是_________________【答案】±2,±1,0.【解析】【分析】的取值范围,进而可得出结论.【详解】解:∵4<8<9,∴23,∴绝对值小于8的所有整数是:±2,±1,0.故答案为±2,±1,0.【点睛】本题考查的是估算无理数的大小,先根据题意估算出8的取值范围是解答此题的关键.17.已知a,b为两个连续的整数,且a<57<b,则a+b=___________.【答案】15【解析】【分析】估算出在哪两个相邻的整数之间,即可求出a与b的值,然后代入a+b计算即可.【详解】∵72<57<82,∴7<57<8,∴a=7,b=8,∴a+b=7+8=15.故答案为15.【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.18.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是_____【答案】48【解析】【分析】根据平移的性质可知:AB=DE,BE=CF;由此可求出EH和CF的长.由于CH∥DF,根据成比例线段,可求出EC的长.由EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可求出阴影部分的面积.【详解】根据题意得:DE=AB=10;BE=CF=6;CH∥DF,∴EH=10﹣4=6;EH:HD=EC:CF,即6:4=EC :6,∴EC =9,∴S △EFD =12×10×(9+6)=75;S △ECH =12×9×6=27,∴S 阴影部分=75﹣27=48.故答案为48. 【点睛】本题考查了平移的性质、由平行判断成比例线段及有关图形的面积计算,有一定的综合性.三.解答题19.(1)|-(2)21(1)4x -=;(3)11-; (4)()334375x -=-.【答案】(1)12;(2)32x =,12x =;(3)0;(4)x=-1. 【解析】【分析】(1)根据数的开方计算即可;(2)根据平方根的定义解答;(3)先开平方、去绝对值、括号,然后合并.(4)先化原方程为(x-4)3=-125,然后求立方根;【详解】(1)原式= 1322--=12; (2)解: 112x -=±, 32x =或12x =;(3)解:原式=))211+-211=+=0(4)解: ()34125x -=- 45x -=-1x =-【点睛】本题考查了实数的运算和平方根、立方根的求法.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.20.根据语句画图,并回答问题,如图,∠AOB内有一点P.(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D.(2)写出图中与∠CPD互补的角.(写两个即可)(3)写出图中∠O相等的角.(写两个即可)【答案】(1)画图见解析;(2)∠ODP,∠PCO(答案不唯一);(3)∠ACP,∠BDP(答案不唯一).【解析】试题分析:(1)根据平行线的画法画图即可;(2)直接利用平行线的性质以及结合互补的定义得出答案;(3)根据平行线的性质可得∠O=∠PCA,∠BDP=∠O.试题解析:(1)如图所示:PC,PD,即为所求;(2)∵PC∥BO,∴∠CPD+∠ODP=180°,∵PD∥AO,∴∠CPD+∠PCO=180°与∠CPD互补的角有:∠ODP,∠PCO;故答案为∠ODP,∠PCO(答案不唯一).(3)∵PD∥AO,∴∠O=∠BDP,∵CP∥BO,∴∠ACP=∠O,∴∠O相等的角有:∠ACP,∠BDP.故答案为∠ACP,∠BDP(答案不唯一).21.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=12()∠ABE=12()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()【答案】∠ABC,两直线平行,同位角相等;∠ADE,∠ABC,角平分线的定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等【解析】【分析】根据平行线的性质由DE∥BC得∠ADE=∠ABC,再根据角平分线的定义得到∠ADF=12∠ADE,∠ABE=12∠ABC,则∠ADF=∠ABE,然后根据平行线的判定得到DF∥BE,最后利用平行线的性质得∠FDE=∠DEB.【详解】∵DE∥BC,∴∠ADE=∠ABC,∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=12∠ADE,∠ABE=12∠ABC,∴∠ADF=∠ABE,∴DF∥BE,∴∠FDE=∠DEB.故答案为∠ABC,两直线平行,同位角相等;∠ADE,∠ABC,角平分线的定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.22. (1)在平面直角坐标系中,描出下列3个点:A (-1,0),B (3,-1),C (4,3);(2) 顺次连接A,B,C,组成△ABC,求△ABC的面积.【答案】(1)图形见解析(2)8.5【解析】【分析】(1)建立平面直角坐标系,然后画图;(2)用三角形所在的长方形的面积减去四周的三个三角形的面积即可得.【详解】(1)如图(2)如图所示,ABC EFHC EAC AFB BHC S S S S S ∆∆∆∆=---X=20-7.5-2-2=8.5答:△ABC 的面积为8.5.23.如图,已知∠AED =60°,∠2=30°,EF 平分∠AED ,可以判断EF ∥BD 吗?为什么?【答案】EF∥BD ,理由见解析.【解析】【详解】试题分析:本题可通过证直线EF 与BD 的内错角∠1和∠2相等,来得出EF∥BD 的结论. 试题解析:EF∥BD ;理由如下:∵∠AED=60°,EF 平分∠AED ,∴∠FED=30°,又∵∠FED=∠2=30°,∴EF∥BD 考点:平行线的判定.24.已知a 、b 、c 2a 2(c a)-+|b+c|.【答案】-a .【解析】【分析】直接利用数轴得出a <0,a+b <0,c-a >0,b+c <0,进而化简得出答案.【详解】解:如图所示:a <0,a+b <0,c-a >0,b+c <0, 故2a -|a+b|+2(c a) +|b+c|=-a+a+b+c-a-b-c=-a .【点睛】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.25.已知AB ∥DE ,∠ABC =800,∠CDE =1400.请你探索出一种(只须一种)添加辅助线求出∠BCD 度数的方法,并求出∠BCD 的度数.【答案】∠BCD =40°【解析】【分析】过点C 作FG ∥AB ,根据平行线的传递性得到FG ∥DE ,根据平行线的性质得到∠B=∠BCF ,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=80°,由等式性质得到∠DCF=40°,于是得到结论.【详解】解:过C 作CF ∥DE∵CF ∥DE (作图)AB ∥DE (已知)∴AB ∥DE ∥CF (平行于同一条直线的两条直线平行)∴∠BCF =∠B =80°(两直线平行,内错角相等)∠DCF+∠D=180°(两直线平行,同旁内角互补)又∵∠D=140°(已知)∴∠DCF=40°(等量代换)又∵∠BCD=∠BCF-∠DCF(角的和差定义)∴∠BCD=80°-40°(等量代换)即∠BCD=40°【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,。

2019-2020学年第二学期七年级数学期中考试试题(带答案)

2019—2020学年第二学期期中质量检测七年级数学试题(时间:120分钟 总分:120分)第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1. 已知⎩⎨⎧-==32y x 错误!未找到引用源。

是二元一次方程4x +ay =7的一组解,则a 的值为( )错误!未找到引用源。

A .-5 B .5 C .31 D .31-2. 如图,下列条件中,能判定a∥b 的是( )A. ∠1=∠2B. ∠1=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°(第2题图) (第3题图)3.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为( )A .53°B .55°C .57°D .60° 4. 下列说法中不正确的是( )A. 抛掷一枚硬币,硬币落地时正面朝上是随机事件B. 把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C. 一个盒子中有白球m 个,红球6个,黑球n 个错误!未找到引用源。

每个球除了颜色外都相同错误!未找到引用源。

如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是6D. 某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖5. 为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件10元,乙种体育用品每件20元,共用去70元,请你设计一下,共有( )种购买方案.A .2B .3C .4D .56. 下列命题:①垂线段最短;②同位角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④内错角相等,两直线平行;⑤经过一点有且只有一条直线与已知直线平行;⑥如果x =2,那么x=2.其中真命题有( )A .1个B .2个C .3个D .4个7. 如图所示,∠A=28°,∠BFC=92°,∠B=∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°(第7题图) (第9题图)购买商品A 的数量(个) 购买商品B 的数量(个)购买总费用(元)第一次购物 4 3 93 第二次购物 6 6162若小丽需要购买3个商品A 和2个商品B ,则她要花费( )A. 64元B. 65元C. 66元D. 67元9.某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( ) A .抛一枚硬币,出现正面朝上B .掷一个正六面体的骰子,出现3点朝上C .一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D .从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球10.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .136 B .135 C .134 D .133(第10题图)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.命题“直角三角形两个锐角互余”的条件是 ,结论是 .12. 如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B =35°,∠ACE =60°,则∠A =___ ___.(第12题图)13. 在不透明的盒子中装有5个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出1个棋子,摸到黑色棋子的概率是41,则白色棋子的个数是 . 14. 已知⎩⎨⎧=+=+1023532y x y x ,则2019+x+y= .15.在“”方框中,任意填上“+”或“-”.能够构成完全平方式的概率是 .16. 小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:12:00时是一个两位数,数字之和为7;13:00时十位与个位数字与12:00是所看到的正好互换了;14:00时比12:00时看到的两位数中间多出一个0.如果设小明在12:00看到的数的十位数字是x ,个位数字是y ,根据题意可列方程组为 .17.如图,直线l 1、l 2相交于点A ,则点A 的坐标为 .(第17题图)18.已知如图,AB ∥CD ,试解决下列问题:(第18题图) (1)∠1+∠2+∠3+∠4=______;(2)试探究∠1+∠2+∠3+∠4+…+∠n=______.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分8分)解方程组:(1)⎩⎨⎧-=+=-1929327y x y x (2) ⎪⎩⎪⎨⎧=---=+1213343144y x y x20. (本题满分6分)如图,已知B ,C ,D 三点在同一条直线上,∠B=∠1,∠2=∠E . 求证:AD ∥CE .(第20题图)21. (本题满分8分)某商场为了吸引顾客,设立了一可以自由转动的转盘,AB 为转盘直径,如图所示,并规定:顾客消费100元(含100元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠. (1)某顾客正好消费99元,是否可以获得相应的优惠.(2)某顾客正好消费120元,他转一次转盘获得三种打折优惠的概率分别是多少?(第21题图)22.(本题满分9分)如图,将△ABC 的一角折叠,使点C 落在△ABC 内一点 (1)若∠1=40°,∠2=30°,求∠C 的度数;(2)试通过第(1)问,直接写出∠1、∠2、∠C 三者之间的关系.(第22题图)23. (本题满分9分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).24.(本题满分10分)已知如图1,线段AB、CD相交于点O ,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题(1)在图1中,写出∠A,∠B,∠C,∠D之间的关系为(2)如图2,在图1的结论下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.①仔细观察,在图2中“8字形”的个数:______个;②若∠D=400∠B=360,试求∠P的度数;③∠B和∠D为任意角时,其他条件不变,试直接写出∠P与∠B,∠D之间的数量关系,不需要说明理由.(第24题图)25.(本题满分12分)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.(第25题图)七年级数学试题(答案)一、选择题:每小题3分1.C2.C3.C4.D5.B6.D7.D8.C9.D 10.B二、填空题:11-14题每小题3分,15-18题每小题4分 11.一个三角形是直角三角形;它的两个锐角互余12. 850 13. 15 14. 2022 15.2116.⎩⎨⎧+-+=+-+=+)10(100)10(107x y y x y x x y y x 17.(21-,3) 18.(1) 5400; 1800(n-1)三、解答题19.(1) ⎩⎨⎧-=-=51y x (2) ⎪⎩⎪⎨⎧==4113y x 20.证明:∵∠B=∠1,∴AB ∥DE(同位角相等,两直线平行),…………2分∴∠2=∠ADE(两直线平行,内错角相等)………4分∵∠2=∠E ,∴∠E=∠ADE ,∴AD ∥CE(内错角相等,两直线平行).………6分21.(1)根据规定消费100元(含100元)以上才能获得一次转盘的机会,而99元小于100元,故不能获得转盘的机会;……………………………………2分 (2)某顾客正好消费120元,超过100元,可以获得转盘的机会。

长沙市2019-2020学年七年级下学期数学期中考试试卷A卷

长沙市2019-2020学年七年级下学期数学期中考试试卷A卷姓名:班级:成绩:一、单选题(共10题;共20分)1.(2分)(2013•资阳)16的平方根是()A .4B .±4C .8D .±82.(2分)(2017八上•深圳期中)在平而直角坐标系中,点P (-1.5)在()A .第一象限B .第二象限C .第三象限D .第四象限3.(2分)(2017八下•藁城开学考)在3.14、学、-■、旧、n这五个数中,无理数有(A .0个B .1个C・2个D .3个4.(2分)(2019八上•恩施期中)下面有4个汽车商标图案,其中是轴对称图形的是()<A>®®@a)②③④A .②B .C・①②④D・①③④5.(2分)如图所示,直线AB和CD相交于点0,0E.0F是过点0的射线,其中构成对顶角的是(A .ZA0F和ZD0EB .NE0F和匕B OEC .匕COF和匕BODD ・ZB0C和ZA0D6.(2分)如图,不能推出a〃b的条件是()A ・Z1=Z3B .Z1=Z4C .Z2=Z4D .匕2+N3二180°7.(2分)(2019七下•舞钢期中)如图.点E在BC的延长线上.下列条件中不能判定AB//CD的是(A .Z1=Z2B .匕3二匕4C ・ZB=ZDCED ・ND+NDAB=180°8.(2分)如图所示,己知AB〃CD,ZA=50°,ZC=ZE.则匕C等于(A .20cB .25°C .30cD .40c9.(2分)如图.在RtAABC中,NA=90°.AB二3,AC二4,P为边BC上一动点.PE1AB于E,PF±AC于F.则EF的最小值为()F3P CA.2B . 2.2C . 2.4D . 2.510.(2分)(2017•洛Pll模拟)如图,在平面直角坐标系xOy中,点A(1.0),B(2.0),正六边形ABCDEF 沿x轴正方向无滑动滚动,每旋转60’为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()B .(20172,"T)C .( 2018,饵)D .(2018,0)二、填空题(共6题;共6分)11.(1分)(2019八上•海伦期中)把“对顶角相等”改写成“如果…那么…”的形式是:12.(1分)第三象限的点M(x,y)且x =5.y2=9.则M的坐标是________.13.(1分)(2011•希望杯竞赛)下面是六个推断:①因为平角的两条边在一条直线上,所以直线是一个平角:②因为周角的两条边在一条射线上,所以射线是一个周角:③因为扇形是圆的一部分,所以圆周的一部分是扇形:④因为平行的线段没有交点,所以不相交的两条城段平行;⑤因为正方形的边长都相等,所以边长相等的四边形是正方形;⑥因为等腰三角形有两个内角相等,所以有两个内角相等的三角形是等腰三角形;其中正确的结论有个,其序号是:14.(1分)(2019八上•湛江期中)已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是。

湖南省2019-2020学年七年级下学期期中测试数学试卷1

湖南省2019-2020学年七年级下学期期中测试数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)如果7x4﹣k=y是二元一次方程,那么k的值是()A.2B.3C.1D.02.(3分)方程组的最简便的解法是()A.由①式得x=+4y,再代入②式B.由②式得y=,再代入①式C.①×3得③式,再将③式与②式相减D.由②式得9x=10y﹣25,再代入①式3.(3分)已知|3a﹣2b﹣12|+(a+2b+4)2=0.则()A.B.C.D.4.(3分)下列计算正确的是()A.x2•x3=x3B.(mn)2=mn2C.(﹣x5)4=x20D.(a2)3=a55.(3分)若x≠y,则下列各式不能成立的是()A.(x﹣y)2=(y﹣x)2B.(x﹣y)3=﹣(y﹣x)3C.(x+y)(y﹣x)=(x+y)(x﹣y)D.(x+y)2=(﹣x﹣y)26.(3分)计算100m•1000n的结果是()A.100000m+n B.100mn C.1000mn D. 102m+3n 7.(3分)计算()2013×(﹣)2014的结果是()A.B.﹣C.D.﹣8.(3分)若(x﹣4)(x+8)=x2+mx+n,则m、n的值分别为()A.4,32 B.4,﹣32 C.﹣4,32 D.﹣4,﹣32 9.(3分)在下列各式中,运算结果是m2﹣n4的是()A.(﹣n2+m)(﹣n2﹣m)B.(m﹣n2)(m﹣n2)C.(﹣n2﹣m)(n2﹣m)D.(﹣n2+m)(n2﹣m)10.(3分)一汽艇顺流航行36千米与逆流航行24千米的时间都是3小时,如果设汽艇在静水中的速度为每小时x千米,水流速度为每小时y千米,那么下面所列方程正确的是()A.B.C.D.二、填空(3&#215;10=30分)11.(3分)在方程3x+y=2中,用y表示x,则x=.12.(3分)既是方程4x+my=9的解,又是mx﹣ny=11的解,则m=,n=.13.(3分)计算﹣m2•(﹣m)5=.14.(3分)如果x﹣y=﹣5,z﹣y=11,则z﹣x=.15.(3分)若644×83=2x,则x=.16.(3分)如果单项式﹣3x4a﹣b y2与x3y a+b是同类项,那么这两个单项式的积是.17.(3分)若(x+y)2=9,(x﹣y)2=5,则xy=.18.(3分)(x+3)(x﹣5)是多项式因式分解的结果.19.(3分)下列从左到右的变形中,是因式分解的有①24x2y=4x•6xy ②(x+5)(x﹣5)=x2﹣25 ③x2+2x﹣3=(x+3)(x﹣1)④9x2﹣6x+1=3x(3x﹣2)+1 ⑤x2+1=x(x+)⑥3x n+2+27x n=3x n(x2+9)20.(3分)4x2+4mx+36是完全平方式,则m=.三、解方程组(8分)21.(8分)解方程组:(1)(2).四、计算(16分22.(16分)计算:(1)a3•a4•a+(a2)4+(﹣2a4)2(2)(﹣2a2b)3(3b2﹣4a+6)(3)(a+b﹣2c)2(4)9992(用简便方法)五、因式分解(6分)23.(6分)因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)六、化简求值(8分)24.(8分)已知210=a5=4b(a>0),求(a+b)(a﹣b)﹣(a+b)2的值.七、综合运用25.(8分)甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.26.(8分)某货主租用汽车运输公司的甲、乙两种货车运货,两次租用的车辆数和运货数如下表所示,问甲、乙两种货车每次能运货多少吨?第一次第二次甲种货车车辆数(辆) 5 2乙种货车车辆数(辆) 3 6累计运货数(吨)37.5 3927.(6分)观察下面各式的规律:12+(1×2)2+22=(1×2+1)222+(2×3)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2…(1)写出第2015个式子;(2)写出第n个式子,并验证你的结论.七年级下学期期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)如果7x4﹣k=y是二元一次方程,那么k的值是()A.2B.3C.1D.0考点:二元一次方程的定义.分析:利用二元一次方程的定义判断即可求出k的值.解答:解:因为7x4﹣k=y是二元一次方程,可得:4﹣k=1,解得:k=3,故选B.点评:此题考查了一元二次方程的定义,熟练掌握方程的定义是解本题的关键2.(3分)方程组的最简便的解法是()A.由①式得x=+4y,再代入②式B.由②式得y=,再代入①式C.①×3得③式,再将③式与②式相减D.由②式得9x=10y﹣25,再代入①式考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法解即为简便.解答:解:方程组的最简便的解法是①×3得③式,再将③式与②式相减,故选C点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(3分)已知|3a﹣2b﹣12|+(a+2b+4)2=0.则()A.B.C.D.考点:解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用非负数的性质列出方程组,求出方程组的解即可得到a与b的值.解答:解:∵|3a﹣2b﹣12|+(a+2b+4)2=0,∴,解得:.故选:B.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.(3分)下列计算正确的是()A.x2•x3=x3B.(mn)2=mn2C.(﹣x5)4=x20D.(a2)3=a5考点:幂的乘方与积的乘方;同底数幂的乘法.分析:结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法等运算,然后选择正确选项.解答:解:A、x2•x3=x5,原式计算错误,故本选项错误;B、(mn)2=m2n2,原式计算错误,故本选项错误;C、(﹣x5)4=x20,计算正确,故本选项正确;D、(a2)3=a6,原式计算错误,故本选项错误.故选C.点评:本题考查了幂的乘方和积的乘方、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.5.(3分)若x≠y,则下列各式不能成立的是()A.(x﹣y)2=(y﹣x)2B.(x﹣y)3=﹣(y﹣x)3C.(x+y)(y﹣x)=(x+y)(x﹣y)D.(x+y)2=(﹣x﹣y)2考点:幂的乘方与积的乘方.分析:结合选项分别进行幂的乘方和积的乘方、平方差公式、完全平方等运算,然后选择正确选项.解答:解:A、(x﹣y)2=(y﹣x)2,计算正确,故本选项错误;B、(x﹣y)3=﹣(y﹣x)3,计算正确,故本选项错误;C、(x+y)(y﹣x)=﹣(x+y)(x﹣y),原式计算错误,故本选项正确;D、(x+y)2=(﹣x﹣y)2,原式计算正确,故本选项错误.故选C.点评:本题考查了幂的乘方和积的乘方、平方差公式、完全平方等知识,掌握运算法则是解答本题的关键.6.(3分)计算100m•1000n的结果是()A.100000m+n B.100mn C.1000mn D.102m+3n考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:原式=(10)2m•(10)3n=102m+3n.故选D.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.7.(3分)计算()2013×(﹣)2014的结果是()A.B.﹣C.D.﹣考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:原式=[×(﹣)]2013×(﹣)=.故选C.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.8.(3分)若(x﹣4)(x+8)=x2+mx+n,则m、n的值分别为()A.4,32 B.4,﹣32 C.﹣4,32 D.﹣4,﹣32考点:多项式乘多项式.分析:把式子展开,根据对应项系数相等,列式求解即可得到m、n的值.解答:解:∵(x﹣4)(x+8)=x2+mx+n,∴x2+4x﹣32=x2+mx+n,∴m=4,n=﹣32,故选B.点评:本题主要考查了多项式乘多项式,根据对应项系数相等求解是解本题的关键.9.(3分)在下列各式中,运算结果是m2﹣n4的是()A.(﹣n2+m)(﹣n2﹣m)B.(m﹣n2)(m﹣n2)C.(﹣n2﹣m)(n2﹣m)D.(﹣n2+m)(n2﹣m)考点:平方差公式.专题:计算题.分析:各项中利用平方差公式,以及多项式乘以多项式法则计算得到结果,即可做出判断.解答:解:(﹣n2﹣m)(n2﹣m)=m2﹣n4,故选C点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.10.(3分)一汽艇顺流航行36千米与逆流航行24千米的时间都是3小时,如果设汽艇在静水中的速度为每小时x千米,水流速度为每小时y千米,那么下面所列方程正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:根据题意可得等量关系:①顺流速度(x+y)×顺流时间3小时=顺流路程36千米;②逆流速度(x﹣y)×逆流时间3小时=逆流路程24千米,根据等量关系可得方程组.解答:解:设汽艇在静水中的速度为每小时x千米,水流速度为每小时y千米,由题意得:,故选:B.点评:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.二、填空(3&#215;10=30分)11.(3分)在方程3x+y=2中,用y表示x,则x=.考点:解二元一次方程.分析:把方程3x+y=2写成用含x的代数式表示y,需要进行移项即得.解答:解:移项得:3x=2﹣y,x=,故答案为:.点评:本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的左边,其它的项移到另一边.12.(3分)既是方程4x+my=9的解,又是mx﹣ny=11的解,则m=3,n=2.考点:二元一次方程组的解.分析:由于方程的解适合方程,所以将解代入方程即可求得未知系数的值.解答:解:把分别代入方程4x+my=9和mx﹣ny=11,得到12﹣m=9,即m=3;把m=3和代入mx﹣n y=11,得n=2.所以m=3,n=2.点评:解题关键是把方程的解分别代入两个方程来求解.13.(3分)计算﹣m2•(﹣m)5=m7.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:﹣m2•(﹣m)5=m2•m5=m7.故答案为:m7.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.14.(3分)如果x﹣y=﹣5,z﹣y=11,则z﹣x=16.考点:解三元一次方程组.分析:由题意,观察已知方程和所求方程,将方程z﹣y=11减去方程x﹣y=﹣5,即可求解.解答:解:已知方程,x﹣y=﹣5和z﹣y=11,∴x﹣y﹣(z﹣y)=﹣5﹣11,∴x﹣z=﹣16,∴z﹣x=16.故答案为16.点评:此题主要三元一次方程的定义,以及整体代入求解法,把z﹣x看为一个整体,比较简单.15.(3分)若644×83=2x,则x=33.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:本题中可以把:644和83都化成以2为底的幂,然后利用同底数幂的乘法.转化为左右两边底数相同的一个式子,根据指数相等即可求出x的值.解答:解:644×83=(82)4×83=88×83=811=(23)11=233.∴x=33.故应填33.点评:本题主要考查了幂的乘方的性质,解决的关键是逆用运算性质,把等号的左右两边的式子转化为底数相同的式子.16.(3分)如果单项式﹣3x4a﹣b y2与x3y a+b是同类项,那么这两个单项式的积是﹣x6y4.考点:单项式乘单项式;同类项;解二元一次方程组.分析:首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b的值,即可写出两个单项式,从而求出这两个单项式的积.解答:解:由同类项的定义,得,解得:∴原单项式为:﹣3x3y2和x3y2,其积是﹣x6y4.故答案为:﹣x6y4点评:本题考查同类项定义、解二元一次方程组的方法和同类项相乘的法则,要准确把握法则同类项相乘系数相乘,指数相加是解题的关键.17.(3分)若(x+y)2=9,(x﹣y)2=5,则xy=1.考点:完全平方公式.分析:完全平方公式:(a±b)2=a2±2ab+b2.先利用完全平方公式把条件展开,然后两式相减即可求出xy的值.解答:解:(x+y)2=x2+2xy+y2=9 (1),(x﹣y)2=x2﹣2xy+y2=5 (2),(1)﹣(2)可得:4xy=4,解得xy=1.点评:本题考查了完全平方公式和消元思想的运用,关键是能否看出通过两个条件的加相减消去平方项,剩下所求的未知数项.18.(3分)(x+3)(x﹣5)是多项式x2﹣2x﹣15因式分解的结果.考点:因式分解-十字相乘法等.专题:计算题.分析:利用多项式乘以多项式法则计算原式,得到结果即可.解答:解:(x+3)(x﹣5)=x2﹣5x+3x﹣15=x2﹣2x﹣15,故答案为:x2﹣2x﹣15点评:此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.19.(3分)下列从左到右的变形中,是因式分解的有③⑥①24x2y=4x•6xy ②(x+5)(x﹣5)=x2﹣25 ③x2+2x﹣3=(x+3)(x﹣1)④9x2﹣6x+1=3x(3x﹣2)+1 ⑤x2+1=x(x+)⑥3x n+2+27x n=3x n(x2+9)考点:因式分解的意义.分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:③x2+2x﹣3=(x+3)(x﹣1),⑥3x n+2+27x n=3x n(x2+9)是因式分解,故答案为:③⑥.点评:本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.20.(3分)4x2+4mx+36是完全平方式,则m=±6.考点:完全平方式.分析:完全平方式有两个:a2+2ab+b2,a2﹣2ab+b2,根据完全平方式的特点得出mx=±2•2x•6,求出即可.解答:解:∵4x2+4mx+36是一个完全平方式,∴mx=±2•2x•6,解得:m=±6,故答案为:±6.点评:本题考查了完全平方式的应用,解此题的关键是能得出kx=±2•x•7,注意:完全平方式有两个:a2+2ab+b2,a2﹣2ab+b2,难度不是很大.三、解方程组(8分)21.(8分)解方程组:(1)(2).考点:解二元一次方程组;解三元一次方程组.专题:计算题.分析:(1)方程组整理后,利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.解答:解:(1)方程组整理得:,②×6﹣①得:11x=55,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),①×2﹣②得:2x+3y=1④,①×2﹣③得:3x+2y=14⑤,⑤×3﹣④×2得:5x=40,即x=8,把x=8代入④得:y=﹣5,把x=8,y=﹣5代入③得:z=﹣2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.四、计算(16分22.(16分)计算:(1)a3•a4•a+(a2)4+(﹣2a4)2(2)(﹣2a2b)3(3b2﹣4a+6)(3)(a+b﹣2c)2(4)9992(用简便方法)考点:整式的混合运算.分析:(1)运用幂的乘法,幂的乘方,合并同类项,按运算法则运算即可;(2)运用幂的乘方,单项式乘多项式运算法则运算可得结果;(3)先运用加括号法则加括号,再利用完全平方公式展开即可得到结果;(4)把999改为1000﹣1,利用完全平方公式展开即可.解答:解:(1)a3•a4•a+(a4)2+(﹣2a4)2,=a8+a8+4a8,=6a8.(2)(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.(3)原式=[(a+b)﹣2c]2=[(a+b)](a+b)2﹣4c(a+b)+4c2=a2+2ab+b2﹣4ac﹣4bc+4c2;(4)9992=(1000﹣1)2=10002﹣2×1000×1+12=1000000﹣2000+1=998001.点评:本题主要考查了单项式与多项式相乘,同底数幂的乘方与的乘法,完全平方公式,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.五、因式分解(6分)23.(6分)因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)考点:因式分解-提公因式法.专题:计算题.分析:(1)原式变形后,提取公因式即可得到结果;(2)原式提取公因式即可得到结果.解答:解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.六、化简求值(8分)24.(8分)已知210=a5=4b(a>0),求(a+b)(a﹣b)﹣(a+b)2的值.考点:整式的混合运算—化简求值;幂的乘方与积的乘方.分析:由210=a5=4b(a>0),得出a、b的数值,进一步化简代数式代入求得答案即可.解答:解:∵210=a5=4b,∴a=4,b=5,∴(a+b)(a﹣b)﹣(a+b)2=a2﹣b2﹣a2﹣2ab﹣b2=﹣2ab﹣2b2=﹣90.点评:此题考查整式的混合运算与化简求值,注意先化简,再进一步代入求得数值.七、综合运用25.(8分)甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.考点:二元一次方程组的解.分析:根据甲看错了方程①中的m,②没有看错,代入②得到一个方程求出n的值,乙看错了方程②中的n,①没有看错,代入①求出m的值,然后再把m、n的值代入代数式计算即可求解解答:解:根据题意得,4×(﹣3)﹣b(﹣1)=﹣2,5a+5×4=15,解得m=﹣1,n=10,把m=﹣1,n=10代入代数式,可得:原式=91.点评:本题考查了二元一次方程的解,根据题意列出方程式解题的关键.26.(8分)某货主租用汽车运输公司的甲、乙两种货车运货,两次租用的车辆数和运货数如下表所示,问甲、乙两种货车每次能运货多少吨?第一次第二次甲种货车车辆数(辆) 5 2乙种货车车辆数(辆) 3 6累计运货数(吨)37.5 39考点:二元一次方程组的应用.分析:两个相等关系:第一次5辆甲种货车载重的吨数+3辆乙种货车载重的吨数=37.5;第二次2辆甲种货车载重的吨数+6辆乙种货车载重的吨数=39,根据以上两个相等关系,列方程组求解.解答:解:设甲种货车每辆载重x吨,乙种货车每辆载重y吨,则,解得:.答:甲种货车每次运货4.5吨,乙种货车每次运货5吨.点评:本题考查了二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.27.(6分)观察下面各式的规律:12+(1×2)2+22=(1×2+1)222+(2×3)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2…(1)写出第2015个式子;(2)写出第n个式子,并验证你的结论.考点:规律型:数字的变化类.分析:(1)仿照已知式子得出第2015个式子即可;(2)以此类推得出第n个式子即可.解答:解:(1)根据题意得:第2015个式子为20152+2+20162=2;(2)以此类推,第n行式子为n2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2.证明:左边=n2+(n2+n)2+(n+1)2=n4+2n3+3 n2+2n+1右边=(n2+n+1)2=n4+2n3+3 n2+2n+1所以n2+[n•(n+1)]2+(n+1)2=[n•(n+1)+1]2点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.。

2019-2020学年湘教版七年级数学下册期中检测卷及答案

2019-2020学年七年级数学下册期中测试题一、选择题(共36分,每小题3分)1.方程4x﹣1=3的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣22.若a:b:c=2:3:7,且a﹣b+3=c﹣2b,则c=()A.7 B.63 C.10.5 D.5.253.若a﹣b<0,则下列各式中一定正确的是()A.a>b B.ab>0 C.D.﹣a>﹣b4.如图,数轴上有A、B、C、D四点,根据图中各点的位置,各点表示的数与5﹣的结果最接近的点是()A.A B.B C.C D.D5.不等式1﹣2x<5﹣x的负整数解有()A.1个 B.2个 C.3个 D.4个6.如果点M(a﹣1,a+1)在x轴上,则a的值为()A.a=1 B.a=﹣1C.a>0 D.a的值不能确定7.在等式y=kx+b中,当x=2时,y=﹣4;当x=﹣2时,y=8,则这个等式是()A.y=3x+2 B.y=﹣3x+2 C.y=3x﹣2 D.y=﹣3x﹣28.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.方程2x﹣3y=7,用含x的代数式表示y为()A.y=B.y=C.x=D.x=10.二元一次方程x+3y=10的非负整数解共有()对.A.1 B.2 C.3 D.4二、填空题(共24分,每小题3分)11.已知方程mx﹣2=3x的解为x=﹣1,则m=.12.当x=时,代数式与x﹣3的值互为相反数.13.不等式3x﹣2≤5x+6的所有负整数解的和为.14.某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了枚,80分的邮票买了枚.15.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于°.16.已知关于x的不等式组的整数解共有5个,则a的取值范围是.三、解答题17.解方程组:(1)(2).18.解不等式组,并在数轴上表示出它的解集.19.已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC.且∠1=∠3.求证:AB∥DC.20.已知△ABC三个顶点的坐标分别是A(﹣3,﹣1)、B(1,3)、C(2,﹣3)(1)在平面直角坐标系中描出各点并画出△ABC;(2)将△ABC向下平移3个单位,再向右平移2个单位,得到△A′B′C′,画出△A′B′C;(3)求△ABC的面积.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?参考答案与试题解析一、选择题(共36分,每小题3分)1.方程4x﹣1=3的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2【考点】86:解一元一次方程.【分析】根据解一元一次方程的方法可以求得方程4x﹣1=3的解,从而可以解答本题.【解答】解:4x﹣1=3∴4x=4,∴x=1,故选A.【点评】本替考查解一元一次方程,解答本题的关键是明确解一元一次方程的方法.2.若a:b:c=2:3:7,且a﹣b+3=c﹣2b,则c=()A.7 B.63 C.10.5 D.5.25【考点】9C:解三元一次方程组.【专题】11 :计算题.【分析】利用a、b、c比值可设a=2t,b=3t,c=7t,于是可得到关于t的一次方程2t﹣3t+3=7t﹣6t,解方程得t=1.5,然后计算7t即可.【解答】解:由a:b:c=2:3:7可设a=2t,b=3t,c=7t,把a=2t,b=3t,c=7t代入a﹣b+3=c﹣2b,得2t﹣3t+3=7t﹣6t,解得t=1.5,所以c=7t=10.5.故选C.【点评】本题考查了解三元一次方程组:利用设比例系数的方法把三元一次方程组转化为一元一次方程求解.3.若a﹣b<0,则下列各式中一定正确的是()A.a>b B.ab>0 C.D.﹣a>﹣b【考点】C2:不等式的性质.【专题】11 :计算题.【分析】由a﹣b<0,可得:a<b,因而a>b错误;当a<0 b>0时,ab>0错误;当a=﹣1,b=2时,<0因而第三个选项错误;根据:不等式两边乘(或除以)同一个负数,不等号的方向改变.在不等式a<b的两边同时乘以﹣1,得到:﹣a>﹣b.【解答】解:∵a﹣b<0,∴a<b,根据不等式的基本性质3可得:﹣a>﹣b;故本题选D.【点评】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.如图,数轴上有A、B、C、D四点,根据图中各点的位置,各点表示的数与5﹣的结果最接近的点是()A.A B.B C.C D.D【考点】29:实数与数轴.【分析】先估算出5﹣的取值范围,进而可得出结论.【解答】解:∵25<30<36,∴5<<6,∴﹣5>﹣>﹣6,∴5﹣6<5﹣<5﹣5,即﹣1<5﹣<0.故选C.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.5.不等式1﹣2x<5﹣x的负整数解有()A.1个 B.2个 C.3个 D.4个【考点】CC:一元一次不等式组的整数解.【分析】根据解不等式的步骤解出不等式的解集,再找出符合条件的整数即可.【解答】解:1﹣2x<5﹣x﹣2x+x<5﹣1﹣x<4x>﹣.所以不等式1﹣2x<5﹣x的负整数解有﹣2,﹣1共2个.故选:B.【点评】此题主要考查了一元一次不等式的解法,掌握解一元一次不等式得步骤是本题的关键.6.如果点M(a﹣1,a+1)在x轴上,则a的值为()A.a=1 B.a=﹣1C.a>0 D.a的值不能确定【考点】D1:点的坐标.【分析】利用知识点在x轴上的点的纵坐标是0列式计算即可得a的值.【解答】解:∵点M(a﹣1,a+1)在x轴上,∴a+1=0,解得:a=﹣1.故选B.【点评】解决本题的关键是记住x轴上点的特点为点的纵坐标为0.7.在等式y=kx+b中,当x=2时,y=﹣4;当x=﹣2时,y=8,则这个等式是()A.y=3x+2 B.y=﹣3x+2 C.y=3x﹣2 D.y=﹣3x﹣2【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】分别把当x=2时,y=﹣4,当x=﹣2时,y=8代入等式,得到关于k、b的二元一次方程组,求出k、b的值即可.【解答】解:分别把当x=2时,y=﹣4,当x=﹣2时,y=8代入等式y=kx+b得,,①﹣②得,4k=﹣12,解得k=﹣3,把k=﹣3代入①得,﹣4=﹣3×2+b,解得b=2,分别把k=﹣3,b=2的值代入等式y=kx+b得,y=﹣3x+2,故选B.【点评】本题主要考查的是解二元一次方程组的加减消元法和代入消元法,难度适中.8.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【考点】2B:估算无理数的大小;22:算术平方根.【专题】2B :探究型.【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选B.【点评】本题考查的是估算无理数的大小及正方形的性质,根据题意估算出的取值范围是解答此题的关键.9.方程2x﹣3y=7,用含x的代数式表示y为()A.y=B.y=C.x=D.x=【考点】93:解二元一次方程.【分析】本题是将二元一次方程变形,先移项、再系数化为1即可.【解答】解:移项,得﹣3y=7﹣2x,系数化为1,得y=,即y=.故选:B.【点评】解题时可以参照一元一次方程的解法,可以把x当做已知数来处理.10.二元一次方程x+3y=10的非负整数解共有()对.A.1 B.2 C.3 D.4【考点】93:解二元一次方程.【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是非负整数,那么把最小的非负整数y=0代入,算出对应的x的值,再把y=1代入,再算出对应的x的值,依此可以求出结果.【解答】解:∵x+3y=10,∴x=10﹣3y,∵x、y都是非负整数,∴y=0时,x=10;y=1时,x=7;y=2时,x=4;y=3时,x=1.∴二元一次方程x+3y=10的非负整数解共有4对.故选:D.【点评】由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的非负整数解,即此方程中两个未知数的值都是非负整数,这是解答本题的关键.注意:最小的非负整数是0.二、填空题(共24分,每小题3分)11.已知方程mx﹣2=3x的解为x=﹣1,则m=1.【考点】85:一元一次方程的解.【专题】11 :计算题.【分析】此题可将x=﹣1代入方程,得出关于m的一元一次方程,解方程即可得出m 的值.【解答】解:将x=﹣1代入方程mx﹣2=3x中:得:﹣m﹣2=﹣3∴m=1故填:1.【点评】本题主要考查的是已知原方程的解,求原方程中未知系数.只需把原方程的解代入原方程,把未知系数当成新方程的未知数求解即可.12.当x=时,代数式与x﹣3的值互为相反数.【考点】8A:一元一次方程的应用;14:相反数.【专题】12D:和差倍关系问题.【分析】紧扣互为相反数的特点:互为相反数的和为0.【解答】解:∵代数式与x﹣3的值互为相反数,∴+x﹣3=0,解得:x=.故填.【点评】要明确互为相反数的特点:互为相反数的和为0.13.不等式3x﹣2≤5x+6的所有负整数解的和为﹣10.【考点】C7:一元一次不等式的整数解.【分析】首先解不等式,然后确定不等式的负整数解,最后求和即可.【解答】解:移项得3x﹣5x≤6+2,合并同类项,得:﹣2x≤8,系数化为1得:x≥﹣4.则负整数解是:﹣4,﹣3,﹣2,﹣1.则﹣4﹣3﹣2﹣1=﹣10.故答案是:﹣10.【点评】本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了14枚,80分的邮票买了6枚.【考点】9A:二元一次方程组的应用.【分析】本题中含有两个定量:邮票总张数,钱的总数.根据这两个定量可找到两个等量关系:60分邮票的张数+80分邮票的张数=20,0.6×60分邮票的张数+0.8×80分邮票的张数=13.2.【解答】解:设买了60分的邮票x张,80分的邮票y枚.则,解得.故填14;6.【点评】用二元一次方程组解决问题的关键是找到2个合适的等量关系.在本题中需找到两个定量:邮票总张数,钱的总数.在做题过程中还要注意钱的单位要统一.15.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50°.【考点】PB:翻折变换(折叠问题).【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.【点评】此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.16.已知关于x的不等式组的整数解共有5个,则a的取值范围是﹣3<a ≤﹣2.【考点】CC:一元一次不等式组的整数解.【分析】将a看做已知数,求出不等式组的解集,根据解集中整数解有5个,即可确定出a的范围.【解答】解:不等式组解得:a≤x≤2,∵不等式组的整数解有5个为2,1,0,﹣1,﹣2,∴﹣3<a≤﹣2.故答案为:﹣3<a≤﹣2.【点评】此题考查了一元一次不等式组的整数解,弄清题意是解本题的关键.三、解答题17.解方程组:(1)(2).【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】(1)方程组整理后利用加减消元法消去x求出y的值,继而求出x的值,即可确定出方程组的解;(2)设a=x+y,b=x﹣y,方程组变形后求出a与b的值,进而求出x与y的值,得到方程组的解.【解答】解:(1)方程组整理得:,②×2﹣①×3得:5y=﹣4,即y=﹣,将y=﹣代入①得:x=,则方程组的解为;(2)设x+y=a,x﹣y=b,方程组整理得:,①×5+②×2得:a=8,b=6,即,解得:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.18.解不等式组,并在数轴上表示出它的解集.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【专题】11 :计算题.【分析】利用去分母及去括号法则化简原不等式组的两不等式,分别求出解集,将两解集表示在数轴上,找出两解集的公共部分,即可得到原不等式组的解集.【解答】解:,由不等式①去分母得:x+5>2x,解得:x<5;由不等式②去括号得:x﹣3x+3≤5,解得:x≥﹣1,把不等式①、②的解集表示在数轴上为:则原不等式的解集为﹣1≤x<5.【点评】此题考查了一元一次不等式组的解法,以及在数轴上表示不等式的解集,其中不等式组取解集的方法为:同大取大;同小取小;大小小大取中间;大大小小无解.19.已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC.且∠1=∠3.求证:AB∥DC.【考点】JB:平行线的判定与性质.【专题】14 :证明题.【分析】由条件和角平分线的定义可求得∠2=∠3,可证明AB∥CD.【解答】证明:∵BF、DE分别平分∠ABC与∠ADC,∴∠ABC=2∠1,∠ADC=2∠2,∵∠ABC=∠ADC,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∴AB∥CD.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.20.已知△ABC三个顶点的坐标分别是A(﹣3,﹣1)、B(1,3)、C(2,﹣3)(1)在平面直角坐标系中描出各点并画出△ABC;(2)将△ABC向下平移3个单位,再向右平移2个单位,得到△A′B′C′,画出△A′B′C;(3)求△ABC的面积.【考点】Q4:作图﹣平移变换.【分析】(1)根据直角坐标系的特点作出点A、B、C,然后顺次连接;(2)分别将点A、B、C向下平移3个单位,再向右平移2个单位,然后顺次连接;(3)用△ABC所在的矩形的面积减去三个小三角形的面积.【解答】解:(1)所作图形如图所示:(2)所作图形如图所示:=6×5﹣×4×4﹣×5×2﹣×6×1=30﹣16=14.(3)S△ABC故△ABC的面积为14.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得:.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.【点评】本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多少?设合伙人数为 x 人,物价为 y 钱,以下列出的方程组正确的是
A.
쏘 7쏘 4
B. 7쏘 쏘 4
C.
쏘 7쏘
4
D.
쏘 7쏘
4
第 1页,共 4页
. 把一些牛奶分给几个老人,如果每人分 3 瓶,那么余 8 瓶;如果前面的每个老人分
5 瓶,那么最后一人就分不到 3 瓶.则共有老人
A. 4 人
B. 5 人
1.(t 分) 1 计算: 1t ᦙ t4
ᦙt
t.
求下列式中 x 的值. x2 16 0
h쏘 ᦙ
쏘1
22.(5 分)解不等式组 1
쏘 t
㓴 1쏘
,并写出该不等式组的所有整数解.
쏘 21. (5 分)解方程组: 1
7

1
四、解答题(本大题共 5 小题,共 42.0 分) . (6 分)某公司销售甲,乙两种球鞋,去年共卖出 12200 双.今年甲种球鞋卖出的 数量比去年增加 tt,乙种球鞋卖出的数量比去年减少 ht,两种球鞋的总销量增 加了 50 双.去年甲,乙两种球鞋各卖出多少双?
A. 1 B. 1h C. 1 h D.
t. 已知三角形两边长分别为 1,5,第三边长为整数,则第三边长为
A. 4
B. 5
C. 6
D. 7
7. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今
有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人
合伙购物,每人出 8 钱,会多 3 钱;每人出 7 钱,又会差 4 钱,问人数、物价各是
x
的不等式组
쏘 h
쏘 㓴 无解,则 a 的取值范围是_________.
1 . 若쏘 1t,那么 h 쏘 的算术平方根是
第 页,共 4页
.
若关于
x
的不等式组
2x
15
3
2
2 x
xa x3
只有
3
个整数解,则
a
的取值范围是
__________.
三、计算题(本大题共 3 小题,共 16.0 分)
m
推出 㓴 m 的有
A. 0 个
B. 1 个
C. 2 个
D. 3 个
1 . 对于有理数 x,我们规定 쏘 表示不大于 x 的最大整数,例如 1. 1,

ᦙh
,若 쏘ᦙ4
1
h,则 x 的取值可以是
A. 40
B. 45
C. 51
第 II 卷(非选择题)
二、填空题(本大题共 8 小题,共 24.0 分)
D. 56
y
4
,则
17 ᦙ
m 1 ________.
1
1t. 如图,点 D 在
的边 AC 的延长线上, 体体 ,若
的度数为______.
th ,
4 ,则
第 1t 题图
17. 如图,将
沿 BC 方向平移 3cm 得到
边形 ABFD 的周长为______.
第 17 题图
h,若
的周长为 20cm,则四
1
.
已知关于
. ( 分) 表示 n 边形的对角线的交点个数 指落在其内部的交点 ,如果这些交点
都不重合,那么 与 n 的关系式是:
1 4
ᦙ m 其中 a、b 是常数,
4.
1 通过画图,可得:四边形时, 4
五边形时, h
请根据四边形和五边形对角线交点的个数,结合关系式,求 a、b 的值.
第 页,共 4页
24. (8 分)如图,已知 体体 ,
出售 C 型钢板每块的利润为 100 元,D 型钢板每块的利润为 120 元.若小可爱 将 C、D 型钢板全部出售,请你设计获利最大的购买方案.
第 4页,共 4页
A. 1
B. 1h
C. 11
4. 下列五个命题:
如果两个数的绝对值相等,那么这两个数的平方相等;
内错角相等;
在同一平面内,垂直于同一条直线的两条直线互相平行;
两个无理数的和一定是无理数;
坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是
A. 2 个
B. 3 个
C. 4 个
D. 5 个
h. 如图,已知直线 体体m,则 1 ᦙ
绝密★启用前
周南梅溪湖中学 2020 年上学期初一第二次学情调查
数学试卷
考试时间:120 分钟;命题人:陈冏 审题人:初一数学组 学校:___________姓名:___________班级:___________考号:___________ 注意:本试卷包含Ⅰ、Ⅱ两卷。第Ⅰ卷为选择题,所有答案必须用 2B 铅笔涂在答题卡 中相应的位置。第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。答案写在试 卷上均无效,不予记分。
C. 6 人
D. 5 人或 6 人
.
已知
x,y
满足方程组
쏘ᦙ 쏘ᦙ
4h,则 쏘
等于
A. 9
B. 3
C. 1
D. 1
1. 已知关于 x,y 的二元一次方程组
쏘ᦙ 쏘
7h和
쏘ᦙ 쏘ᦙ
m
4
有相同的解,则 − m
的值是
A. 13
B. 9
C.
D. 1
11. 下列四个不等式: 1 㓴 m ;
m;
㓴m
; 4 㓴 1,一定能

1 求证 体体 .
若1 数.
t ,
,求
的度
25. (8 分)已知关于 x、y 的方程组
쏘 쏘ᦙ
4 ᦙ h的解满足 쏘 㓴 㓴 .
1 求 a 的取值范围;
化简t t ᦙ t t.
26. (12 分)用 1 块 A 型钢板可制成 2 块 C 型钢板和 1 块 D 型钢板;用 1 块 B 型钢板
可制成 1 块 C 型钢板和 3 块 D 型钢板.现准备购买 A、B 型钢板共 100 块,并全部 加工成 C、D 型钢板.要求 C 型钢板不少于 120 块,D 型钢板不少于 250 块,设购 买 A 型钢板 x 块 쏘 为整数 1 求 A、B 型钢板的购买方案共有多少种?
x 1 1 . 若 y 2 是方程 쏘
的一个解,则 a 的值是__________.
14. 不等式 쏘 ᦙ 㓴 1 쏘 的负整数解共有______个.
ax 5y 15 1h. 甲乙两人解方程组 4x by 2 ,甲解题看错了 a 的值,得到方程组的解是
x 3
x 5
y
1,乙看错了
b
的值,得到了方程组的解是
第 I 卷(选择题)
一、选择题(本大题共 12 小题,共 36.0 分)
1. 下列各式中正确的是
A. t t
B.
C.4D.源自x 2 . 把不等式组 x 1的解集在数轴上表示出来,其中正确的为
A.
B.
C.
D.
. 如图,一个含有 角的直角三角板的两个顶点放在一 个矩形的对边上,如果 1 ,那么 的度数是
相关文档
最新文档