音频功放实验报告
音频功率放大电路实验报告

音频功率放大电路实验报告音频功率放大电路实验报告引言:音频功率放大电路是一种常见的电子电路,用于将低功率的音频信号放大到足够的功率以驱动扬声器。
本实验旨在通过搭建和测试音频功率放大电路,探究其工作原理和性能。
一、实验目的本实验的目的是:1. 了解音频功率放大电路的基本原理和组成部分;2. 学习使用实验仪器和设备,如函数发生器、示波器等;3. 掌握音频功率放大电路的搭建和测试方法;4. 分析和评估音频功率放大电路的性能。
二、实验器材和元件本实验所需的器材和元件有:1. 函数发生器:用于产生音频信号;2. 示波器:用于观测电路的输入和输出波形;3. 电阻、电容、晶体管等元件:用于搭建音频功率放大电路。
三、实验步骤1. 搭建音频功率放大电路:根据实验指导书提供的电路图,按照电路图中的元件数值和连接方式,将电路搭建起来。
确保连接正确并无误。
2. 测试电路的输入和输出:使用函数发生器产生一个特定频率和幅度的正弦波信号作为输入信号,将其连接到音频功率放大电路的输入端。
使用示波器观测电路的输入和输出波形,并记录下来。
3. 测试电路的增益:通过改变函数发生器输出信号的幅度,逐步增加输入信号的幅度,观察输出信号的变化,并记录下输入和输出信号的幅度值。
根据记录的数据,计算电路的增益。
4. 测试电路的频率响应:保持输入信号的幅度不变,改变函数发生器输出信号的频率,观察输出信号的变化,并记录下输入和输出信号的频率值。
根据记录的数据,绘制电路的频率响应曲线。
5. 测试电路的失真:通过改变函数发生器输出信号的幅度和频率,观察输出信号是否出现失真现象,如畸变、截波等。
记录下失真出现的条件和情况,并进行分析。
四、实验结果和分析根据实验步骤中记录的数据,可以得到音频功率放大电路的增益、频率响应和失真情况。
根据实验结果进行分析,评估电路的性能。
五、实验总结通过本实验,我们了解了音频功率放大电路的基本原理和组成部分,学习了使用函数发生器、示波器等实验仪器和设备。
音频放大器 实验报告

音响放大器的设计一、 设计任务1) 功能要求:具有话筒扩音、音调控制、音量控制,卡拉OK 伴唱2) 已知条件:集成功率放大器LM386 1个,10K 欧姆高阻话筒一个(咪头,要加上拉电阻),输出电压为5mV ,集成运放LM324一只, +VCC = +9V ,8Ω/2W 负载电阻RL 1只,8Ω/4W 扬声器1只,MP3一台(连接输入线一条)3) 主要技术指标:额定功率 Po ≥0.3W(γ <3%);4) 负载阻抗 RL=8Ω;5) 截止频率fL=50Hz ,fH=20kHz ;6) 音调控制特性 1kHz 处增益为0dB ,125Hz 和8kHz 处有±12dB 的调节范围,A VL=A VH ≥20dB ;7) 话放级输入灵敏度 5mV ;8) 输入阻抗 Ri>>10K Ω。
二、 实验器材实验所需元件、示波器、万用表、覆铜板、函数发生器、热转印机、钻孔机、环保腐蚀液、变压器、MP3、喇叭等等三、 功能模块组成和增益分配图 1功能模块组成 话筒输入5mv 话音放大器(4.7倍)音频输入100mv 混合前置放大(3倍)音调控制器(0.8倍)功率放大器(30倍)扬声器+9V 电源四、功能模块设计(一)工作电源(+9V)电源模块由实验室稳压试验箱经过J1、J2接入电路模块,S1为电源开关,W1是7809稳压芯片,期中C3、C4为电源输入的滤波电容,C5、C6为电源输出的滤波电容,D1为发光二极管做上电指示用,P2为4个短接到地上的排针接口,作为测试用的接口。
图2稳压模块(二)话筒输入和话音放大器由于话筒的输出信号一般只有5mV左右,输出阻抗高。
所以话音放大器用来不失真地放大声音信号,输入阻抗需远大于话筒的输出阻抗,且符合阻抗匹配。
第一级设计成增益为:A V1=1+R2/R4=47K/10K=4.7,R2 =75KΩ; R4=10KΩ,放大后输出电压为V o1按设计要求应该达到24mv,原理图如下:图3话音放大器(三)音频输入和混合前置放大器混合前置放大器的作用是将MP3输出的音乐信号与话音混合放大,音频信号输出100MV,话音信号放大3倍,此级电路的电压放大倍数可以表示为:VO2 = - [ (R1/R5)*VO1 + (R1/R9)*V12 ]A V2= VO2/VO1=3其中R11为调节此级电路的输入阻抗的变阻器,用以控制此级电路的音量调控。
音频功率放大器实习报告

一、实习背景随着科技的发展,音频设备在日常生活和工业领域中的应用越来越广泛。
音频功率放大器作为音频设备的核心部件,其性能直接影响着音质和音效。
为了深入了解音频功率放大器的设计原理和应用,我们开展了此次实习。
二、实习目的1. 理解音频功率放大器的基本原理和结构;2. 掌握音频功率放大器的设计方法和技巧;3. 通过实验验证音频功率放大器的性能;4. 培养动手能力和团队协作精神。
三、实习内容1. 理论学习(1)音频功率放大器的基本原理:了解音频功率放大器的工作原理,包括输入信号、放大电路、输出电路等。
(2)音频功率放大器的分类:了解不同类型的音频功率放大器,如A类、B类、AB类、D类等。
(3)音频功率放大器的主要性能指标:了解音频功率放大器的输出功率、效率、失真度、频率响应等性能指标。
2. 电路设计(1)选择合适的放大电路:根据实际需求,选择合适的放大电路,如A类、B 类、AB类等。
(2)设计放大电路:根据所选放大电路,设计相应的电路图,包括放大器、偏置电路、保护电路等。
(3)元器件选择:根据电路图,选择合适的元器件,如晶体管、电容、电阻等。
3. 电路搭建与调试(1)搭建电路:根据电路图,将元器件焊接在电路板上。
(2)调试电路:对搭建好的电路进行调试,包括检查电路连接、测试放大器性能等。
4. 实验验证(1)输入信号:使用音频信号发生器产生输入信号。
(2)输出信号:使用示波器观察输出信号波形。
(3)性能测试:测试放大器的输出功率、效率、失真度、频率响应等性能指标。
四、实习结果与分析1. 理论成果通过实习,我们对音频功率放大器的基本原理、设计方法和性能指标有了更深入的了解。
2. 实践成果(1)成功搭建了一款音频功率放大器电路。
(2)通过实验验证了电路的性能,包括输出功率、效率、失真度、频率响应等。
3. 分析(1)在电路设计过程中,我们充分考虑了电路的稳定性和可靠性。
(2)在元器件选择方面,我们选择了合适的元器件,保证了电路的性能。
电子设计实验报告——音频功放

实验报告实验课程名称小型功率音频放大器LM386测试专业班级电信1403班学生学号2014213940学生姓名凌志云实验指导教师黄光明实验课程名称:电子设计1一、实验项目名称:小型功率音频放大器LM386的性能测试二、实验目的和要求:实验目的:1.熟悉焊接工艺;2.熟悉测量的理解和仪器的使用;3.增强对电路的理解。
实验要求:1.从网上下载LM386.PDF资料并阅读。
2.按所给元件及电路图组装LM386电路3.按要求测试下列内容:1)用毫伏表(或示波器)测试放大器的电压增益,并用dB方式表示。
(1KHz)2)测试放大器最大输入动态范围。
(1KHz)3)测试放大器的带宽。
4)测试放大器的效率。
(1KHz)5)在电路连接成200倍增益时,重复按a、b、c的要求测试。
4.根据测试结果写出实验报告。
三、实验内容和原理:LM386是一种音频集成功放,具有自身功耗低、更新内链增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点的功率放大器。
LM386引脚图按照上图焊接电路,并按要求测试:1)用毫伏表(或示波器)测试放大器的电压增益,并用dB方式表示。
(1KHz)2)测试放大器最大输入动态范围。
(1KHz)3)测试放大器的带宽。
4)测试放大器的效率。
(1KHz)5)在电路连接成200倍增益时,重复按a、b、c的要求测试。
四、数据记录测试结果见附测试表五、注意事项1.电源线与地线的走线尽量宽,尽量短:2.与电源之间的连线要尽量拧紧,插件尽量焊接牢靠;3.最后输出的负载线不要焊接在芯片上;4.10UF的去偶电容尽可能的靠近芯片的电源引脚来放置;5.大电流的地线和小电流的地线分开,最后并入电源地,防止信号干扰;六、常见问题1.当电路接为20倍增益的时候,电路工作正常,但当电路接为200倍增益时,在输出端会出现失真,经检查,故障确定为地线和电源线接的过长,导致失真。
2.焊接不注意容易造成自激;附元件表附LM386说明一、概述(Des cription):LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。
音频功放实验报告

音频功放实验报告功率放大器制作实验报告日期:2011年3月11日1实验原理图1.1放大电路部分1.2电源部分1.3实验所需器材10uF电解电容220欧电阻4.7K电阻2个33K滑动变阻器2N3094三极管3个2N3906三极管2个TIP41C功率管2个喇叭一个100uF 电容10欧电阻15pF电容2个33K 滑动变阻器二极管2个50K滑动变阻器2个500欧滑动变阻器2个2原理介绍2.1电源部分本电源供给220v,50Hz交流电,输出±17v直流电压。
基本组成部分:电源变压器,整流电路,滤波电路。
电源变压器输入220v,50Hz交流电,输出24v交流电压。
整流桥额定功率2w。
2.2放大电路部分2.2.1本电路采用差分放大电路作为信号输入级本电路采用单输入单输出的差分放大电路。
器件主要为两个2N3904管。
主要起到抑制零点漂移的作用,对于NPN三极管而言的,当I c增加,R c上的压降U Rc增加,那么Uc=Vc-U Rc当然也就随之下降。
一般在两个放大管与V EE之间接的有一个恒流源.在本图中恒流源由33K电阻和两个2N3904管组成,起到稳定电流,抑制共模信号的作用。
由于晶体管电流源具有直流电阻小,交流电阻大的特点,在模拟集成电路中广泛地把它作有源负载使用。
33k电阻为平衡电阻,10uf电解电容为消振,避免自激振荡。
2.2.2激励放大在差分放大电路输出后,输入2N3906管,主要进行激励放大,给输后级电路提供较大的功率信号,以推动功率输出级放大输出。
15pF电容防止产生自激。
在集电极下串联两个二极管,给后面的互补对称电路提供极间电压,防止产生交越失真。
2.2.3互补对称电路采用2N3904与2N3906三极管,当信号处于正半周期时,T1导通,T2截止,T1承担放大任务,有电流流过输出级,而当信号处于负半周期时T1截止,T2导通,放大任务由T2承担。
大大提高了效率,降低了功耗。
同时为了防止交越失真,在两管基极间串联两个二极管。
音频功率放大器实习报告

实习报告:音频功率放大器设计与实现一、实习背景与目的随着科技的不断发展,音频功率放大器在各类音响设备中发挥着越来越重要的作用。
本次实习旨在让学员了解音频功率放大器的基本原理,掌握其设计和调试方法,提高实际操作能力。
通过本次实习,我希望能够达到以下目的:1. 了解音频功率放大器的工作原理和主要性能指标;2. 学会使用电子设计工具软件进行音频功率放大器的设计;3. 掌握音频功率放大器的调试方法,优化电路性能;4. 培养独立动手能力和团队合作精神。
二、实习内容与过程1. 音频功率放大器原理学习在实习开始前,我们先学习了音频功率放大器的基本原理。
音频功率放大器是将输入的微弱信号放大,从而驱动扬声器发声的装置。
其主要性能指标包括输出功率、失真、效率等。
了解这些基本原理对于后续的设计和调试工作至关重要。
2. 设计方案选择与单元电路设计在设计音频功率放大器时,我们首先进行了方案选择。
根据实习要求,我们选择了甲乙类互补对称功率放大器。
接下来,我们进行了单元电路设计,包括输入级、驱动级和输出级。
在设计过程中,我们充分考虑了元器件的参数选取,以保证电路的稳定性和性能。
3. 电路仿真与分析利用电子设计工具软件Multisim2001,我们对设计的音频功率放大器电路进行了仿真测试。
通过仿真结果,我们分析了电路的性能,发现了一些问题,如输出功率不足、失真较大等。
针对这些问题,我们进行了优化和改进,提高了电路的性能。
4. 电路调试与优化在实际制作音频功率放大器电路时,我们遇到了一些问题,如元器件损坏、电路连接错误等。
通过团队合作,我们共同解决问题,完成了电路的调试。
在调试过程中,我们不断优化电路参数,使得音频功率放大器能够达到预期的性能。
三、实习收获与总结通过本次实习,我深刻了解了音频功率放大器的工作原理和设计方法,掌握了电路仿真和调试技巧。
在实习过程中,我学会了团队合作和独立动手能力。
同时,我也认识到音频功率放大器设计中的关键因素,如元器件选取、电路稳定性等。
音频功放实验报告

音频功放一、.设计方案:音频功率放大器要求:输入信号为50mv , 50~15KHz 的音频信号,负载为8Q 扬声器的情况下, 输出Pom >5W 。
本方案分两级设计,第一级采用集成运算放大器构成的比例放大器做为激 励,主要完成对小信号的放大。
要求放大倍数大,输出阻抗低,频带宽度宽,噪 音低。
第二级采用双电源的 OCL 电路做为功放输出级,功率放大器决定了整机 的输出功率、非线性失真系数等指标,要求效率高、失真尽可能小、输出功率大、.各部分电路分析:1. 电源部分:Q , U CES 一般取3V 以上),所以有:VCC - U CES\2P omRL即 V CC-12V本方案选用了土 15V 的V CC电压。
为了得到稳定的土 15V 电源,电源部分将由三部分组成:1>JPDJ EMTRANS5Vin+15V§ oVin 1-15 V厂01104i ON1>:C8由于设计要求 P om 为 5W ,根据 P om 二(V cc —U CES )22R L(其中R L 为81lOOOtiFC2104LM7915CK:05)01(1)变压器部分:由于需得到土15V的稳定电压,所以输入稳压电路的电压需略高于土15V。
本方案采用土17.5V输出的变压器。
(2)整流部分:采用单相桥式整流电路,可选用四个1N4007二极管或桥堆,最大整流电流1A即可。
(3)稳压部分:为得到稳定的土15V电源,稳压部分采用7815与7915 的集成三端稳压芯片,输入端并接一个4700卩F电解电容,以改善纹波与抑制输入的过电压;输入端和输出端各并接一个0.1卩F瓷片电容,以改善负载的瞬态响应。
值得注意的是,输入端的4700卩F电解电容的耐压值必须满足-17.5V 225VUmax实验证明刚好25V的耐压会由于变压器输出的瞬间电压过高而报废。
所以本方案选用50V耐压的电容。
(4)滤波部分:采用常用的电容滤波,取值1000卩F。
音频放大实验报告总结(3篇)

第1篇一、实验背景随着科技的不断发展,音频设备在我们的日常生活中扮演着越来越重要的角色。
为了更好地理解和掌握音频放大器的工作原理和性能,我们进行了音频放大实验。
本次实验旨在通过实际操作,加深对音频放大器基本原理、电路设计以及调试方法的理解。
二、实验目的1. 掌握音频放大器的基本工作原理。
2. 学习音频放大器电路的设计与调试方法。
3. 了解音频放大器的性能指标及其测量方法。
4. 提高动手能力和团队协作精神。
三、实验原理音频放大器是一种将音频信号进行放大的电子设备。
其基本原理是将输入信号经过放大电路放大后,输出到扬声器或其他负载,使声音得到增强。
音频放大器主要包括以下几个部分:1. 输入电路:将音频信号从外部设备引入放大器。
2. 放大电路:对音频信号进行放大,包括晶体管放大电路、运算放大器放大电路等。
3. 输出电路:将放大后的音频信号输出到扬声器或其他负载。
4. 电源电路:为放大器提供稳定的电源。
四、实验内容1. 音频放大器电路设计:根据实验要求,设计一个音频放大器电路,包括电路图、元件清单、原理图等。
2. 元件选型:根据电路设计,选择合适的电子元件,如晶体管、运放、电阻、电容等。
3. 电路焊接:按照电路图,将选好的元件焊接成完整的电路。
4. 电路调试:对焊接好的电路进行调试,调整电路参数,使放大器性能达到预期效果。
5. 性能测试:对调试好的音频放大器进行性能测试,包括增益、失真度、频率响应等指标。
五、实验结果与分析1. 电路设计:根据实验要求,我们设计了一个基于晶体管放大电路的音频放大器。
电路包括输入电路、晶体管放大电路、输出电路和电源电路。
2. 元件选型:根据电路设计,我们选择了合适的电子元件,如晶体管、运放、电阻、电容等。
3. 电路焊接:按照电路图,我们将选好的元件焊接成完整的电路。
4. 电路调试:通过对电路参数的调整,使放大器性能达到预期效果。
实验结果显示,放大器的增益约为30dB,失真度小于1%,频率响应范围在20Hz-20kHz之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
音频功放
一、.设计方案:
音频功率放大器要求:
输入信号为50mv ,50~15KHz 的音频信号,负载为8Ω扬声器的情况下,输出Pom ≥5W 。
本方案分两级设计,第一级采用集成运算放大器构成的比例放大器做为激励,主要完成对小信号的放大。
要求放大倍数大,输出阻抗低,频带宽度宽,噪音低。
第二级采用双电源的OCL 电路做为功放输出级,功率放大器决定了整机的输出功率、非线性失真系数等指标,要求效率高、失真尽可能小、输出功率大。
二、.各部分电路分析:
1.电源部分: . 由于设计要求om P 为5W ,根据L CES CC om R U V P 2)(2
-=(其中R L 为8
Ω,CES U 一般取3V 以上),所以有:
L om CES CC R P U V ⨯+≥2
即CC V V 12≥
本方案选用了±15V 的CC V 电压。
为了得到稳定的±15V 电源,电源部分将由三部分组成:
(1) 变压器部分:由于需得到±15V 的稳定电压,所以输入稳压电路的电压需略高于±15V 。
本方案采用±17.5V 输出的变压器。
(2) 整流部分:采用单相桥式整流电路,可选用四个1N4007二极管或桥堆,最大整流电流1A 即可。
(3) 稳压部分:为得到稳定的±15V 电源,稳压部分采用7815与7915的集成三端稳压芯片,输入端并接一个4700μF 电解电容,以改善纹波与抑制输入的过电压;输入端和输出端各并接一个0.1μF 瓷片电容,以改善负载的瞬态响应。
值得注意的是,输入端的4700μF 电解电容的耐压值必须满足
V V U 2525.17max ≈⨯≥
实验证明刚好25V 的耐压会由于变压器输出的瞬间电压过高而报废。
所以本方案选用50V 耐压的电容。
(4) 滤波部分:采用常用的电容滤波,取值1000μF 。
此1000μF 只要高于15V 就可以。
由于稳压芯片输出可能略高于15V ,所以本方案采用25V 耐压的电容。
2.功放部分:
电路图如图:
由两部分构成,前级采用集成运算放大器构成的比例放大电路,对输入的信号进行电压放大,输出级采用OCL 互补输出结构的功率放大电路,对经过前级放大的信号进行功率放大。
晶体管1Q ~4Q 组成复合式晶体管互补对称电路。
1Q 、2Q 为相同类型的NPN 管,组成复合式的NPN 管;3Q 、4Q 为不同类型的晶体管,组成复合式的PNP 管,用于多级放大。
1. 对于集成运放电压放大倍数的选取:
放大倍数决定于R 9、R 10和R 11的选取。
由公式
9
1011)(1R R R A ++= 决定。
输入为有效值为50mV 的信号,其峰-峰值为mV mV 141
5022≈⨯,其放大后的峰-峰值不能超过正负电压差值,即: V A mV u 30
5022≤⨯⨯, 所以,放大倍数不得大于213。
输出功率要不小于5W ,因为L
rms R U W 82=,所以 V W R U L O PP 9.17228≈⨯= 决定了运放的输出电压需不小于12750229.17≈⨯mV V
接入电位器R 11以便于对放大倍数进行适当的微调,电路中放大倍数的调节范围为(K K 1681+,K
K K 1200681++),即69≤Au ≤269。
选取集成运放时,GBW 需不小于M k f Au 215127≈⨯=∆⨯Hz
本方案选用NE5534,其GBW 为10MHz ,足以满足要求。
2. OCL 两功率管的选取:
功率放大管的选择决定于管子的极间反向击穿电压,集电极最大电流与集电极最大功耗。
1) 极间反向击穿电压CBO U =CC V 2=30V 。
2) 集电极最大电流L
CES CC E C R U V I I )(max max -=≈,考虑留有一定余地,一般取L CC R V C I =max ,即所选功放管max C I 应大于1.5A 。
3) 集电极最大耗散功率W P P P om om CM 12.022=≈=
π
因此选择的功放管应满足:
1. CBO U >30V ;
2. CM I >1.5A ;
3. CM P >1W ; 本方案选用2SD1264A ,它的CBO U =200V ,CM I =2A ,CM P =30W 。
足已满足要求。
采用复合管可以保证一定的放大倍数更重要的是可以使用两个相同的功放管,以使两管参数更为一致。
3. 用于消除交越失真的偏置电路:
R 1、R 15、R 5和二极管D 1、D 2组成的支路是两对符合管的偏置电路,用于消除交越失真,设置静态工作点,使两个晶体管均工作在临界导通状态或微导通状态。
U AB =U Rp3+U D1+U D2,各大于1Q 、3Q 发射结开启电压之和,有微小电流通过,静态调节R 5,使
V R I R I U B E R 7.06616≈≈=β (1)
2Q 也临界导通。
由于21E E I I =,126R R =,所以4Q 也临界导通。
1Q 、3Q 为2Q 、4Q 提供激励电流,这个电流不需要太大,1Q 、3Q 只需一般的8050和8850就可以了。
但这对管的β值一定要接近。
本人选到一对β都等于234的管。
本方案试取6R 、12R =220Ω。
根据(1)式可得mA I I B B 136.021≈=。
因为流过二极管D 1、D 2的电流远大于1B I 、2B I ,可认为大一个数量级,即mA I I I B D D 36.110121=≈=。
由此可确定1
2151512D D D CC I U U V R R R --=++。
其中1D U 、2D U 取决于二极管的材质,硅管为0.7V ,锗管为0.2V 。
这里要与8050和8550的材质一样,才能做静态偏置电压。
而8050和8550都是硅管,所以二极管选用硅管N4148。
这样可计算出K R R R 215151≈++。
其中5R 用于调整复合管的微导通状态,调节范围不需太大,几百欧或1K Ω的电位器,由此可确定K R R 10151==。
焊接电路应使R 5=0,在调整输出级静态工作电流或输出波形的交越失真时再逐渐增大阻值。
R p1控制音量调节取47K Ω,以保证功放的输入阻抗大于前级的输出阻抗;因为Ui =0时要求U o ≈0,所以R p1须接地。
R 2、R 7用于减小复合管的穿透电流,提高电路的稳定性,一般为几十至几百欧。
本方案取100Ω。
R 8、R 13为负反馈电阻,可改善功放的性能,并能观测功放管的静态电流,但不宜太大。
一般为几欧。
本方案取0.5Ω。
因为末级电流较大,所以此电阻应用大功率水泥电阻。
电容C 1起隔直作用,只有很小时,在交流通路中才可视为短路,所以取值:C 1=10μF 。
实验证明,CC V ±大电压输入会对输入小信号造成很严重的干扰,所以应在CC V ±输入端各接一个100μF 电解电容和一个0.1μF 瓷片电容,用于电源的去耦。