2018年浙江高职考数学考试试卷
2018年浙江省高职考数学模拟试卷14

2018年浙江省高职考数学模拟试卷(十四)一、选择题1. 已知集合R U =,{}21>-=x x B ,则B C U 等于 ( ) A.φ B.)3,1(- C.),3()1,(+∞--∞ D.[]3,1-2. 已知c b a >>,且0=++c b a ,则下列不等式中正确的是 ( )A.222c b a >> B.bc ac > C.ac ab > D.b c b a >3. 若函数32)(2+-=x x x f ,[]2,2-∈x ,则)(x f 的值域为 ( ) A.[]11,2- B. []11,2 C. []3,2 D. []11,34. 命题甲“a ,G ,b 三个数成等比数列”是命题乙“ab G ±=”成立的 ( ) A.充分不必要条件 B.必要条件 C.充要条件 D.既不充分也不必要条件5. 下列函数在),0(+∞内是增函数的是 ( )A.x x f 3)(-=B.1)(2+-=x x fC.xx f ⎪⎭⎫ ⎝⎛=31)( D.x x f 3log )(= 6. 函数0)1(12)(-+-=x x f x 的定义域为 ( )A.[)+∞,0B.[)1,0C. [)()+∞,11,0D.()+∞,17. 若点P 在角32π的终边上,且4=OP ,则P 的坐标为 ( ) A.)22,2( B.)2,32(- C.)32,2(- D. )2,32(8. 已知数列{}n a 是等差数列,n S 是等差数列的前n 项和,若2432π=++a a a ,则5co s S 的值为 ( ) A.6π B.4π C.3π D.65π 9. 已知直线过两点)3,1(A ,)1,3(--B ,则该直线的倾斜角为 ( ) A.6π B.4π C.3π D.65π 10. 函数⎪⎭⎫ ⎝⎛-=32sin 3πx y 的图像只需将函数x y 2sin 3=的图像 ( ) A.向左平移3π个单位 B. 向右平移3π个单位C. 向左平移6π个单位D. 向右平移6π个单位 11. 若平面α与平面β相交,直线α//a ,β⊂b ,则 ( ) A.a 与b 异面 B. a 与b 相交 C. a 与b 平行 D.以上都有可能12. 已知ABC ∆内角A 、B 、C 的对边分别为a ,b ,c ,若︒=∠60A ,︒=∠45B ,22=b ,则a 为 ( )A.2B.62C.32D.83 13. 顶点在原点,准线方程为41=x 的抛物线方程是 ( ) A.x y =2 B. x y -=2 C. x y 212= D.y x =2 14. 已知点)3,1(-A ,)1,5(B ,则线段AB 的中点坐标是 ( )A.)2,2(B.)1,3(-C.)0,4(D.)4,0(15. 已知320220C C n =-,则n 是 ( )A.5B.15C.19D.5或1916. 若以双曲线的顶点1A 、2A 为直径两端点的圆恰好经过虚轴的两个端点,则双曲线的渐近线和离心率e 分别为 ( )A.x y ±=,2B. x y 2±=,2C. x y ±=,22 D. x y 2±=,22 17. 求值:154cos 1514cos 154sin 15sin ππππ+等于 ( ) A.21 B.23 C.21- D.23- 18. 正方形ABCD 的中心为)2,1(,AB 所在直线的方程为022=--y x ,则正方形的外接圆的标准方程为 ( )A.5)2()1(22=-+-y xB. 5)2()1(22=+++y xC. 10)2()1(22=-+-y xD. 10)2()1(22=+++y x二、填空题19. 若1>x ,则11-+x x 的最小值为 ; 20. 已知)4,2(-a ,),1(m b ,若b a //,则b 的模为 ;21. 已知数列{}n a 是等比数列,它的前n 项和a S n n +=2,则=a ;22. 已知31cos sin =+αα,则=α2sin ; 23. 对于函数)(x f ,若存在R x ∈0,使成立00)(x x f =,则称0x 为)(x f 的不动点,则函数42)(2--=x x x f 的不动点是 ;24. 小明和小红玩飞行棋,轮流抛掷一枚骰子,规定骰子只有投到6点,玩家的棋子才能起飞,并且投到6点后,还可以再投一次,小明的一枚棋子刚好走到小红的基地附近,此时小红没有可飞的棋子,接下去如果小红能抛出可以起飞的棋子,那么只要抛出不小于4点就可以把小明的棋子逐回他自己的基地,小红能驱逐成功的概率是 ;25. 已知点)0,4(-M ,)0,4(N ,则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是 ;26. 若正方体的棱长为1,则其外接球的表面积为 ;三、解答题27. 平面内,求过点)3,2(-A ,且垂直于直线012=-+y x 的直线方程;28. 在ABC ∆中,设内角A ,B ,C 对应的边分别是a ,b ,c ,若有bc c b a 3222++=,(1)求角A 的大小;(2)若3=b ,4=c ,求ABC ∆的面积;29. 某学校组织三个班级学生参加一项活动,其中一班5人,二班6人,三班7人,(1)选出其中1人为负责人,有多少种选法?(2)每班选一名组长,有多少种选法?(3)推选二人作中心发言,这二人必须来自不同的班级,有多少种选法? 30. 已知函数⎩⎨⎧-≥+--<+=1,31,2)(2x mx x x x x f ,求:(1))3(-f 的值;(2)[])2(-f f 的值;(3)若)(x f 在[]+∞,1上是增函数,求m 的取值范围;31. 已知三角函数m x m x x x f +-=2cos 2cos sin 2)(的最大值是2,(1)求m 的值;(2)将三角函数化为()ϕω+=x A x f sin )(的形式,其中⎪⎭⎫ ⎝⎛<>2,0πϕω,并求出其最小正周期;32. 已知等差数列{}n a 中82=a ,前8项和1248=S ,(1)求数列{}n a 的通项公式;(2)将数列{}n a 中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列{}n b ,求数列{}n a 的前n 项和n T ;33. 如图所示的平面图形由4个腰长为4的等腰三角形和一个边长为2的正方形组成,(1)请画出沿虚线折起拼接后的多面体图形,并写出它的名称;(2)求该多面体中侧面与底面所成的二面角的余弦值;(3)求该多面体的体积;34. 点M 到椭圆1316422=+y x 右焦点2F 的距离和它到经过左焦点1F 且与x 轴垂直的直线距离相等,(1)求点M 的轨迹方程;(2)若正方形ABCD 的顶点A 、B 在点M 的轨迹上,顶点C ,D 在直线4+=x y 上,求正方形的边长;。
2018年浙江省高职考试研究联合体第二次联合考试 数学-试卷

无分 ㊂
D. 4个
A. m >0
B. m =0
C. m <0
D. m 是任意实数
( (
) )
对任意 xɪR, 下列式子恒成立的是 4. A. x2 -2 x+1>0
充分不必要条件 A. 充分必要条件 C.
必要不充分条件 B. 既不充分也不必要条件 D.
x
1ö æ 1(2 ç ÷ +1>0 ) C. D. l o x +1 >0 g 2 è2 ø 已知某企业的产值连续三年增长 , 这 三 年 的 增 长 率 分 别 为 x, 则这三年的年平均增长 5. z, y, ( ) 率为 B. | x-1 |>0 ( y) 1+x) +( 1+ +( 1+ z) D. 3 已知 a, 则下列命题中正确的是 6. b, c 表示三条不同的直线 , γ 表示一个平面 , , , 若 aʊ 若 aʅ 则 aʅ A. b bʊ c 则 aʊ c B. b, bʅ c, c ) ( ) ( ) C. ( x+1 z+1 -1 y+1
1 2 æ aö ( 本题满分 8 分 ) 已知 f( 3 1. x) =ç 0. x- 2 ÷ 的常数项为 6 è x ø
( ) 求常数 a 的值 ; 1
( ) 如果第 3 求k 的值 . 2 k 项和第k+2 项的二项式系数相等 ,
数学试卷
第 3 页( 共 4 页)
( 本题满分 8 分 ) 已知等差数列 { 的前三项分别为 a-1, 其前 n 项和为Sn . 3 2. a 4, 2 a, n} ( ) 设 Sk =2 求 a 和k 的值 ; 1 5 5 0,
2018年浙江省高职考数学试卷(模拟)

浙江省2018年单独文化招生考试练手试卷一说明:练手试卷雷同于模拟试卷,练手为主,体验高职考试的感觉一、单项选择题:(本大题共20小题,1-12小题每小题2分,13-20小题每小题3分,共48分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分)。
1.已知全集为R ,集合{}31|≤<-=x x A ,则=A C uA.{}31|<<-x xB.{}3|≥x xC.{}31|≥-<x x x 或D.{}31|>-≤x x x 或 2.已知函数14)2(-=x x f ,且3)(=a f ,则=aA.1B.2C.3D.4 3.若0,0,0><>+ay a y x ,则y x -的大小是A.小于零B.大于零C.等于零D.都不正确 4.下列各点中,位于直线012=+-y x 左侧的是A.)1,0(-B.)2018,1(- C.)2018,21( D.)0,21( 5.若α是第三象限角,则当α的终边绕原点旋转7.5圈后落在A.第一象限角B.第二象限角C.第三象限角D.第四象限角 6.若曲线方程R b R a by ax ∈∈=+,,122,则该曲线一定不会是A.直线B.椭圆C.双曲线D.抛物线7.条件b a p =:,条件0:22=-b a q ,则p 是q 的A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件 8.若向量)4,2(),2,1(-==,则下列说法中正确的是A.=B.2=C.与共线D.)2,3(=+ 9.若直线过平面内两点)32,4(),2,1(+,则直线的倾斜角为A.30 B.45 C.60 D.90 10.下列函数中,在区间),0(+∞上单调递减的是A.12+=x yB.x y 2log =C.1)21(-=xy D.xy 2-= 11.已知一个简易棋箱里有象棋和军棋各两盒,从中任取两盒,则“取不到象棋”的概率为 A.32 B.31 C.53 D.5212.不等式(组)的解集与其他选项不同的是 A.0)3)(1(>+-x x B.031>+-x x C.21>+x D.⎩⎨⎧>+<-0301x x 13.在等比数列{}n a 中,公比2=q ,且30303212=⋅⋅a a a a ,则=⋅⋅30963a a a a A.102 B.202 C.162 D.152 14.下列说法中正确的是A.直线a 垂直于平面α内的无数条直线,则α⊥aB.若平面α内的两条直线与平面β都平行,则α∥aC.两两相交的三条直线最多可确定三个平面D.若平面α与平面β有三个公共点,则α与β重合15.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,24,34,60===b a A ,则角=B A.45 B.135 C.45或135 D.60或12016.2017年12月29日全国上映的《前任三》红爆网络,已知某公司同事5人买了某场次的连续5个座位,若小刘不能坐在两边的座位,则不同的坐法有 A.48种 B.60种 C.72种 D.96种 17.若抛物线y x 42=上一点),(b a P 到焦点的距离为2,则=a A.2 B.4 C.2± D.4± 18.已知2,21)sin(παπα<=+,则=αtan A.33 B.3- C.3± D.33- 19.已知函数xx f x3log 122)(+-=的定义域为A.)0,(-∞B.)1,0(C.(]1,0D.),0(+∞20.已知圆O 的方程为08622=--+y x y x ,则点)3,2(到圆上的最大距离为 A.25+ B.21+ C.34+ D.31+二、填空题(本大题共7小题,每小题4分,共28分)22.在平行四边形ABCD 中,已知n AD m AB ==,,则=OA _________.24.顶点在原点,对称轴为坐标轴的抛物线经过点)3,2(-,则抛物线的标准方程为_________.26.在等差数列{}n a 中,12,1331==a a ,若2=n a ,则=n _________.27.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为_________.三、解答题(本大题共9小题,共74分) (解答题应写出文字说明及演算步骤)29.(本题满分7分)求1003)2(xx -的展开式中有多少项是有理项.30.(本题满分8分)如图,已知四边形ABCD 的内角A 与角C 互补,2,3,1====DA CD BC AB.求:(1)求角C 的大小与对角线BD 的长;(2)四边形ABCD 的面积.31.(本题满分8分)观察下列三角形数表,假设第n 行的第二个数为),2(+∈≥N n n a n(1)依次写出第六行的所有6个数;(2)试猜想1+n a 与n a 的关系式,并求出{}n a 的通项公式.32.(本题满分8分)如图,在底面是直角梯形的四棱锥ABCD S -中, 90=∠ABC ,⊥SA 面ABCD ,21,1====AD BC SB SA .求: (1)ABCD S V -;(2)面SCD 与面SAB 所成二面角的正切值.(1))3(f ; (2)使41)(<x f 成立的x 的取值集合.34.(本题满分9分)已知中心在原点的双曲线C 的右焦点为)0,2(,实轴长为32,过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于B A ,两点.求: (1)双曲线的标准方程; (2)AB 的长.35.(本题满分9分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.36.(本题满分9分)已知椭圆12222=+b y a x 焦点在x 轴上,长轴长为22,离心率为22,O 为坐标原点.求:(1)求椭圆的标准方程;(2)设过椭圆左焦点F 的直线交椭圆与B A ,两点,并且线段AB 的中点在直线0=+y x 上,求直线AB 的方程.参考答案 21.2 22.)(21+- 23.53- 24.292-=y 或y x 342= 25.22 26.23 27.π43 28.410129.30.31.32.33.34.解:(1)⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧+===2132322222c b a b a c c a 因为焦点在x 轴上,所以标准方程为1322=-y x(2)渐近线方程为x y 33±=,334,332=∴⎪⎩⎪⎨⎧±==AB y x 35.解析:(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数. (2)由(1),得4922+--=x x y ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50. 即当温度为-1℃时,这种植物每天高度增长量最大. (3)46<<-x .36.(1)1222=+y x (2)。
2018年浙江省高职考期末试卷B卷

A.{}5,3B.{}6,4,2C.{}6,4,2,1 D.{}6,5,3,2,1 2.在2log ,2,21321这三个数中,最小的数是 A.21 B.212 C.2log3 D.212和2log 3 3.条件βα=:p ,条件βαsin sin :=q ,则条件p 是条件q 的A.充分不必要条件B.必要不充分条件C.冲要条件D.既不充分也不必要条件4.下列不等式(组)的解集为)0,(-∞的是A.322>-x x B.⎩⎨⎧<->-13202x x C.43<-x D.3332-<-x x 5.已知函数x x f x 12)2(2+=+-,则=)3(f A.1 B.2 C.3 D.46.在平面直角坐标系xOy 中,与原点位于直线0523=++y x 同一侧的点是A.)4,3(-B.)2,3(--C.)4,3(--D.)3,0(-7.下列函数在其定义域内函数值y 随自变量x 的值增大而减小的是A.12+=x yB.)2,0(sin πx y = C.x y 21log = D. x y 2= 8.下列关于向量的说法中正确的是A.若与互为相反向量,则0=+B.=-C.若四边形ABCD 是平行四边形,则=D.=++PM9.在直角坐标系中,O 是坐标原点,已知点A 的坐标为)1,3(,现将点A 绕原点O 逆时针旋转2π弧度到点B ,则点B 的坐标为 A.)1,3(- B.)1,3(-- C.)3,1(- D.)3,1(-10.已知直线02=--y ax 与直线01)2(=+-+y x a 互相垂直,则=aA.2-B.1C.0D.1-11.函数)10(log 34)(32x x x x f -++-=的定义域是 A.)10,(-∞ B.(][)10,31,Y ∞- C.(][)+∞∞-,103,Y D.)10,1(12.已知抛物线x y C =2:的焦点为F ,点),(00y x A 是C 上一点,045x AF =,则=0x A.1 B.2 C.4 D.813.已知等差数列{}n a 满足26,7753=+=a a a ,则=8SA.60B.70C.80D.9014.已知23)cos(-=+πα,且2πα<,则=αtan A.3 B.3± C.33 D.33± 15.已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f A.2- B.1- C.1 D.216.已知圆04:22=-+x y x C ,则圆C 与过点)0,3(P 的直线l 位置关系为A.相交B.相切C.相离D.以上都不正确17.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为A.0.4B.0.6C.0.8D.118.如图,四棱锥ABCD S -的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是A.AC ⊥SBB.AB ∥平面SCDC.AB 与SC 所成的角等于DC 与SA 所成的角D.SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角19.已知函数R x x x f ∈+--=,1cos 2)2sin(3)(2π,则=)2(πf A.1 B.2 C.3 D.420.如图所示,已知点)0,3(),0,3(B A -,设动点P 的坐标为),(y x ,已知21=PB PA ,则P 在平面直角坐标系内的运动轨迹为 A.圆的一部分 B.椭圆的一部分 C.双曲线的一部分 D.抛物线的一部分二、填空题(本大题共7小题,每小题4分,共28分)21.已知平行四边形ABCD ,O 是对角线的交点,点)4,3(-A ,)2,5(-C ,则点O 的坐标为_____________.22.已知)4,(),2,1(x b a ==,若a b 2=,则=x _____________.23.设230<<x ,则函数)23(4)(x x x f -=的最大值为_____________. 24.在数列{}n a 中,126,2,211===+n n n S a a a ,则=n _____________.25.若函数x a x x f cos sin 4)(+=的最大值为5,则常数=a _____________.26.七人并排站成一行,如果江辰与陈小希两人必须不相邻,那么不同的排法种数是________.27.已知圆锥的底面积为π,体积为π2,若球的直径和圆锥的高相等,则球的体积为________.三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)28.(本题满分6分)2sin 4lg 25lg )2018()49(23021π-++--+C 29.(本题满分7分)在△ABC 中,53tan ,41tan ==B A . (1)求角C 的大小;(2)若AB 的边长为17,求BC 边的长.30.(本题满分8分)在数列{}n a 中,67,3171==a a ,其通项公式可看做一次函数,求:(1)n a ;(2)2018是否为数列{}n a 中的项,如果是,请求出是第几项.31.(本题满分8分)如图,在平行四边形ABCD 中,4,2,3===AC AD AB .求:(1)ABC ∠cos ;(2)平行四边形ABCD 的面积.32.(本题满分9分)已知2)13(xx -的二项展开式中各项系数之和为64,求:(1)n 的值;(2)展开式中的常数项.33.(本题满分9分)已知双曲线222a y x =-与抛物线162=y 的准线交于B A ,两点,且34=AB 求:(1)双曲线的标准方程;(2)双曲线的实轴长与离心率.34.(本题满分9分)如图,一边靠墙,另外三边用长为30米的篱笆围成一个苗圃园.已知墙长为18米,设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,求y 与x 之间的函数关系式.(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?最大面积是多少?35.(本题满分9分)如图所示:四棱锥ABCD P -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD 是面积为32的菱形,ADC ∠为菱形的锐角,M 为PM 的中点, (1)求证:CD PA ⊥;(2)求二面角D AB P --的度数; (3)求三棱锥PDM C -的体积。
2018年浙江省单独考试招生文化考试数学试卷

本试题卷共三大题.全卷共4页.满分150分,考试时间120分钟.注意事项:1.所有试题均需在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷和草稿纸上作答无效. 2.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上.3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上.4.在答题纸上作答,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.一、单项选择题:(本大题共20小题,1-12小题每小题2分,13-20小题每小题3分,共48分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分)1.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有A .3个B .5个C .7个D .8个2.命题p :0≥x ,命题q :x x ≤2,则p 是q 的A.充分且必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.过点),2(a M -和)4,(a N 的直线的斜率等于1,则a 的值为A .1B .4C .1或3D .1或44.在区间(0,+∞)上不是增函数的函数是A .y =2x +1B .y =3x 2+1C .x y )21(= D .x y 21sin = 5.下列说法中正确的是A.02018sin >ο °属于象限角C.终边相同角的集合是闭区间D.16sin 3cos 22=+ππ6.函数0)1(21-+--=x x x y 的定义域是 A.{x|x ≥1} B.{x|x ≥1且x ≠2} C.{x|x>1} D.{x|x>1且x ≠2} 7.点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是 A .-2<a < 2 B .a <-2或a > 2 C .-2<a <2 D .-1<a <18.平行四边形ABCD 中,下面各向量的关系是 A.=+ B.=- C.0=++ D.=9.数列{}n a 中,112,1n n a a a n +==++,则4a =C.33+nD.23+n10.与一元二次不等式0)1)(2(≤+-x x 同解的不等式(组)是A.012≤+-x xB.21≤-xC.x x 21)31(31-+<<D.⎩⎨⎧≤--≥-0221x x 11.点)4,2(),,3(B m A -的直线与直线12+=x y 平行,则m 的值为A. 1B. 1-C.1±D. 1-或012.与m n C 的值相等的数是A.11-+-m n mn C C B.1--m n n C C.mnP D.m P m n 13.抛物线的焦点在x 轴上,焦点到准线的距离是1,则抛物线的标准方程为A.x y 22=B.x y 42=C.x y 22=或x y 22-=D.x y 42=或x y 42-=14.已知α,{}12345β∈,,,,,那么使得sin cos 0αβ⋅<的数对()αβ,共有 A.9 B.11个 C.12个 D.13个15.在梯形ABCD 中,2π=∠ABC ,BC AD ∥,222===AB AD BC .将梯形绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为 A.23π B.43π C.53πD.2π16.直线04=-+y x 与圆044422=+--+y x y x 的位置关系是A.相交且过圆心B.相切C.相离D.相交不过圆心17.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为A.31B.32 C.51 D.5218.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若a = 1sin 2B =,6C =π,则b =19.在下列立体几何的有关结论中,说法不正确的是A.两个相交平面可将空间的分成四个部分B.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行C.一条直线和一个平面所成角的范围是⎥⎦⎤⎝⎛20π, D.和已知直线平行且距离等于定长的直线有无数条20.已知B A 、为坐标平面上的两个定点,且2=AB ,动点P 到B A 、两点的距离之和为2,则点P 的轨迹是A.椭圆B.双曲线C.抛物线D.线段二、填空题:(本大题共7小题,每小题4分,共28分)21.点A (2,1)和点B (-4,3)对称点的坐标为_________.22.在平面直角坐标系中,已知三点)2,0(),1,2(),2,1(---C B A ,则=+||BC AB _______.23.已知0 <x<10,则x(10-x)的最大值是_________.24.请写出一个同时经过点(0,1),(4,3)的圆的标准方程_________.25.已知(,0)2x π∈-,()54cos -=-πx ,则tan2x =_________.26.某商品定价100元,若连续两次涨价10%,则定价变为_________.27.已知{}n a 为等比数列,若4,2448==S a a ,则=8S _________. 三、解答题:(本大题共9小题,共74分)(解答应写出相应文字说明及验算步骤)28.(本题满分6分)计算:())(923sin 1.0lg )33(2303log 22219A -++++⋅+-π 29.(本题满分7分)已知等差数列{}n a 的公差1d =,前n 项和为n S .(1)若131,,a a 成等比数列,求1a ;(3分) (2)若519S a a >,求1a 的取值范围.(4分)30.(本题满分8分)如图,在ABC ∆中,ο90=∠ABC ,3=AB ,1=BC ,P 为ABC ∆内一点,ο90=∠BPC .(1)若21=PB ,求PA ;(4分) (2)若ο150=∠APB ,APC S ∆.(4分)31.(本题满分8分)已知13n x x ⎛⎫+ ⎪⎝⎭的展开式中各项系数的和为1024. (1)n 的值;(3分)(2)求展开式中的常数项.(5分)32.(本题满分9分)设函数)0)(2cos()(>+=ωπωx x f 图像上相邻的一个最高点和一个最低点之间距离为24π+.(1)求)(x f 的解析式;(4分)(2)()53=αf ,且),2(ππα∈,求)4tan(πα-.(5分) 33.(本题满分9分)如图,直三棱柱111C B A ABC -中,ο60,3,11=∠===ABC AA AC AB(1)求证C A AB 1⊥;(3分)(2)二面角B AC A --1的正切值;(3分)(3)111C B A ABC V -.(3分)34.(本题满分9分)已知倾斜角为4π的直线l 被双曲线60422=-y x 截得的弦长28=AB .(1)求直线l 的方程;(4分)(2)求以AB 为直径的圆的方程.(5分)35.(本题满分9分)2018年,许多大学毕业生逐渐不就业而转向创业。
2018年普通高等学校招生全国统一考试(浙江卷)数学试题及答案解析

绝密★启用前 考试时间:2018年6月7日15:00-17:002018年普通高等学校招生全国统一考试(浙江卷)数学试题试卷总分150分, 考试时间120分钟选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线的焦点坐标是A .(0),0)B .(−2,0),(2,0) C .(0,,(0D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2 B .4 C .6D .84.复数(i 为虚数单位)的共轭复数是 A .1+i B .1−i C .−1+iD .−1−i5.函数y =sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件B .必要不充分条件=UA ∅221 3=x y -21i-||2x ⊄⊂俯视图正视图(第3题图)C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3 B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A 1BC .2D .210.已知成等比数列,且.若,则 A . B . C . D .非选择题部分(共10分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
浙江高职考数学试卷精选文档

浙江高职考数学试卷精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2018年浙江省单独考试招生文化考试数学试题卷本试题卷共三大题,共4页.满分150分,考试时间120分钟.考生事项:1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效.一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分) (在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 已知集合{}4,2,1=A ,{}7,5,3,1=B ,则=⋃B A A. {1} B. {1,3,5,7} C. {1,2,3,4,5,7} D.{1,2,4} 2. 函数()x x x f lg 1+-=的定义域为A. ]1,(-∞B. ]1,0(C. ]1,0[D.)1,0(3. 下列函数在区间()∞+,0上单调递减的是 A. x e y = B. 2x y = C. xy 1=D.x y ln = 4. 在等差数列{}n a 中,5321=++a a a ,11432=++a a a ,则公差d 为 A. 6 B. 3 C. 1 D. 25. 过原点且与直线012=--y x 垂直的直线方程为 A. 2x+y=0 B. 2x-y=0 C. x+2y=0 D. x-2y=06. 双曲线191622=-y x 的焦点坐标为 A. ()07,± B. ()70±, C. ()05,± D. ()50±, 7. 函数⎪⎭⎫ ⎝⎛-=3sin 2πx y 的图像是8. 点()1,1-P 关于原点的对称点的坐标为 A. (-1,-1) B. (1,-1) C. (-1,1) D. (1,1)9. 抛物线y x 212=的焦点到其准线的距离是A. 81B. 41C. 21D. 110. 方程()()10332222=+-+++y x y x 所表示的曲线为A. 圆B. 椭圆C. 双曲线D. 抛物线 11. 不等式231≥-x 的解集是A. ]31,(--∞B. ),1[]31,(+∞--∞C. ]1,31[- D. ),1[+∞12. 命题0:=αp 是命题0sin :=αq 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 ++OEOC OA 13. 如图所示,点O 是正六边形ABCDEF 的中心,则A. B. C. D. 014. 用0,1,2,3四个数字可组成没有重复数字的三位数共有 A. 64个 B. 48个 C. 24个 D. 18个 15. 若m =︒2018cos ,则()=︒-38cosA. 21m -B. 21m --C. mD. -m 16. 函数x x x y 2cos 23cos sin +=的最小值和最小正周期分别为 A. 1,π B. -1,π C. 1,2π D. -1,2π 17. 下列命题正确的是A.垂直于同一平面的两个平面垂直B.垂直于同一平面的两条直线垂直C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行 18. 若()()0tan sin <+⋅-θππθ,则θ所在象限为A. 第二或第三象限B. 第一或第四象限C.第三或第四象限D.第一或第二象限 19. 二项式()()*,21N n n x n∈≥-展开式中含2x 项的系数为A. 2n CB. 2n C -C. 1n CD. 1n C -20. 袋中装有5个红球,3个白球,一次摸出两个球,恰好都是白球的概率是A. 143B. 32C. 283D. 563二、填空题(本大题共7小题,每小题4分,共28分) 21. 过点)2,3(-A 和)2,1(-B 的直线的斜率为22. 设函数()⎪⎩⎪⎨⎧≤+>=0,120,sin x x x x xx f ,则()[]=πf f23. 双曲线18222=-y a x 的离心率3=e ,则实半轴长=a 24. 已知2572cos =α,⎪⎭⎫⎝⎛∈20πα,,则=αtan 25. 在等比数列{}n a 中,0>n a ,431=⋅a a ,则=22log a26. 如图所示,相传这个图形表达了古希腊数学家阿基米德最引为自豪的发现:圆柱内切一个球,球的直径与圆柱的高相等,则圆柱的体积与球的体积之比等于圆柱的全面积与球的表面积之比,这个比值为27. 函数()x x x f --+⨯=31229的最小值为三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)28. 计算:()2213122365sin 1log 3tan 821-+⎪⎭⎫ ⎝⎛+-+⨯⎪⎭⎫ ⎝⎛-ππ29. 在ABC ∆中,︒=∠45A ,22=b ,6=c ,求: (1)三角形的面积ABC S ∆;(2)判断ABC ∆是锐角、直角还是钝角三角形。
解析:2018年全国普通高等学校招生统一考试数学(浙江卷)

但 ln(a1 a2 a3 ) ln[a1(1 q q2 )] ln a1 0 ,
即 a1 a2 a3 a4 0 ln(a1 a2 a3 ) ,不合题意;
因此 1 q 0, q2 (0,1) ,
a1 a1q2 a3, a2 a2q2 a4 0 ,选 B. 【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 x ln x 1, ex x 1, ex x2 1(x 0).
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
【答案】D 【解析】:直线
,平面 ,且
,若
,当
时,
,当
时不能
得出结论,故充分性不成立;若 ,过 作一个平面 ,若
时,则有
,否则
不
成立,故必要性也不成立.由上证知“
”是“
”的既不充分也不必要条件,故选 D.
考点:1、线面平行;2、命题的充分必要条件.
5.函数 y= 2 x sin2x 的图象可能是
A.
B.
C.
D.
【答案】D
分析:先研究函数的奇偶性,再研究函数在
(
π 2
,
π)
上的符号,即可判断选择.
详解:令 f (x) 2 x sin 2x ,
因为 x R, f (x) 2 x sin 2(x) 2 x sin 2x f (x) ,所以 f (x) 2 x sin 2x 为奇函数,排除选项 A,B; 因为 x ( π , π) 时, f (x) 0 ,所以排除选项 C,选 D.
【详解】因为全集U {1, 2, 3, 4, 5}, A {1,3} ,所以根据补集的定义得 ðU A 2, 4,5,故选 C.