流体力学讲义第一讲-1

合集下载

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

流体力学 1章讲稿

流体力学    1章讲稿

第一章 数学基础知识§1.1 场论一.物理量场: 充满物理量的空间。

充满流体的空间称为流场。

流体的物理量ρ、v 、p …构成密度、速度、压力场…, 如ρ、p 、浓度c 等构成标量场, 速度V 等构成矢量场,因此流场是复合参数场。

由时间t 、空间点及其对应的物理量确定的函数为场函数。

标量场、矢量场函数: φ=φ(r ,t)=φ(x,y,z,t)a =a (r ,t)=a (x,y,z,t) 定常场: 场函数与时间t 无关, 反之为非定常场φ=φ(r )=φ(x,y,z) a =a (r )=a (x,y,z) 0=∂∂t φ 0=∂∂ta均匀场: 场函数为常数, 反之为非均匀场。

流体的连续性模型认为,流场中各空间点充满流体,且各点、各物理参数存在连续的各阶导数。

二.Green-Gauss 公式(对于连续场)⎰⎰⎰⎰⎰⋅=∂∂+∂∂+∂∂A zy x dA d za y a x a a n ττ)(二维时 dL dA ya x a L yA x ⎰⎰⎰∙=∂∂+∂∂a n )(推广的Green-Gauss 公式有⎰⎰⎰⎰⎰=∂∂+∂∂+∂∂A dA d zy x φτφφφτn k j i )(⎰⎰⎰⎰⎰⨯=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂A x y z x y z dA d ya x a x az a z a y a a n k j i ττ)()()(三 梯度、散度与旋度1) 方向导数: 物理量φ场在M 点上沿L 方向的方向导数为L ∂∂φ=')()'(lim 0'MM M M MM φφ-→=)^cos(x L x ∂∂φ+)^cos(y L y ∂∂φ+)^cos(z L z ∂∂φ=(x ∂∂φI +y∂∂φj +z ∂∂φk )·l式中l 为沿L 方向的单位矢量。

2) 标量场的梯度grad φ: 标量场φ的梯度为上式括号中的矢量微分算式,为确定的矢量。

流体力学完整讲义

流体力学完整讲义

流体力学一、流体静力学基础 包括内容三部分:01流体主要物理特性与牛顿内摩擦定律 02流体静压强 03流体总压力01流体主要物理特性与牛顿内摩擦定律 水银的密度13.6g/cm 3重度γ(也成为容重,N/m3),单位体积流体所具有的能量。

=g γρ流体的压缩系数:1=pa d dV V dp dpρρβ-=-(单位:) ,β值越大,流体的压缩性也越大。

压缩系数的倒数成为流体的弹性模量,用表示,21()dpdV V β=-k=单位:pa=N/m流体的体膨胀系数a :1=(:)d dVV a T dT dTρρ--=单位质量力:大小与流体的质量成正比(对于均质流体,质量与体积成正比,故又称为体积力)表面力:作用在流体表面的力,大小与面积成正比,它在隔离体表面呈连续分布,可分为垂直于作用面的压力和平行于作用面的切力。

流体的黏性:流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质叫做黏性。

此内摩擦力成为黏制力。

du d T AA dy dtθμμ== 式中:T 流体的内摩擦力μ为流体的动力黏度,单位Pa s •。

A 为流体与管壁的接触面积dudy为速度梯度,表示速度沿垂直于速度y 轴方向的变化率 d dtθ为角变形速度 气体动力黏度随温度的升高而增加。

液体动力黏度随温度的升高而降低,例如:油。

运动黏度v (单位:2/m s )(相对黏性系数):v μρ=理想流体:假想的无黏性的流体,即理想流体流过任何管道均不会产生能量损失。

[推导过程]:tan()dudt d d dy θθ≈=,即:d dudt dyθ=。

02流体静压强流体净压强的特性:①流体静压强方向与作用面垂直;②各向等值性:静止或相对静止的流体中,任一点的静压强的大小与作用面方向无关,只于该点的位置有关。

帕斯卡定律:0P P gh ρ=+式中:P 为液体内某点的压强0P 为液面气体压强 h 为某点在液面下的深度等压面:流体中压强相等的点所组成的面成为等压面。

流体力学宣讲

流体力学宣讲
均不产生相对运动)。 流体静力学旳中心问题是研究流体静压强旳分布
规律。
一、流体静压强及其特征
1、流体静压强旳两个基本特征:
(1)静压强旳方向指向受压面,并与受压面垂直。 (2)流体内任意一点旳静压强在各个方向面上旳
值均相等。
讨论:
在静止或相对静止流体中,任一点旳液体压强旳大小与作 用面方向无关,只与该点位置有关。各点位置不同,压强大 小可能不同,位置一定,不论取哪个方向,压强大小完全相 等。所以,流体静压强大小只是空间位置旳函数。
流体温度升高,体积增大,密度减小旳性质,称 为流体旳热胀性。
结论:
1)液体压缩性和热胀性很小,在工程技术领域 中可忽视不计。
2)气体有明显旳压缩性和热胀性。
3)但在处理问题时,也要详细问题详细分析。
§1-2 流体静力学旳基本概念
流体静止是运动中旳一种特殊状态。 流体处于静止状态,不显示粘滞性(各质点之间
1工程大气压⋍10mH2O⋍735.6㎜Hg⋍98kN/㎡⋍98KPa 1原则大气压⋍101.325KPa⋍760㎜Hg
§1-3 流体动力学旳基本概念
一、流体动力学旳基本名词
1、元流 2、总流 3、过流断面,可能是平面,也可能是曲面 4、流量Q 5、流速Q=WV
因为粘滞性,过流断面上流速不是定值。在实际工程中 一般采用过流断面上各质点流速旳平均值即平均流速。 平均流速经过过流断面旳流量应等于实际流速经过断面旳 流量。
例如:某点旳绝对压强为303.975KPa,则称绝对压强为三
个原则大气压,或称相对压强为两个原则大气压。
(3)用液柱高度来表达,单位是mH2O、㎜H2O、㎜Hg 将压强转换为某种液柱高度旳计算公式为:
h p
一原则大气压:

流体力学-第一讲 场论与张量分析初步

流体力学-第一讲 场论与张量分析初步

ax ay az
10.01.2021
18
所以有: (向量线方程)
dx dy dz
ax ay az
向量管:在场内取任一非向量的封闭曲线C,通过C上每一点 作矢(向)量线,则这些矢量曲线的区域为向量管。
流线方程 迹线方程
dx dy dz ux uy uz dx dy dz dt ux uy uz
迹线的描述 是从欧拉法
15
二、场的几何表示
变化快
变化慢
1、scalar field:
(1)用等值线(面)表示
令:
t0 f(r,t0)f0
t1 f(r,t1 )f1
等值线(等位面)图
(2)它的疏密反映了标量函数的变化情况
10.01.2021
16
二、场的几何表示
2、 vector field: 大小:标量. 可以用上述等位线(等位面)的概念来几何表示。
10.01.2021
12
数量三重积: c ab
ax ay az
a bc abc abc bx by bz
cx cy cz
a b c c a b b c a
abcacb
循环置换向量次序, 结果不变.
改变循环向量次序, 符号改变.
10.01.2021
③在任一方向的变形等于该方向的方向导数。
④梯度的方向是标量变化最快的方向。
10.01.2021
25
梯度的基本运算法则有:
C C
C( 为 常 数 )
1 2 1 2
1 2 1 2 2 1
f f
10.01.2021
26
四、向量的散度(divergence)
a ba xi a yj a zkb xi b yj b zk

流体力学讲义.

流体力学讲义.

工程流体力学(水力学)第一章 绪论学习重点:流体的粘性及牛顿内摩擦定律。

尤其是牛顿内摩擦定律应熟练掌握。

了解工程的发展及在工程中的应用。

§1—1 工程流体力学简介1. 工程流体力学——是利用实验和理论分析的方法研究流体的平衡和运动规律及其在工程中的应用的一门学科。

2. 自然界中物质的存在形式有:(1)固体 ← 相应的研究学科有材料力学、弹性力学 等。

(2)液体(3)气体← 统称流体 。

相应的研究学科即流体力学。

3.流体与固体的比较:(1)从微观上说,流体分子之间的距离相对较大,分子运动丰富(振动、转动、移动)。

(2)从宏观上说,流体没有固定的形状,易流动、变形,静止的流体不能承受剪力及拉力。

4.发展史(随着生产的发展,继固体力学之后发展起来的一门学科):论浮体 (建立在实验、直观基础上)古典水力学(纯理论分析、理论模型) 计算流体力学5.意义:流体力学已经发展成一门涉及多专业的基础性学科。

工程流体力学在工程中的应用也越来越广泛。

例如:给排水、农田灌溉、道路、桥涵、港口设计等等。

§1—2 连续介质假设 流体的主要物理性质 一. 连续介质假设1. 流体的组成:由大量不断运动的分子组成,分子之间有间隙,不连续。

2. 假设:假设将流体看作是由无数质点组成的连续的介质。

因为我们研究的是流体的宏观机械运动而不是微观运动,这样的假设可以满足工程需要。

3. 连续介质:假定流体在充满一个体积空间时,不留任何空隙,整个空间均被流体质点所占据。

4. 质点——宏观体积足够小(可以忽略线性尺寸),但又包含大量分子的集合体。

5. 注:流体的分子运动是客观存在的,在一般的工程计算中可以把流体看成连续的介质,但在特殊情况下还是应加以考虑的。

二. 流体的主要物理性质1.易流动性——是指流体在静止时不能承受切力及不能抵抗剪切变形的性质。

一般的,固体可承受一定的拉力、压力及剪力;而静止的流体只能承受一定的压力。

流体力学讲义第一章绪论

流体力学讲义第一章绪论

流体⼒学讲义第⼀章绪论第⼀章绪论本章主要阐述了流体⼒学的概念与发展简史;流体⼒学的概述与应⽤;流体⼒学课程的性质、⽬的、基本要求;流体⼒学的研究⽅法及流体的主要物理性质。

流体的连续介质模型是流体⼒学的基础,在此假设的基础上引出了理想流体与实际流体、可压缩流体与不可压缩流体、⽜顿流体与⾮⽜顿流体概念。

第⼀节流体⼒学的概念与发展简史⼀、流体⼒学概念流体⼒学是⼒学的⼀个独⽴分⽀,是⼀门研究流体的平衡和流体机械运动规律及其实际应⽤的技术科学。

流体⼒学所研究的基本规律,有两⼤组成部分。

⼀是关于流体平衡的规律,它研究流体处于静⽌(或相对平衡)状态时,作⽤于流体上的各种⼒之间的关系,这⼀部分称为流体静⼒学;⼆是关于流体运动的规律,它研究流体在运动状态时,作⽤于流体上的⼒与运动要素之间的关系,以及流体的运动特征与能量转换等,这⼀部分称为流体动⼒学。

流体⼒学在研究流体平衡和机械运动规律时,要应⽤物理学及理论⼒学中有关物理平衡及运动规律的原理,如⼒系平衡定理、动量定理、动能定理,等等。

因为流体在平衡或运动状态下,也同样遵循这些普遍的原理。

所以物理学和理论⼒学的知识是学习流体⼒学课程必要的基础。

⽬前,根据流体⼒学在各个⼯程领域的应⽤,流体⼒学可分为以下⼏类:能源动⼒类:⽔利类流体⼒学:⾯向⽔⼯、⽔动、海洋等;机械类流体⼒学:⾯向机械、冶⾦、化⼯、⽔机等;⼟⽊类流体⼒学:⾯向市政、⼯民建、道桥、城市防洪等。

⼆、流体⼒学的发展历史流体⼒学的萌芽,是⾃距今约2200年以前,西西⾥岛的希腊学者阿基⽶德写的“论浮体”⼀⽂开始的。

他对静⽌时的液体⼒学性质作了第⼀次科学总结。

流体⼒学的主要发展是从⽜顿时代开始的,1687年⽜顿在名著《⾃然哲学的数学原理》中讨论了流体的阻⼒、波浪运动,等内容,使流体⼒学开始成为⼒学中的⼀个独⽴分⽀。

此后,流体⼒学的发展主要经历了三个阶段:1.伯努利所提出的液体运动的能量估计及欧拉所提出的液体运动的解析⽅法,为研究液体运动的规律奠定了理论基础,从⽽在此基础上形成了⼀门属于数学的古典“⽔动⼒学”(或古典“流体⼒学”)。

第1章流体力学基本知识-PPT精品

第1章流体力学基本知识-PPT精品
ρ1u1dω1dt=ρ2u2dω2dt 或 ρ1u1dω1=ρ2u2dω2
从元流推广到总流,得:
1u1d1 2u2d2
1
2
由于过流断面上密度ρ为常数,以
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv
ρ1ω1v 1=ρ2ω2v 2
(1-11) (1-11a)
单位时间内通过过流断面dω的液体体积为 udω =dQ
4.流量:单位时间内通过某一过流断面的流体 体积。一般流量指的是体积流量,单位是 m3/s或L/s。
5.断面平均流速:断面上各点流速的平均值。 通过过流断面的流量为
Qvud
断面平均流速为:
v

ud


Q
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
确定流体等压面的方法,有三个条件:
必须在静止状态;在同一种流体中; 而且为连续液体。
2.分析静止液体中压强分布:
静止液体中压强分布
分析铅直小圆柱体,作用于轴向的外力有: 上表面压力
分析铅直小圆柱体,作用于轴向的外力有: 下底面的静水压力
分析铅直小圆柱体,作用于轴向的外力有: 柱体重力
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
s
旋度代表某一点的旋转角速度或旋转量,定义了一个向量场, 叫旋度场
在直角坐标系中表达式:
rotv i(vz vy ) j(vz vx ) k(vy vx ) y z x z x y
引进哈密顿算子:
i jk v
x y z vx vy vz
B 张量
一、张量的阶
与坐标变换联系在一起,3n个元素组成的整体。 n=0称为零阶张量(标量) n=1称为一阶张量(向量) n=2称为二阶张量
二、张量的分类 1、笛卡儿张量:在笛卡儿坐标中定义的张量。 2、普遍张量:在一般曲线坐标中定义的张量。
三、符号记 1、求和法则(同一项中有相同的角标出现两次,则该
s

w
nQ

P


l


n
p


nPP


wlnQ

n
p

wl
grad
Vgrad
所以:
lim 1 nds grad vs
v0
若定义一个向量场 F x, y, z ,则向量微分算子与它作用后分别
的通量。若diva>0,称该点有源;若diva<0,称该点有汇。
|diva|称为源或汇的强度。若diva=0(处处),称该物理
场为无源场,否则为有源场。
散度的基本运算公式:
n
a
⑴ (ca) c a ( c 常数)
M
S
(2) (a b) a b (3) (a) a a
曲面积分
a
S
n
Q adS an d S an d S
S
S
S
图0.4.1 通量l
称为向量a通过曲面S的通量。若a代表流速v,通量即流量。 在直角坐标系中
div a ax ay az a x y z
有源场和无源场:
散度是一个标量,它表示单位体积内物理量通过其表面
x y z
化率和变化率的方向)
grad i j k
x y z
2、微分形式和积分形式是否等价:
证明:取 的二等值面和两二等值面之间的小圆柱, 如图
沿柱面积分 nds ,该积分由三部分组成,即 s
nds nQQw nPPw
哈密顿算子的符号是 ,有两种表示方法
微分形式: i j k x y z
积分形式:
lim 1 nds Vs
v0
(运算)
n
s v
含义,用它作用在一个标量函数上来说明。(场的概念)
1、 i j k 叫梯度(标量场的最大变
角标须各值后相加)
c xi yi
i
可写为:
c xi yi
2、克罗内克尔符号
1,i j
ij
0,i j
3、交变符号
ijk

1,ijk 1, 2,3, 1,ijk 3, 2,1,
2, 3,1, 2,1, 3 ,
3,1, 2 1,3, 2
0Leabharlann 四、张量定义散度的微分形式为:
V
散度
( 为标量)
F Fx Fy Fz x y z
向量场的环量和旋度
物理量的旋度可用来判别场是否有旋(围绕某点旋转)。
环量定义:在向量场a沿有向封闭曲线l的积分
a d l 称为向量a沿曲线l的环量。
l
rot a n lim 1
s0 S
a d l n
l
旋度定义:
取微小圆柱体, a 取为速度 v ,法线方向为 n ,
对整个微元体进行以下积分 nvds 。n 和 v
的方向满足右手螺旋法则。
定义:
rot v lim 1
n vds
0
s
可证:
rot v lim 1
n vds 2
3、缩并:令张量的两个脚标相等并循环相加。
aii a11 a22 a33
4、内积:内积是外积的缩并。
a ibi a1b1 a2b2 a3b3
5、张量场的微分:
对张量的每个元素 取其 x i (i 1, 2, 3) 的导数
张量的微分叫做张量的梯度(新得的张量其阶数多1)
三、向量微分算子(哈密顿算子)
梯度:描述标量场的不均匀性或变化率,把标量场变成了 向量场。
散度:不描述向量场的变化率,把向量场变成了标量场。
旋度:不描述向量场的变化率,不改变向量场的性质。
四、几个重要公式
1、 div grad 2 拉普拉斯算子 2、 divrota a 0 3、 rot grad 0 4、 rot rota a a a
任二下标相同时
定义1:张量作为向量定义的推广
当由一个坐标系转换到另一个坐标系时,向量 P 按下
式变换
pi Pjij
则笛卡儿坐标系所确定的三向量组 P1, P2 , P3 叫张量
P1, P2, P3 是张量 的向量分量。
定义2:向量的并积,就代表一个二阶张量。
a1b1 a1b2 a1b3
得到:
1 F lim n Fds divF
Vs
v0
叫散度 ,标量,物理意义
1 F lim n Fds rotF
Vs
V 0
1 F lim nFds
Vs
V 0
叫旋度 张量场
向量场的通量和散度
物理量的散度可用来判别场是否有源。
通量:在向量场a中向曲面S的法向量为n,则
旋度运算基本公式
(ca) ca (a b) a b
( a) a a
() 0
(ab) b (a) a (b) (a) 0
小总结
梯度,散度和旋度代表一种向量场或标量场,他们的大小 、方向和表达形式都不因直角坐标的变换而变化。
ab
a j ,bj
a2b1
a2b2
a2b3

a3b1 a3b2 a3b3
五、张量运算
1、相加 cij aij bij
2、外积:r阶和s阶张量的外积是一个r+s阶张量,其分量为 原来张量的各个分量之积。
cijkmn aijbkmn (i, j, k, m, n 1, 2, 3)
相关文档
最新文档