高考数学专题复习简单几何体的面积与体积

合集下载

几何体面积和体积公式

几何体面积和体积公式

几何体面积和体积公式一、棱柱。

1. 直棱柱侧面积。

- 公式:S_直棱柱侧=Ch(其中C为底面多边形的周长,h为棱柱的高)。

2. 棱柱的体积。

- 公式:V = Sh(其中S为棱柱的底面积,h为棱柱的高)。

二、棱锥。

1. 正棱锥侧面积。

- 公式:S_正棱锥侧=(1)/(2)Ch'(其中C为底面多边形的周长,h'为正棱锥的斜高)。

2. 棱锥的体积。

- 公式:V=(1)/(3)Sh(其中S为棱锥的底面积,h为棱锥的高)。

三、棱台。

1. 正棱台侧面积。

- 公式:S_正棱台侧=(1)/(2)(C + C')h'(其中C、C'分别为棱台上下底面多边形的周长,h'为正棱台的斜高)。

2. 棱台的体积。

- 公式:V=(1)/(3)h(S+√(SS')+S')(其中h为棱台的高,S、S'分别为棱台的上下底面积)。

四、圆柱。

- 公式:S_圆柱侧=2π rh(其中r为底面半径,h为圆柱的高)。

2. 圆柱的表面积。

- 公式:S = 2π r(r + h)(其中r为底面半径,h为圆柱的高)。

3. 圆柱的体积。

- 公式:V=π r^2h(其中r为底面半径,h为圆柱的高)。

五、圆锥。

1. 圆锥侧面积。

- 公式:S_圆锥侧=π rl(其中r为底面半径,l为圆锥的母线长)。

2. 圆锥的表面积。

- 公式:S=π r(r + l)(其中r为底面半径,l为圆锥的母线长)。

3. 圆锥的体积。

- 公式:V=(1)/(3)π r^2h(其中r为底面半径,h为圆锥的高)。

六、圆台。

1. 圆台侧面积。

- 公式:S_圆台侧=π(r + r')l(其中r、r'分别为圆台上下底面半径,l为圆台的母线长)。

2. 圆台的表面积。

- 公式:S=π(r^2+r'^2+rl + r'l)(其中r、r'分别为圆台上下底面半径,l为圆台的母线长)。

- 公式:V=(1)/(3)π h(r^2+rr'+r'^2)(其中h为圆台的高,r、r'分别为圆台上下底面半径)。

高二数学立体几何专题资料:空间几何体的表面积和体积

高二数学立体几何专题资料:空间几何体的表面积和体积

空间几何体的表面积和体积[基础要点]1.圆柱的表面积公式:2.圆锥的表面积公式:3.圆台的表面积公式:4.圆锥的体积公式:5.棱锥的体积公式:6.圆台的体积公式:7.球的表面积公式:8.球的体积公式: 题型一、柱体的体积、表面积公式例1、直平行六面体的底面为菱形,过不相邻两条侧棱的截面面积为12,Q Q ,求它的侧面积变式:如图是一个平面截长方体得剩余部分,已知4,3,AB BC ==5,8AE BF ==,12CG =,求几何体的体积题型二、锥体、球体的体积和表面积公式例2、正四面体棱长为a ,求其外接球和内切球的表面积变式:一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球,求: (1)圆锥的侧面积 (2)圆锥的内切球的体积题型三、台体的表面积与体积公式例3、如图,已知正三棱台111A B C ABC -的两底面边长分别为2和8,侧棱长等于6,求三棱台的体积VD1O1C1DC B1BA1AOH变式:用一块矩形铁皮作圆台形铁桶的侧面,要求铁桶的上底半径是24㎝,下底半径为16㎝,母线长为48㎝,则矩形铁皮的长边长是多少?题型四、实际问题与几何体面积、体积的结合例4、如图示,一个容器的盖子用一个正四棱台和一个球焊接而成,球的半径为R ,正四棱台的上、下底面边长分别是2.5R 和3R ,斜高为0.6R ,(1)求这个容器盖子的表面积(用R 表示,焊接处对面积的影响忽略不计)(2)若R=2㎝,为盖子涂色时所用的涂料每0.4kg 可以涂1㎡,计算为100个这样的盖子涂色约需要多少千克。

(精确到0.1kg )变式:某人买了一罐容积为V 升、高为a 米的直三棱柱型罐装进口液体车油,由于不小心摔落地上,结果有两处破损并发生渗漏,它们的位置分别在两条棱上且距底高度分别为,b c 的地方(单位:米),为了减少罐内液油的损失,该人采用罐口朝上,倾斜灌口的方式拿回家,试问罐内液油最理想的估计能剩多少?[自测训练] 1、已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则TS 等于( ) A 、19B 、49C 、14D 、132、圆柱的轴截面是边长为5㎝的正方形ABCD ,从A 到C 圆柱侧面上的最短距离为( ) A 、10㎝B 、2542π+㎝C 、52㎝D 、251π+㎝3、棱锥的高为16㎝,底面积为2512cm ,平行于底面的截面积为250cm ,则截面与底面的距离为( ) A 、5㎝ B 、10㎝C 、11㎝D 、25㎝4、用一张长、宽分别为8㎝和4㎝的矩形硬纸折成正四棱柱的侧面,则此正四棱柱的对角线长为( ) A 、660或B 、2666或C 、26或32D 、6632或5、圆台的高为4,母线长是5,侧面积是45π,则它体积是( ) A 、252π B 、84π C 、72π D 、63π6、一个正六棱台两底边长分别为2㎝和4㎝,高是6㎝,则它的全面积是( ) A 、254+93()cm B 、254+303()cm C 、2186+303()cmD 、2186+93()cm7、把底面半径为8㎝的圆锥,放倒在面内,使圆锥在此平面内绕圆锥顶点O 滚动,当这个圆锥在平面内转回原位置时,圆锥本身滚动了2.5周,则圆锥的母线长为 ,表面积等于 。

高考前必看数学考点资料内容大全

高考前必看数学考点资料内容大全

高考前必看数学考点资料内容大全在高考前一段时间的数学的复习中,应当听从老师的安排,跟随考纲的重点,明确复习的重要目标,查漏补缺,寻求新的提升。

下面是为大家整理的关于高考前必看数学考点资料内容,欢迎大家来阅读。

高中数学简单的知识点空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)。

2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高。

3、a—边长,S=6a2,V=a3。

4、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc。

5、棱柱S—h—高V=Sh。

6、棱锥S—h—高V=Sh/3。

7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。

8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1+S2+4S0)/6。

9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。

第1页共7页10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。

11、r—底半径h—高V=πr^2h/3。

12、r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/6。

14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3。

15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6。

16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4。

17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。

高三高考数学复习练习82空间几何体的表面积与体积

高三高考数学复习练习82空间几何体的表面积与体积

821.一个球的表面积是16π,那么这个球的体积为( )A.163π B.323π C .16π D .24π【解析】 设球的半径为R ,因为表面积是16π,所以4πR 2=16π,解得R =2,所以体积为43πR 3=32π3. 【答案】 B2.某几何体的三视图如图所示,则其表面积为( )A .πB .2πC .3πD .4π【解析】 由三视图可知,该几何体为半径为r =1的半球体,表面积为底面圆面积加上半球面的面积,所以S =πr 2+12×4πr 2=π×12+12×4π×12=3π.故选C. 【答案】 C3.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3 D .2π【解析】 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 【答案】 C4.一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2 【解析】 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B. 【答案】 B5.(2018·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1B.(24+2)π4+1C.(23+2)π4+12D.(23+2)π4+1 【解析】 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D. 【答案】 D6.甲几何体(上)与乙几何体(下)的组合体的三视图如图所示,甲、乙几何体的体积分别为V 1,V 2,则V 1∶V 2等于( )A .1∶4B .1∶3C .2∶3D .1∶π【解析】 由三视图知,甲几何体是半径为1的球,乙几何体是底面半径为2,高为3的圆锥,所以球的体积V 1=43π,V 2=13π×22×3=4π,所以V 1∶V 2=1∶3.故选B. 【答案】 B7.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB.3π4C.π2D.π4【解析】 设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r = 12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.【答案】 B8.(2017·襄阳调研)如图是一个空间几何体的三视图,则该几何体的表面积为________.【解析】 由三视图可知,该几何体是一个正四棱柱挖掉一个半球所得的几何体,其中半球的底面就是正四棱柱上底面的内切圆,正四棱柱的底面边长为4,高为2,半球所在球的半径为2.所以该几何体的表面由正四棱柱的表面与半球的表面积之和减去半球的底面构成,故其表面积为(4×4×2+2×4×4)+12×(4π×22)-π×22=64+4π. 【答案】 64+4π9.(2018·乌鲁木齐二诊)已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是________.【解析】 (图略)在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥C D.在Rt △AED 中,CD =6,∴AE =102.同理BE =102.取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥A B.在Rt △EF A 中,∵AF =12AB =62,AE =102,∴EF =1.取EF 的中点为O ,连接OA ,则OF =12.在Rt △OF A 中,OA =72.∵OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 【答案】 7π10.(2018·贵州适应性考试)已知球O 的表面积是36π,A ,B 是球面上的两点,∠AOB =60°,C 是球面上的动点,则四面体OABC 体积V 的最大值为________.【解析】 设球的半径为R ,由4πR 2=36π,得R =3.显然在四面体OABC 中,△OAB 的面积为定值,S △OAB =12×R ×32R =34R 2=934.要使三棱锥的体积最大,只需球上的点到平面OAB 的距离最大,显然,到平面OAB 距离的最大值为球的半径,所以四面体OABC 的体积的最大值V =13×934×R =934. 【答案】 93411.(2016·全国丙卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求四面体N -BCM 的体积.【解析】 (1)证明 由已知得AM =23AD =2. 如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A. 取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5. 所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. 12.如图所示,在空间几何体ADE -BCF 中,四边形ABCD 是梯形,四边形CDEF 是矩形,且平面ABCD ⊥平面CDEF ,AD ⊥DC ,AB =AD =DE =2,EF =4,M 是线段AE 上的动点.(1)试确定点M 的位置,使AC ∥平面MDF ,并说明理由;(2)在(1)的条件下,平面MDF 将几何体ADE -BCF 分成两部分,求空间几何体M -DEF 与空间几何体ADM -BCF 的体积之比.【解析】(1)当M 是线段AE 的中点时,AC ∥平面MDF .理由如下:连接CE 交DF 于点N ,连接MN .因为M ,N 分别是AE ,CE 的中点,所以MN ∥AC .又因为MN ⊂平面MDF ,AC ⊄平面MDF ,所以AC ∥平面MDF .(2)将几何体ADE -BCF 补成三棱柱ADE -B ′CF ,如图所示,三棱柱ADE -B ′CF 的体积为V =S △ADE ·CD =12×2×2×4=8,则几何体ADE -BCF 的体积V ADE ­BCF =V ADE ­B ′CF -V F ­BB ′C=8-13×⎝⎛⎭⎫12×2×2×2=203. 因为三棱锥M -DEF 的体积V M ­DEF =13×⎝⎛⎭⎫12×2×4×1=43, 所以V ADM ­BCF =203-43=163, 所以两几何体的体积之比为43∶163=1∶4.。

高考数学总复习 9-2 简单几何体的表面积和体积但因为测试 新人教B版

高考数学总复习 9-2 简单几何体的表面积和体积但因为测试 新人教B版

高考数学总复习 9-2 简单几何体的表面积和体积但因为测试新人教B 版1.纸制的正方体的六个面根据其实际方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如下图所示的平面图形,则标“△”的面的方位是( )A .南B .北C .西D .下[答案] A[解析] 将所给图形还原为正方体,如下图所示,最上面为上,最右面为东,则前面为△,可知“△”的实际方位为南.2.(2010·河南省南阳市调研)一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为32π3,那么这个三棱柱的体积是( )A .963B .483C .243D .16 3[答案] B[解析] 已知正三棱柱的高为球的直径,底面正三角形的内切圆是球的大圆.设底面正三角形的边长为a ,球的半径为R ,则a =23R ,又43πR 3=32π3,∴R =2,a =43,于是V=34a 2·2R =48 3. 3.若圆锥轴截面的顶角θ满足π3<θ<π2,则其侧面展开图中心角α满足( )A.π4<α<π3 B.π3<α<π2 C.π2<α<π D .π<α<2π[答案] D[解析] ∵θ∈⎝⎛⎭⎫π3,π2 ∴θ2∈⎝⎛⎭⎫π6,π4, ∴sin θ2∈⎝⎛⎭⎫12,22,又r l =sin θ2∈⎝⎛⎭⎫12,22∴其侧面展开图中心角α=rl·2π∈(π,2π)4.(文)(2010·福建文,3)若一个底面是正三角形的三棱柱的正视图如下图所示,则其侧.面积..等于( )A.3 B .2 C .23 D .6[答案] D[解析] 原几何体是一个底面边长为2,高为1的正三棱柱,则S 侧=3×(2×1)=6.(理)(2010·陕西文,8)若某空间几何体的三视图如下图所示,则该几何体的体积是( )A .2B .1 C.23 D.13[答案] B[解析] 由几何体的三视图可知,该几何体是直三棱柱,其直观图如下图所示,其体积为V =12×2×1×2=1.5.一空间几何体的三视图如下图所示,则该几何体的体积为( )A .2π+2 3B .4π+2 3C .2π+233D .4π+233[答案] C[解析] 由几何体的三视图可知,该几何体是由一个底面直径和高都是2的圆柱和一个底面边长为2,侧棱长为2的正四棱锥叠放而成.故该几何体的体积为V =π×12×2+13×(2)2×3=2π+233,故选C.6.(文)(2011·湖南文,4)设下图是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18 [答案] D[解析] 由三视图可知,该几何体是一个球体和一个长方体的组合体.其中,V 球=43π·(32)3=9π2,V 长方体=2×3×3=18.所以V 总=92π+18. (理)(2011·山东济南一模)一个几何体的三视图如下图所示(单位长度:cm),则此几何体的表面积是( )A .(80+162)cm 2B .84cm 2C .(96+162)cm 2D .96cm 2[答案] A[解析] 其直观图如下图所示,由三视图知,棱锥底面是边长为4的正方形,高为2,棱柱与棱锥同底,高为4,因此棱锥的顶点到底边的距离是22+22=22cm ,故该几何体的表面积为S =(12×4×22)×4+(4×4)×5=80+162(cm 2).7.(2011·湖州模拟)如下图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个正三角形组成,则该多面体的体积是________.[答案]26[解析] 由展开图可知,该多面体是正四棱锥,底面正方形的边长为1,侧棱长也为1, ∴高h =322-122=22, ∴体积V =13×12×22=26.8.一个底面半径为1,高为6的圆柱被一个平面截下一部分,如图(1)所示,截下部分的母线最大长度为2,最小长度为1,则截下部分的体积是________.[答案]3π2[解析] 根据对称性把它补成如图(2)所示的圆柱,这个圆柱的高是3,体积是所求几何体体积的2倍,故所求的几何体的体积是12×π×12×3=3π2.故填3π2.9.圆柱内切球的表面积为4π,则圆柱的表面积为________. [答案] 6π[解析] 设球半径为R (R >0),则圆柱的底面半径为R ,高为2R ,由条件知,4πR 2=4π,∴R =1.∴圆柱的表面积S =2π·R 2+2πR ·2R =6πR 2=6π.10.(文)(2011·福建文,20)如下图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面P AD ;(2)若P A =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P -ABCD 的体积. [解析] (1)∵P A ⊥底面ABCD ,CE ⊂平面ABCD∴CE ⊥P A ,又∵AB ⊥AD ,CE ∥AB . ∴CE ⊥AD . 又∵P A ∩AD =A ∴CE ⊥平面P AD . (2)由(1)可知CE ⊥AD .在Rt △ECD 中,DE =CD ·cos45°=1,CE =CD ·sin45°=1. 又∵AB =CE =1,AB ∥CE ,所以四边形ABCE 为矩形. ∴S 四边形ABCD =S 矩形ABCE +S △CDE =AB ·AE +12CE ·DE=1×2+12×1×1=52.又P A ⊥底面ABCD ,P A =1所以V 四棱锥p -ABCD =13S 四边形ABCD ×P A =13×52×1=56.(理)(2010·合肥市质检)已知P 在矩形ABCD 的边DC 上,AB =2,BC =1,F 在AB 上且DF ⊥AP ,垂足为E ,将△ADP 沿AP 折起,使点D 位于D ′位置,连接D ′B 、D ′C 得四棱锥D ′-ABCP .(1)求证:D ′F ⊥AP ;(2)若PD =1,且平面D ′AP ⊥平面ABCP ,求四棱锥D ′-ABCP 的体积. [解析] (1)∵AP ⊥D ′E ,AP ⊥EF ,D ′E ∩EF =E , ∴AP ⊥平面D ′EF ,∴AP ⊥D ′F .(2)∵PD =1,∴四边形ADPF 是边长为1的正方形, ∴D ′E =DE =EF =22, ∵平面D ′AP ⊥平面ABCP ,D ′E ⊥AP ,∴D ′E ⊥平面ABCP , ∵S 梯形ABCP =12×(1+2)×1=32,∴V D ′-ABCP =13×D ′E ×S 梯形ABCP =24.11.(2010·北京文,8)如下图,正方体ABCD -A 1B 1C 1D 1的棱长为2.动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 [答案] C[解析] 设P 到平面EFQ 的距离为h ,则V P -EFQ =13×S △EFQ·h ,由于Q 为CD 的中点,∴点Q 到直线EF 的距离为定值2,又EF =1,∴S △EFQ 为定值,而P 点到平面EFQ 的距离,即P 点到平面A 1B 1CD 的距离,显然与x 有关与y 无关,故选C.12.(文)(2011·陕西文,5)某几何体的三视图如下图所示,则它的体积为( )A .8-2π3B .8-π3C .8-2π D.2π3[答案] A[解析] 由三视图知,原几何体为如下图所示一正方体挖去一个与正方体等高底面是正方形的内切圆的圆锥,则其体积为V =23-13π×12×2=8-2π3.故选A.(理)(2010·北京东城区)如图(1)所示,一只装了水的密封瓶子,其内部可以看成是由半径为1cm 和半径为3cm 的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20cm ,当这个几何体如图(3)水平放置时,液面高度为28cm ,则这个简单几何体的总高度为( )A.29cm B.30cmC.32cm D.48cm[答案] A[解析]如图(2),设下面圆柱高度为H,则上面小圆柱内液面高度20-H,又设余下部分为h,则图(3)中,下面圆柱高度为h+20-H,故上面圆柱液面高度为28-(h+20-H)=H+8-h,由两圆柱内液体体积相等得9πH+π(20-H)=π(h+20-H)+9π(H+8-h),∴h=9,几何体总高度为20+9=29cm.[点评]抓住问题的关键环节可以有效的提高解题的速度,本题中若设几何体的总高度为H,由几何体的总容积一定,内装液体的体积一定可得:π×32×(H-28)=π×12×(H-20),∴H=29(cm),解题过程就简捷多了.13.(2011·东北三校)一个几何体的三视图及部分数据如下图所示,左视图为等腰三角形,俯视图为正方形,则这个几何体的体积等于()A.13B.23C.156D.6224[答案] A[解析] 由三视图知,这是一个正四棱锥,其底面为正方形,一条侧棱垂直于底面其长度为2,底面正方形对角线长为1,∴边长为22,体积V =13×(22)2×2=13. 14.(文)一等边圆柱(轴截面是正方形的圆柱)的表面积为24π,一圆锥与此圆柱一个底面重合,顶点在另一个底面上,则此圆锥的表面积为________.[答案] 4(5+1)π[解析] 设圆柱底半径为R ,则2πR 2+2πR ·2R =24π,∴R =2, ∴圆锥的底半径为R =2,高为4, 母线长l =22+42=25,∴圆锥的表面积S =πR 2+πRl =4π+45π=4(5+1)π.(理)圆锥的高为4,侧面积为15π,其内切球的表面积为________. [答案] 9π[解析] 设圆锥底面半径为r (r >0),则母线长l =16+r 2,由πrl =15π得r ·16+r 2=15,解之得r =3,∴l =5.设内切球半径为R ,作出圆锥的轴截面如上图,则BD =BO 1=3,PD =5-3=2,PO =4-R ,∵OD ⊥PB ,∴R 2+4=(4-R )2,∴R =32,∴球的表面积S =4πR 2=9π.15.(文)(2011·安徽省淮南市高三模拟)如下图是以正方形ABCD 为底面的正四棱柱被一平面所截得的几何体,四边形EFGH 为截面,且AB =BC =2,AE =1,BF =DH =2,CG =3.(1)证明:截面四边形EFGH 是菱形; (2)求几何体C -EFGH 的体积.[解析] (1)证明:因为平面ABFE ∥平面CDHG ,且平面EFGH 分别交平面ABFE 、平面CDHG 于直线EF 、GH ,所以EF ∥GH .同理,FG ∥EH .因此,四边形EFGH 为平行四边形.因为BD ⊥AC ,而AC 为EG 在底面ABCD 上的射影, 所以EG ⊥BD .因为BF 綊DH ,所以FH ∥BD . 因此,FH ⊥EG .所以四边形EFGH 是菱形. (2)解:连接CE 、CF 、CH 、CA ,则V C -EFGH =V -V C -ABFE -V C -ADHE ,其中V 是几何体的体积,∵AE =1,BF =DH =2,CG =3且几何体是以正方形ABCD 为底面的正四棱柱的一部分,所以该几何体的体积为 V =(2)2×2=4, V C -ABFE =13×S 四边形ABFE ×BC=13×12(AE +BF )×AB ×BC =16×(1+2)×2×2=1. 同理,得V C -ADHE =1,所以,V C -EFGH =V -V C -ABFE -V C -ADHE =4-1-1=2, 即几何体C -EFGH 的体积为2.(理)(2011·江西文,18)如下图在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D ,现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′-PBCD 的体积最大时,求P A 的长;(2)若点P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE .[解析] (1)令P A =x (0<x <2),则A ′P =PD =x ,BP =2-x ,因为A ′P ⊥PD 且平面A ′PD ⊥平面PBCD ,故A ′P ⊥平面PBCD .所以V A ′-PBCD =13Sh =16(2-x )(2+x )x =16(4x -x 3).令f (x )=16(4x -x 3),由f ′(x )=16(4-3x 2)=0,得x =23 3.当x ∈(0,233)时,f ′(x )>0,f (x )单调递增;当x ∈(233,2)时,f ′(x )<0,f (x )单调递减.所以,当x =233时,f (x )取得最大值,即当V A ′-PBCD 最大时,P A =233. (2)设F 为A ′B 的中点,连接PF ,FE ,则有 EF 綊12BC ,PD 綊12BC ,∴EF 綊PD ,∴四边形EFPD 为平行四边形,∴DE ∥PF . 又A ′P =PB ,所以PF ⊥A ′B ,故DE ⊥A ′B .1.如下图,已知在多面体ABC -DEFG 中,AB 、AC 、AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A .2B .4C .6D .8[答案] B[解析] 补成长方体ABMC -DEFN 并连接CF ,易知三棱锥F -BCM 与三棱锥C -FGN 的体积相等,故几何体体积等于长方体的体积4.故选B.[点评] 1.也可以用平面BCE 将此几何体分割为两部分,设平面BCE 与DG 的交点为H ,则ABC -DEH 为一个直三棱柱,由条件易证EH 綊FG 綊BC ,平面BEF ∥平面CHG ,且△BEF ≌△CHG ,∴几何体BEF -CHG 是一个斜三棱柱,这两个三棱柱的底面都是直角边长为2和1的直角三角形,高都是2,∴体积为4.2.如图(2),几何体ABC -DEFG 也可看作棱长为2的正方体中,取棱AN 、EK 的中点C 、F ,作平面BCGF 将正方体切割成两部分,易证这两部分形状相同,体积相等,∴V ABC-DEFG=12×23=4.2.(2010·安徽理,8)一个几何体的三视图如下图,该几何体的表面积为()A.280 B.292C.360 D.372[答案] C[解析]由三视图知该几何体是两个长方体的组合体,上面的长方体的表面积为(6×8)×2+(8×2)×2+6×2=140.下面的长方体的表面积为(10×8)×2+(10×2)×2+(8×2)×2-6×2=220.故表面积为140+220=360.选C.3.(2010·东营质检)用单位正方体搭几何体,使它的主视图和俯视图如下图所示,则符合条件的几何体体积的最小值与最大值分别是()A.9,13 B.7,16C .10,15D .10,16[答案] D[解析] 由俯视图知底层有七个小正方体,结合主视图知,最左边一列,最多都是三层,最少只有一行是三层,故左边一列最多9个、最少5个;中间一列最多都是二层有6个,最少只有一行二层,共4个;右边一列只一层一行,故最多9+6+1=16个,最少5+4+1=10个.4.(2010·沈阳市)如下图所示,某几何体的正(主)视图与侧(左)视图都是边长为1的正方形,且体积为12.则该几何体的俯视图可以是( )[答案] C[解析] 由正(主)视图和侧(左)视图可知,此几何体为柱体,易知高h =1,且体积V =S ×h =12(S 为底面积),得S =12,结合各选项知这个几何体的底面可以是边长为1的等腰直角三角形,故选C.5.(2011·湖南十二校)四棱锥P -ABCD 的顶点P 在底面ABCD 中的射影恰好是A ,其三视图如下图,则四棱锥P -ABCD 的表面积为________.[答案] (2+2)a 2[解析] 由三视图知,其直观图如下图.∵CD ⊥AD ,CD ⊥P A ,∴CD ⊥平面P AD ,同理CB ⊥平面P AB . ∴PD =PB =2a ,其表面积S =AB ·AD +2×(12AB ·P A )+2×(12PB ·BC )=a 2+a 2+2a 2=(2+2)a 2.6.如图(1),矩形ABCD 中,AB =2AD =2a ,E 为DC 的中点,现将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,如(2).(1)求四棱锥D -ABCE 的体积;(2)求证:AD ⊥平面BDE .[解析] (1)取AE 的中点O ,由题意知, AB =2AD =2a ,ED =EC ,∴AD =DE ,∴DO ⊥AE , 又∵平面ADE ⊥平面ABCE , ∴DO ⊥平面ABCE . 在等腰Rt △ADE 中, AD =DE =a ,DO =22a , 又S 梯形ABCE =12(a +2a )a =32a 2,∴V D -ABCE =13S 梯形ABCE ·DO =13·32a 2·22a =24a 3.(2)连结BE ,则BE =a 2+a 2=2a ,又AE =2a ,AB =2a , ∴AB 2=AE 2+EB 2,∴AE ⊥EB ,由(1)知,DO⊥平面ABCE,∴DO⊥BE,又∵DO∩AE=O∴BE⊥平面ADE,∴BE⊥AD,又∵AD⊥DE,∴AD⊥平面BDE.。

高考数学一轮复习: 第7章 立体几何 第5节 简单几何体的表面积与体积

高考数学一轮复习: 第7章 立体几何 第5节 简单几何体的表面积与体积

第五节 简单几何体的表面积与体积[考纲传真] (教师用书独具)了解球、棱柱、棱锥、台的表面积和体积的计算公式.(对应学生用书第117页)[基础知识填充]1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥 圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l3.名称几何体 表面积体积柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3[(1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)棱长为a 的正四面体,其高H =63a ,则其外接球半径R =34H ,内切球半径R =14H .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面面积与高之积.( ) (3)球的体积之比等于半径比的平方.( ) (4)台体的体积可转化为两个锥体的体积之差.( )(5)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (6)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .( ) [答案](1)√ (2)× (3)× (4)√ (5)√ (6)√2.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cmD .32cm B [S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,∴r 2=4, ∴r =2(cm).]3.(2016·全国卷Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .323πC .8πD .4πA [设正方体棱长为a ,则a 3=8,所以a =2.所以正方体的体对角线长为23,所以正方体外接球的半径为3,所以球的表面积为4π·(3)2=12π,故选A .]4.(2017·浙江高考)某几何体的三视图如图7­5­1所示(单位:cm),则该几何体的体积(单位:cm 3)是( )图7­5­1A .π2+1B .π2+3C .3π2+1D .3π2+3A [由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是2的等腰直角三角形,高为3的三棱锥的组合体, 所以该几何体的体积V =13×12π×12×3+13×12×2×2×3=π2+1.故选A .]5.已知某几何体的三视图如图7­5­2所示,则该几何体的体积为________.图7­5­2163π [由三视图可知,该几何体是一个圆柱挖去了一个圆锥,其体积为π×22×2-13π×22×2=163π.](对应学生用书第118页)简单几何体的表面积(1)(2018·石家庄一模)某几何体的三视图如图7­5­3所示(在网格线中,每个小正方形的边长为1),则该几何体的表面积为( )图7­5­3A .48B .54C .64D .60(2)(2016·全国卷Ⅰ)如图7­5­4,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )图7­5­4A .17πB .18πC .20πD .28π(1)D (2)A [(1)根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.(2)由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A .][规律方法] 简单几何体表面积的求法 1以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.必须还原出直观图.2多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. 3旋转体的表面积问题注意其侧面展开图的应用.弧线为四分之一圆周),则该几何体的表面积为( )图7­5­5A .48+4πB .72+4πC .48+6πD .72+6πD [由三视图可得该几何体是棱长为4的正方体截去底面是边长为2的正方形、高为4的长方体,再补上14个底面圆半径为2、高为4的圆柱,则该几何体的表面积为16×2+2(12+π)+8×2+14×2π×2×4=72+6π,故选D.]简单几何体的体积(1)(2017·全国卷Ⅱ)如图7­5­6,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )图7­5­6A .90πB .63πC .42πD .36π(2)(2018·深圳二调)一个长方体被一个平面截去一部分后,所剩几何体的三视图如图7­5­7所示,则该几何体的体积为( )图7­5­7A .24B .48C .72D .96(1)B (2)B [(1)法一:(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.法二:(估值法)由题意知,12V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π,所以45π<V 几何体<90π.观察选项可知只有63π符合.故选B.(2)由三视图知,该几何体是由长、宽、高分别为6,4,4的长方体被一个平面截去所剩下的部分,如图所示,其中C ,G 均为长方体对应边的中心,该平面恰好把长方体一分为二,则该几何体的体积为V =12×6×4×4=48,故选B.][规律方法] 简单几何体体积问题的常见类型及解题策略 1若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. 2若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解. 3若以三视图的形式给出几何体,则应先根据三视图得到几何体的底面积和高,一般不需画直观图.[跟踪训练] (1)正三棱柱ABC ­A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A ­B 1DC 1的体积为( )【导学号:79140239】A .3B .32C .1D .32(2)(2017·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图7­5­8,则该几何体的体积为________.图7­5­8(1)C (2)2+π2 [(1)由题意可知,AD ⊥平面B 1DC 1,即AD 为三棱锥A ­B 1DC 1的高,且AD =32×2=3, 易求得S △B 1DC 1=12×2×3=3,所以VA ­B 1DC 1=13×3×3=1.(2)该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,所以V =2×1×1+2×14×π×12×1=2+π2.]与球有关的切、接问题(2016·全国卷Ⅲ)在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3B [由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43π⎝ ⎛⎭⎪⎫323=92π.故选B.]1.若本例中的条件变为“直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.[解] 将直三棱柱补形为长方体ABEC ­A 1B 1E 1C 1, 则球O 是长方体ABEC ­A 1B 1E 1C 1的外接球, 所以体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13, 故S 球=4πR 2=169π.2.若本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.[解] 如图,设球心为O ,半径为r ,则在Rt△AFO 中,(4-r )2+(2)2=r 2,解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16.[规律方法] 与球有关的切、接问题的求解方法1与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”“接点”作出截面图,把空间问题化归为平面问题.2若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体①利用2R =a 2+b 2+c 2求R . ②确定球心位置,把半径放在直角三角形中求解.3一条侧棱垂直底面的三棱锥问题:可补形成直三棱柱.同一个球的球面上,则该圆柱的体积为( ) A .π B .3π4C .π2D .π4(2)(2018·深圳二调)已知三棱锥S ­ABC ,△ABC 是直角三角形,其斜边AB =8,SC ⊥平面ABC ,SC =6,则三棱锥的外接球的表面积为( )【导学号:79140240】A .64πB .68πC .72πD .100π(1)B (2)D [(1)设圆柱的底面半径为r ,球的半径为R ,且R =1, 由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r =12-⎝ ⎛⎭⎪⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4.故选B.(2)由于△ABC 是直角三角形,则对应的截面圆的圆心为AB 的中点,截面圆半径r =4,且球心就在过截面圆的圆心且垂直于截面的直线上,且球心到平面ABC 的距离等于SC 的一半,故三棱锥的外接球的半径R =42+⎝ ⎛⎭⎪⎫622=5,故三棱锥的外接球的表面积为S =4πR 2=100π,故选D.]。

高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)

高中数学必修二   8  简单几何体的表面积与体积(精讲)(含答案)

8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD ­-A 1B 1C 1D 1中,三棱锥D 1­AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1­AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。

2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)

2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)
分叫作棱台
(2)旋转体的形成
几何体
旋转图形
圆柱
矩形
旋转轴
矩形一边所在的直线
圆锥
直角三角形
一直角边所在的直线
圆台
直角梯形或等腰梯形

半圆或圆
直角腰所在的直线或等腰梯形
上下底中点连线所在的直线
直径所在的直线
2.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其画法步骤为:
①画轴:在平面图形上取互相垂直的x轴和y轴,作出与之对应的x'轴
3
4
3 = .故选 D.
考点一
考点二
考点三
本题考查四面体的体积的最大值的求法,涉及空间中线线、线面、
面面间的位置关系等基础知识,考查运算求解能力,属于难题.处理
此类问题时,往往先去找到不变的量,再根据题中的所给条件的变
化规律找到最值,从而得到体积的最值.
和y'轴,使得它们正方向的夹角为45°(或135°);
②画线(取长度):平面图形中与x轴平行(或重合)的线段画出与x'轴
平行(或重合)的线段,且长度不变,平面图形中与y轴平行(或重合)的
线段画出与y'轴平行(或重合)的线段,且长度为原来长度的一半;
③连线(去辅助线):连接有关线段,擦去作图过程中的辅助线.
径,从而进一步求解.
考点一
考点二
考点三
◆角度3.体积最值问题
例5(1)(2019年1月浙江学考)如图,线段AB是圆的直径,圆内一条动
弦CD与AB交于点M,且MB=2AM=2,现将半圆沿直径AB翻折,则三
棱锥C-ABD体积的最大值是(
)
2
3
1
3
A.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲 简单几何体的面积与体积
一、选择题
1.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为( ) A.7
2π B .56π
C .14π
D .64π
解析 设长方体的过同一顶点的三条棱长分别为a ,b ,c ,则⎩⎨⎧
ab =2,
bc =3,
ac =6,得⎩⎨⎧
a =2,
b =1,
c =3,
令球的半径为R ,则(2R )2=22+12+32=14,∴R 2=7
2,
∴S 球=4πR 2=14π. 答案 C
2.若等腰直角三角形的直角边长为3,则以一直角边所在的直线为轴旋转一周所成的几何体体积是( ) A .9π B .12π C .6π
D .3π
解析 由题意知所得几何体为圆锥,且底面圆半径为3,高为3,故V =13·(π·32
)·3=9π. 答案 A
3.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm 2)为( ).
A .48
B .64
C .80
D .120
解析 据三视图知,该几何体是一个正四棱
锥(底面边长为8),直观图如图,PE 为侧面△PAB 的边AB 上的高,且PE =5.∴此几何体的侧面积是S =4S △PAB =4×1
2×8×5=
80(cm 2). 答案 C
4.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ). A.2
6
B.36
C.23
D.22
解析 在直角三角形ASC 中,AC =1,∠SAC =90°,SC =2,∴SA =4-1=3;同理SB = 3.过A 点作SC 的垂线交SC 于D 点,连接DB ,因△SAC ≌△SBC ,故BD ⊥SC ,故SC ⊥平面ABD ,且平面ABD 为等腰三角形,因∠ASC =30°,故
AD =1
2SA =
32,则△ABD 的面积为1
2
×1× AD 2-⎝ ⎛⎭
⎪⎫
122
=24,则三棱锥的体积为13×24×2=26. 答案 A
5.某品牌香水瓶的三视图如下(单位:cm),则该几何体的表面积为 ( ).
A.⎝ ⎛
⎭⎪⎫95-π2cm 2
B.⎝ ⎛
⎭⎪⎫94-π2cm 2
C.⎝

⎭⎪⎫94+π2cm 2
D.⎝

⎭⎪⎫95+π2cm 2
解析 该几何体的上下为长方体,中间为圆柱.
S 表面积=S 下长方体+S 上长方体+S 圆柱侧-2S 圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π×12×1-2×π⎝ ⎛⎭⎪⎫122
=94+π2.
答案 C
6.已知球的直径SC =4,A 、B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( ) A .3 3 B .2 3 C. 3
D .1
解析 由题意知,如图所示,在棱锥S ­ABC SAC SBC
都是有一个角为30°的直角三角形,其中AB =3,SC =4,所以
SA =SB =23,AC =BC =2.作BD ⊥SC 于D 点,易证SC ⊥平面 ABD ,因此V =1
3
×3
4
×(3)2×4= 3. 答案 C
二、填空题
7.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________cm 3.
解析 由三视图可知,该三棱锥底面为两条直角边分别为1 cm 和3 cm 的直角三角形,一条侧棱垂直于底面,垂足为直角顶点,故高为2 cm ,所以体积V =13×1
2×1×3×2=1(cm 3).
答案 1
8.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________ m 3.
解析 由三视图可知,该几何体是组合体,上面是长、宽、高分别是6,3,1的长方体,下面是两个半径均为32的球,其体积为6×3×1+2×43×π×⎝ ⎛⎭⎪
⎫323
=18+9π(m 3). 答案 18+9π
9.已知某几何体的直观图及三视图如图所示,三视图的轮廓均为正方形,则该几何体的表面积为________.
解析 借助常见的正方体模型解决.由三视图
知,该几何体由正方体沿面AB 1D 1与面CB 1D 1截去两个角所得,其表面由两个等边三角形、四个直角三角形和一个正方形组成.计算得其表面积为12+4 3. 答案 12+4 3
10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.
解析:由三视图可知,该几何体由上下两部分组成,其中下面是一个长、宽、高分别为3、2、1的长方体,上面是一个底面半径为1,高为3的圆锥,所以所求的体积是:V =V 圆锥+V 长方体=1
3π×12×3+3×2×1=6+π.
答案:6+π 三、解答题
11.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,
AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积. 解 由已知得:CE =2,DE =2,CB =5,
S 表面=S 圆台侧+S 圆台下底+S 圆锥侧=π(2+5)×5+π×25+π×2×22=(60+
42)π,V=V圆台-V圆锥=1
3
(π·22+π·52+22·52π2)×4-
1
3
π×22×2=
148
3
π.
12.在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠
ACB=90°,AC=6,BC=CC
1
=2,P是BC1上一动点,
如图所示,求CP+PA1的最小值.
解PA1在平面A1BC1内,PC在平面BCC1内,将其铺平
后转化为平面上的问题解决.铺平平面A1BC1、平面
BCC
1
,如图所示.计算A1B=AB1=40,BC1=2,又A1C1=6,故△A1BC1是∠A1C1B =90°的直角三角形.
CP+PA
1
≥A1C.在△AC1C中,由余弦定理,得
A
1
C=62+22-2·6·2·cos 135°=50=52,
故(CP+PA1)min=5 2.
13.如图(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图(b)所示.
(1)求证:BC⊥平面ACD;
(2)求几何体D-ABC的体积.
(1)证明在图中,可得AC=BC=22,
从而AC2+BC2=AB2,
故AC⊥BC,
又平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC⊂平面ABC,∴BC⊥平面
ACD.
(2)解由(1)可知,BC为三棱锥B-ACD的高,BC=22,S△ACD=2,
∴V B-ACD=1
3
S
△ACD
·BC=
1
3
×2×22=
42
3

由等体积性可知,几何体D-ABC的体积为42 3
.
14.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,
AB>1,点E在棱AB上移动,小蚂蚁从点A沿
长方体的表面爬到点C1,所爬的最短路程为2 2.
(1)求AB的长度.
(2)求该长方体外接球的表面积.
解 (1)设AB=x,点A到点C1可能有两种途径,如图甲的最短路程为|AC1|=x2+4.
如图乙的最短路程为
|AC1|=x+12+1=x2+2x+2,
图甲图乙
∵x>1,∴x2+2x+2>x2+2+2=x2+4,故从点A沿长方体的表面爬到点C
1
的最短距离为x2+4.
由题意得x2+4=22,解得x=2.
即AB的长度为2.
(2)设长方体外接球的半径为R,则
(2R)2=12+12+22=6,
∴R2=3
2
,∴S表=4πR2=6π.
即该长方体外接球的表面积为6π.。

相关文档
最新文档