高考数学简单几何体

合集下载

高三数学简单几何体 知识精讲 通用版

高三数学简单几何体 知识精讲 通用版

高三数学简单几何体 知识精讲 通用版【本讲主要内容】简单几何体棱柱、棱锥球的概念和性质【知识掌握】 【知识点精析】1. 棱柱的概念和性质定义:有两个面互相平行,其余各面的公共边互相平行的多面体叫棱柱.侧棱与底面垂直的棱柱叫直棱柱,底面是正多边形的直棱柱叫正棱柱.性质:棱柱的各侧棱相等,各侧面是平行四边形;长方体的对角线的平方等于由一个定点出发的三条棱的平方和.说明:(1)理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱→直棱柱→正棱柱”这一系列中各类几何体的内在联系和区别。

(2)平行六面体是棱柱中的一类重要的几何体,要理解并掌握“平行六面体→直平行六面体→长方体→正四棱柱→正方体”这一系列中各类几何体的内在联系和区别。

2. 棱锥的概念和性质定义:一个面是多边形,其余各面是由一个公共顶点的三角形的多面体叫棱锥.底面是正多边形并且顶点在底面上的射影是正多边形的中心的锥棱叫正棱锥.性质:在正棱锥中,侧棱、高及侧棱在底面上的射影构成直角三角形.斜高、高及斜高在底面上的射影构成直角三角形. 3. 球的概念和性质(1)定义:到定点的距离小于或等于定长的点的集合叫做球. 到定点的距离等于定长的集合叫做球面.过球面上两点的大圆在这两点间劣弧的长叫做两点的球面距离.(2)性质:①平面截球所得的截面是圆;②球心与截面圆心的连线垂直于截面; ③设球心到截面的距离为d ,截面圆的半径为r ,球的半径为R ,则:r =22d R④表面积及体积公式: S 球表=4πR 2 ,V 球=34πR 3 ,其中R 为球的半径(3)相关概念——经纬度 根据经线和纬线的意义可知,某地的经度是一个二面角的度数,某地的纬度是一个线面角的度数,4. 主要题型及解题方法(1)以棱柱、棱锥为载体,考查线面平行、垂直,夹角与距离等问题。

解这类题要注意棱柱与棱锥的性质及各种线面关系相关性质的综合运用(2)求球的体积、表面积和球面距离。

高中数学简单的几何体的结构考点及例题讲解

高中数学简单的几何体的结构考点及例题讲解

简单几何体的结构、三视图和直观图考纲解读 1.以常见的几何体及简单组合体为模型画三视图、辩认三视图;2.辩识三视图所表示的立体模型;3.通过模型转化几何体、三视图、直观图;4.会画某些建筑物的三视图与直观图.[基础梳理]1.多面体的结构特征(1)棱柱的侧棱都互相平行,上下底面是全等的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形任一直角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线3.(1)三视图的形成与名称:①形成:空间几何体的三视图是用平行投影得到的,在这种投影之下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是完全相同的;②名称:三视图包括正视图、侧视图、俯视图.(2)三视图的画法:①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.[三基自测]1.如图,长方体ABCD A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.简单组合体答案:C2.某几何体的三视图如图所示,根据三视图可以判断这个几何体为()A.圆锥B.三棱锥C.三棱柱D.三棱台答案:C3.利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是________.答案:1考点一简单几何体的结构特征|易错突破[例1](1)给出下列四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是() A.0B.1C.2 D.3(2)给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中不正确的命题的个数是________个.[解析](1)①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故①③都不正确,②中对等腰三角形的腰是否为侧棱未作说明,故也不正确,④平行六面体的两个相对侧面也可能与底面垂直且互相平行,故④也不正确.[答案](1)B(2)4[易错提醒]1.明确各种空间几何体的概念及相关元素的特征.2.善于构建、利用几何体模型.3.通过反例对结构特征进行判断.[纠错训练]给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④棱台的侧棱延长后交于一点,侧面是等腰梯形.其中正确命题的序号是()A.①②③B.②③C.③D.①②③④解析:对于①,棱柱的侧面不一定全等,故①错;对于②,截面与底面不一定平行,故②错;对于④,棱台的侧棱延长后相交于一点,但侧面不一定是等腰梯形,故④错;由面面垂直的判定及性质知③正确,故选C.答案:C考点二 简单几何体的直观图|易错突破[例2] (1)用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2(2)(2018·青岛模拟)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形[解析] (1)依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.(2)在直观图中,O ′D ′=2cos 45°=22,C ′D ′=2,恢复平面图形后,OD =42,CD =2, ∴OC =(42)2+22=6, ∴OABC 为菱形,故选C. [答案] (1)C (2)C [易错提醒]注意原图与直观图的“变”与“不变” (1)“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度改变(减半)图形改变(2)“三不变”⎩⎪⎨⎪⎧平等性不变与x 轴平行的线段长度不变相对位置不变[纠错训练]如图所示,一个水平放置的正方形ABCD ,它在直角坐标系xOy 中,点B 的坐标为(2,2),则在用斜二测画法画出正方形的直观图A ′B ′C ′D ′中,顶点B ′到x ′轴的距离为________.解析:正方形的直观图A′B′C′D′如图:因为O′A′=B′C′=1,∠B′C′x′=45°,所以顶点B′到x′轴的距离为1×sin45°=2 2.答案:22考点三简单几何体的三视图|模型突破角度1已知几何体识别三视图[例3]正方体ABCD-A1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C.[答案]C[模型解法](3)按规定的视线,找出各个顶点在投影面上的投影.(4)确定线在投影面上的虚实.[高考类题]1.(2013·高考课标全国Ⅱ)一个四面体的顶点在空间直角坐标系O xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()解析:设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O、A、B、C为顶点的四面体补成一正方体后,由于OA⊥BC,所以该几何体以zOx平面为投影面的正视图为A.答案:A角度2已知三视图,判断几何体[例4](2018·烟台模拟)若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A.1B.2C.3 D.4[解析]观察三视图,可得直观图如图所示.该三棱锥A­BCD的底面BCD是直角三角形,AB⊥平面BCD,CD⊥BC,侧面ABC,ABD是直角三角形;由CD⊥BC,CD⊥AB,知CD⊥平面ABC,CD⊥AC,侧面ACD也是直角三角形,故选D.[答案]D[模型解法]识别三视图应从以下几方面考虑(1)从线型看类型,由三视图中的线是线段还是曲线,可确定此几何体是简单多面体还是旋转体;(2)分部分,想整体,判断几何体是简单几何体还是组合体;(3)对比一些熟悉的三视图模型进行分析,如正方体、圆锥、三棱锥等三视图模型.2.(2014·高考新课标全国卷Ⅰ)如图所示,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:将三视图还原为几何体如图所示,几何体为三棱柱.答案:B1.[考点一、二、三](2014·高考湖北卷)在如图所示的空间直角坐标系O xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析:设A (0,0,2),B (2,2,0),C (1,2,1),D (2,2,2).∵B ,C ,D 在平面yOz 上的投影的坐标分别为(0,2,0),(0,2,1),(0,2,2),点A (0,0,2)在平面yOz 上,又点C 的横坐标小于点B 和D 的横坐标,∴该几何体的正视图为图④.∵点A ,C ,D 在平面xOy 上的投影的坐标分别为(0,0,0),(1,2,0),(2,2,0),点B (2,2,0)在平面xOy 上,∴该几何体的俯视图为图②.故选D.答案:D2.[考点一、二、三](2015·高考全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:如图,由已知条件可知,在正方体ABCD A 1B 1C 1D 1中,截去三棱锥A A 1B 1D 1后剩余的部分即为题中三视图对应的几何体,设该正方体的棱长为a ,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=56a 3.它们的体积之比为15.故选D.答案:D3.[考点一、二、三](2013·高考山东卷)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥侧面积和体积分别是( )A .45,8B .45,83C .4(5+1),83D .8,8解析:由题意知该四棱锥为正四棱锥,其底面边长为2,正四棱锥的高为2,故侧面三角形的高为 5.所以该四棱锥的侧面积为4×12×2×5=45,体积为13×22×2=83,故答案为B.答案:B。

高中数学必修《简单几何体》ppt课件

高中数学必修《简单几何体》ppt课件

棱柱用表示两底面多边形的顶点的字母表
示2024棱/1/9 柱;如:棱柱ABCDEA1B1C1D1E1
33
二 观察下列几何体;有什么相同点
2024/1/9
34
1 棱锥的概念
有一个面是多边形;其余各面是有一个公共 顶点的三角形; 由这些面所围成的几何体叫做 棱锥
这个多边形面叫做棱锥的底面
有公共顶点的各个三角形叫做棱锥 的侧面
3 棱台的表示法:棱台用表示上 下底面各顶
点的字母来表示;如图棱台ABCDA1B1C1D1
A1 D1
C B1 1
2024/1/9
41
❖ 思考题:1 用平行于圆柱;圆锥;圆台的底面的平
面去截它们;那么所得的截面是什么图形 性质1:平行于圆柱;圆锥;圆台底面的截面都是 圆 2 过圆柱;圆锥;圆台的旋转轴的截面是什么图形 性质2:过轴的截面轴截面分别是全等的矩形;等
2024/1/9
22
2 圆台的表示: 用表示它的轴的字母表示;如圆台OO′
O'
2024/1/9
O
底面
轴 侧面
母线 23
底面
总结:由于球体 圆柱 圆锥 圆台分别由平面图 形半圆 矩形 直角三角形 直角梯形通过绕着一 条轴旋转而生成的;所以把它们都叫旋转体
2024/1/9
24
§1 2:简单的多面体
❖ 大家知道:平静的桌面 黑板面 湖面都给我们一种平面的 局部感觉
❖ 请大家想一想;在空间中;平面给大家的感觉会是怎样的呢
❖ 在空间中;平面和直线一样;都是无限延展的;因此;我们不 能把一个无限延展的平面在一张纸上或书本上表示出来; 我们通常用平面的一部分表示整个平面
❖ 例如:
2024/1/9

2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)

2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)
分叫作棱台
(2)旋转体的形成
几何体
旋转图形
圆柱
矩形
旋转轴
矩形一边所在的直线
圆锥
直角三角形
一直角边所在的直线
圆台
直角梯形或等腰梯形

半圆或圆
直角腰所在的直线或等腰梯形
上下底中点连线所在的直线
直径所在的直线
2.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其画法步骤为:
①画轴:在平面图形上取互相垂直的x轴和y轴,作出与之对应的x'轴
3
4
3 = .故选 D.
考点一
考点二
考点三
本题考查四面体的体积的最大值的求法,涉及空间中线线、线面、
面面间的位置关系等基础知识,考查运算求解能力,属于难题.处理
此类问题时,往往先去找到不变的量,再根据题中的所给条件的变
化规律找到最值,从而得到体积的最值.
和y'轴,使得它们正方向的夹角为45°(或135°);
②画线(取长度):平面图形中与x轴平行(或重合)的线段画出与x'轴
平行(或重合)的线段,且长度不变,平面图形中与y轴平行(或重合)的
线段画出与y'轴平行(或重合)的线段,且长度为原来长度的一半;
③连线(去辅助线):连接有关线段,擦去作图过程中的辅助线.
径,从而进一步求解.
考点一
考点二
考点三
◆角度3.体积最值问题
例5(1)(2019年1月浙江学考)如图,线段AB是圆的直径,圆内一条动
弦CD与AB交于点M,且MB=2AM=2,现将半圆沿直径AB翻折,则三
棱锥C-ABD体积的最大值是(
)
2
3
1
3
A.

【2021高考数学】第1节 简单几何体的结构、三视图和直观图

【2021高考数学】第1节 简单几何体的结构、三视图和直观图

第1节简单几何体的结构、三视图和直观图考试要求 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图.与直观图,了解空间图形的不同表示形式知识梳理1.简单几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台1图形底面互相平行且全等多边形互相平行且相似侧棱平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形(2)名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面相交于一点延长线交于一点轴截面矩形等腰三角形等腰梯形圆侧面展开图矩形扇形扇环2.直观图简单几何体的直观图常用斜二测画法来画,其规则是:(1)在已知图形中建立直角坐标系xOy.画直观图时,它们分别对应x′轴和y′轴,两轴交于点O′,使∠x′O′y′=45°,它们确定的平面表示水平平面;(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴和y′轴11的线段;(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.3.三视图 (1)三视图的名称几何体的三视图包括主视图、左视图、俯视图. (2)三视图的画法①画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的正投影图.③观察简单组合体是由哪几个简单几何体组成的,并注意它们的组成方式,特别是它们的交线位置. [常用结论与微点提醒] 1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和左视图均为全等的等腰三角形. (3)水平放置的圆台的主视图和左视图均为全等的等腰梯形. (4)水平放置的圆柱的主视图和左视图均为全等的矩形.2.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”.在三视图的判断与识别中要特别注意其中的虚线.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.( ).解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱(2)反例:如图所示的图形满足条件但不是棱锥.(3)用斜二测画法画水平放置的∠A时,把x,y轴画成相交成45°或135°,平行于x轴的线段还平行于x轴,平行于y轴的线段还平行于y轴,所以∠A可能为45°也可能为135°.(4)球的三视图均相同,而圆锥的主视图和左视图相同,且为等腰三角形,其俯视图为圆心和圆,正方体的三视图不一定相同.答案(1)×(2)×(3)×(4)×2.(新教材必修第二册P205B2改编)一个菱形的边长为4 cm,一内角为60°,用1。

重点高中简单立体几何体(附例题详解)

重点高中简单立体几何体(附例题详解)

2.简单几何体知识网络简单几何体结构简图画龙点晴点的字母表示,如五棱柱可表示为:棱柱ABCDE-A/B/C/D/E/,或棱柱AC/.棱柱的性质:(1)侧棱都相等,侧面都是平行四边形;(2)两个底面与平行于底面的截面都是全等的多边形;(3)过不相邻的两条侧棱的截面(对角面)是平行四边形;直棱柱的性质:直棱柱的侧棱长和高相等,侧面及经过不相邻的两条侧棱的截面都是矩形。

平行六面体:底面是平行四边形的四棱柱叫做平行六面体.长方体:底面是矩形的直平行六面体叫做长方体,长方体的一条对角线长的平方和等于一个顶点上三条棱的长的平方和.即,11由三垂线定理得A 1M ⊥AB,A 1N ⊥AD.∵ ∠A 1AM=∠A 1AN,∴ Rt △A 1NA ≌Rt △A 1MA.∴ A 1M=A 1N. ∴ OM=ON.∴ 点O 在∠BAD 的平分线上. (2),232133cos 1=⨯==πAA AM23=∴AN ,∴侧面AB 1和侧面DC 1的面积都等于423⨯=6,侧面AD 1和侧面BC 1的面积都等于523⨯=7.5,又AB ⊥AD ,∴两底面面积都等于45⨯=20,∴平行六面体的表面积为2(6+7.5)+20=47.[例2]如图,A 1B 1C 1-ABC 是直三棱柱,过点A 1、B 、C 1的平面和平面ABC 的交线记作l . (1)(2)[(2)又l 作11.5131)512(22121=+=+=∴A A AE E A 故点A 1到直线l 的距离为513. 解法二:同解法一得l ∥AC.由平行直线的性质定理知∠CAB=∠ABE,从而有Rt △ABC ∽Rt △BEA,AE:BC=AB:AC,ACABBC AE ⨯=∴,以下同解法一. [例3]如图,已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC1;(2)假设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角α的度数. [题解](1)∵A 1B 1C 1-ABC 是正三棱柱,∴四边形B 1BCC 1是矩形.又(2)影∵角设DF 取2EF 16341432=⋅=∴EF ,即EF=43..14343tan ===∠∴EF DF DEF ∴∠DEF=45°.故二面角α为45°. 概念棱锥:有一个面是多边形、其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高.棱锥的分类:按底面多边形的边数,棱锥可分为三棱锥、四棱锥、五棱锥…… 棱锥的表示法:棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母棱锥的中截面:过棱锥的高的中点并且平行于底面的截面叫做棱锥的中截面. 公式正棱锥的侧面积和全面积:正棱锥的侧面积等于底面周长C 与斜高/h 乘积的一半.即/21h C S ⋅=正棱锥侧.[活用实例][例4]如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC.求证:SC垂直于截面MAB.[影面°从[).因由NSC.以下同证法一,故SC⊥截面MAB.[题解3]连结DM,DS.因为M,N分别在△SDC的两边上,所以SN和DM都在平面内,且相交于一点P.又因PN是底面的垂线,AB⊥DN,所以AB⊥DM(据三垂线定理).∴∠MDC是截面与底面所成二面角的平面角,∠MDC=∠NSC.又∠MDC=∠NSC,∠DCS是△DCM和△SCN的公共角,故∠DMC=∠SNC=90°.从而DM⊥SC.从AB⊥DM,AB⊥DC,可知AB⊥平面MDC.因为SC是平面MDC内的直线,所以AB⊥SC. 从AB⊥SC,DM⊥SC,可知SC⊥截面MAB.,正多面体的种类:正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体,其中正四面体、正八面体、正二十面体的面是正三角形,正六面体的面是正方形,正十二面体的面是正五边形。

高考数学简单几何体-文档

高考数学简单几何体-文档

E为PC中点。
(1)求证:PA 面EDB.
(2)求证:平面EDB 平面PBC.
P
(3)求二面角D-PB-C的正切值。 E
证1:连接AC交BD于O
易证PA EO,(1)问得证
D
C
O
A
B
(2)问的关键是在一个面内找到另一个面的垂线,由于要寻
找垂直条件故应从已知与垂直有关的条件入手,突破此问.
因为BC CD所以BC 面PDC 所以 BC DE
Байду номын сангаас
R
(3)点B与点Q重合
(4)点A与点S重合
MN
S PQ
其中正确的是(

D
E
FG H
A
B
C
答案:(2)(4)
例4、在正三棱锥 A-BCD中,E,F分别是AB,BC中点, EF DE且BC=1则正三棱锥A-BCD的体积是
分析:此题容易忽略正三棱锥
A
固有的隐含条件:对棱垂直即 E
AC BD。再由平行关系可得
AC 面ABD,故该正三棱锥 B
D
三条侧棱两两互相垂直,解得
体积为 2
24
F C
例5、正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其
边界上运动,并且总保持AP BD1则动点P的轨迹是( )
(A) 线段 B1C
(B)线段 BC1
(C) BB1中点与CC1中点连成的线段
(D) BC 中点与B1C1中点连成的线段
体积
V
=
4 R3
3
极限
d2=R2r2
思想
二典型例题解析与规律方法技巧总结
例1、设有三个命题:
甲:底面是平行四边形的四棱柱是平行六面体。

高三数学简单几何体习题精选精讲

高三数学简单几何体习题精选精讲

A B C DEA 1B 1C 1简单几何体(1)棱柱——最常见的多面体空间直线与平面的只研究位置关系,没有大小和形状的研究;而具体的几何体除位置关系外,还有大小和形状的区别. 几何体按形状分两大类:一是由平面围成的多面体,如正方体;二是由曲面围成的旋转体,如球.棱柱是常见的多面体,它有两个本质属性:①有两个面(底面)互相平行;②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.棱柱在高考中是常考的一种载体,除考查空间线面关系(空间角和距离)外,还有面积、体积计算问题的考查. 【例1】如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC , D 、E 分别为BB 1、AC 1的中点.(Ⅰ)证明:ED 为异面直线BB 1与AC 1的公垂线; (Ⅱ)设AA 1=AC =2AB ,求二面角A 1-AD -C 1的大小. 【解析1】(Ⅰ)设O 为AC 中点,连接EO ,BO , 则EO 12C 1C ,又C 1CB 1B ,所以EODB ,EOBD 为平行四边形,ED ∥O B . ∵AB =BC ,∴BO ⊥AC ,又平面ABC ⊥平面ACC 1A 1,BO ⊂ 面ABC , 故BO ⊥平面ACC 1A 1,∴ED ⊥平面ACC 1A 1,BD ⊥AC 1,ED ⊥CC 1, ∴ED ⊥BB 1,ED 为异面直线AC 1与BB 1的公垂线.(Ⅱ)连接A 1E ,由AA 1=AC =2AB 可知,A 1ACC 1为正方形, ∴A 1E ⊥AC 1,又由ED ⊥平面ACC 1A 1和ED ⊂平面ADC 1知平面ADC 1⊥平面A 1ACC 1,∴A 1E ⊥平面ADC 1.作EF ⊥AD ,垂足为F ,连接A 1F ,则A 1F ⊥AD ,∠A 1FE 为二面角A 1-AD -C 1的平面角.不妨设AA 1=2,则AC =2,AB =2ED =OB =1,EF =AE ×ED AD =23,tan ∠A 1FE =3,∴∠A 1FE =60°. 所以二面角A 1-AD -C 1为60°.【解析2】(Ⅰ)如图,建立直角坐标系O -xyz ,其中原点O 为AC 的中点. 设A (a ,0,0),B (0,b ,0),B 1(0,b ,2c ).则C (-a ,0,0),C 1(-a ,0,2c ),E (0,0,c ),D (0,b ,c ). ED →=(0,b ,0),BB 1→=(0,0,2c ). ED →·BB 1→=0,∴ED ⊥BB 1. 又AC 1→=(-2a ,0,2c ), ED →·AC 1→=0,∴ED ⊥AC 1,所以ED 是异面直线BB 1与AC 1的公垂线.(Ⅱ)不妨设A (1,0,0),则B (0,1,0),C (-1,0,0),A 1(1,0,2), BC →=(-1,-1,0),AB →=(-1,1,0),AA 1→=(0,0,2), BC →·AB →=0,BC →·AA 1→=0,即BC ⊥AB ,BC ⊥AA 1,又AB ∩AA 1=A , ∴BC ⊥平面A 1A D .AB CDEA 1B 1C 1OFC又 E (0,0,1),D (0,1,1),C (-1,0,1),EC →=(-1,0,-1),AE →=(-1,0,1),ED →=(0,1,0), EC →·AE →=0,EC →·ED →=0,即EC ⊥AE ,EC ⊥ED ,又AE ∩ED =E , ∴EC ⊥面C 1A D .cos <EC →,BC →>=EC →·BC →|EC →|·|BC →|=12,即得EC →和BC →的夹角为60°.所以二面角A 1-AD -C 1为60°.(2)棱锥——最简单的多面体棱锥是一种简单的多面体,它有两个主要特征:①有一个形状是多边形的底面;②其他各面是有一个公共顶点的三角形,这些三角形是棱锥的侧面.三棱锥是最简单的棱锥,也是最简单的多面体(四面体),多面体的研究往往归结到三棱锥来,正像多边形的研究要归结到三角形一样. 三棱锥常成为多面体考题的载体. 故有人说,考多面体说到底是在考三棱锥.【例2】(I )给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明; (II )试比较你剪拼的正三棱锥与正三棱柱的体积的大小;(III )如果给出的是一块任意三角形的纸片(如图3),要求剪栟成一个直三棱柱,使它的全面积与给出的三角形的面积相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)过半径为 2 的球 O 表面上一点 A 作球 O 的截面, 若 OA 与该截面所成的角是 60°则该 截面的面积是 ( A )
A.π
B. 2π
C. 3π
D. 2 3
(3)已知各顶点都在一个球面上的正四棱柱高为 4,体积为 16,则这个球的表面积是 ( C ) A. 16 B. 20 C. 24 D. 32 (4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的 比为 ( A ) A. 3 16 B. 9 16 C. 3 8 D. 9 32 ( D)
简单几何体
一、考试说明要求:
内容 A 1 2 3 棱柱、棱锥、球的概念 棱柱、正棱锥、球的性质 球的表面积, 柱、锥、球的体积公式. 要求 B C
√ √ √
二、应知应会知识
1. (1)设 M={正四棱柱} ,N={直四棱柱} ,P={长方体} ,Q={直平行六面体} ,则四个集 合的关系为 ( B ) A. M P N Q B.M P Q N C.P M N Q D.P M Q N
(10)如图,设三棱锥 S—ABC 的三个侧棱与底面 ABC 所成的角都是 60°,∠BAC=60°,且 SA⊥ BC. (Ⅰ)求证:S—ABC 为正三棱锥; S (Ⅱ)已知 SA=a,求 S—ABC 的全面积. (Ⅰ)证明:正棱锥的定义中,底面是正多边形;顶点在底面上 的射影是底面的中心,两个条件缺一不可.作三棱锥 S—ABC 的高 SO, O 为垂足,连结 AO 并延长交 BC 于 D. C O A 因为 SA⊥BC,所以 AD⊥BC.又侧棱与底面所成的角都相等,从 D 而 O 为△ABC 的外心,OD 为 BC 的垂直平分线,所以 AB=AC.又∠ B BAC=60°,故△ABC 为正三角形,且 O 为其中心.所以 S-ABC 为正 三棱锥. (Ⅱ)解:只要求出正三棱锥 S— ABC 的侧高 SD 与底面边长,则问题易于解决 .
A.3 B.9 C.6 D. 2 3 (2)棱锥体积为 1, 过它的高的两个三等分点分别作平行于底面的截面, 把棱锥截成三部分, 则中间部分的体积是 ( C ) A.
1 3
B.
4 9
C.
7 27
D.
8 27
(3)长方体的一条对角线与经过它的一端点的一个平面成 30°角,与经过这个端点的另一 个平面成 45°角,若这条对角线长为 2,则这个长方体的体积为 ( D ) A. 6 B. 5 C.2 D. 2
(2)设命题甲:“直四棱柱 ABCD A1 B1C1 D1 中,平面 ACB1 与对角面 BB1 D1 D 垂直”; 命题乙:“直四棱柱 ABCD A1 B1C1 D1 是正方体”,那么,甲是乙的 ( C )
A.充分必要条件 B.充分非必要条件 C.必要非充分条件 D.既非充分又非必要条件 (3)条件 M: 四棱锥 P-ABCD 的四个侧面都是全等的等腰三角形, 条件 N: 棱锥 P-ABCD 是正四棱锥。则 M 是 N 的 ( D ) A. 充要条件 B. 既不充分又不必要条件 C. 充分而不必要条件 D. 必要而不充分条件 (4)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥” ,四条侧棱称为它的腰,以下 4 个命题中,假命题 是 ( B ) ... A.等腰四棱锥的腰与底面所成的角都相等 B.等腰四棱锥的侧面与底面所成的二面角都相等或互补 C.等腰四棱锥的底面四边形必存在外接圆 D.等腰四棱锥的各顶点必在同一球面上 (5)在三棱锥 O ABC 中,三条棱 OA 、 OB 、 OC 两两互相垂直,且 OA = OB = OC , M 是 AB 边的中点,则 OM 与平面 ABC 所成的角的大小是 ( 用反三角函数表示).
(7)已知正四棱锥的体积为 12,底面对角线的长为 2 6 , 则侧面与底面所成的二面角等于_______________。
3
(8)长方体的表面积为 32cm2,体积为 8 cm2,长、宽、高成等比数列,则长方体所有棱之 和为_____ _____.32cm (9)已知 E、F 分别是棱长为 a 的正方体 ABCD—A1B1C1D1 的棱 A1A、CC1 的中点,求四棱 锥 C1—B1EDF 的体积.
4 3 27
B.
6 2
C.
6 8
D.
6 24
(9)如图,O 是半径为 l 的球心,点 A、B、C 在球面上,OA、OB、OC 两两垂直,E、F 分别是大圆弧 AB 与 AC 的中点,则点 E、F 在该球面上的球面距离是 ( B ) (A)
4
(B)
3
(C)
2
(D)
2 4
(10) 圆 o1 是以 R 为半径的球 O 的小圆,若圆 o1 的面积 S1 和球 O 的表面积 S 的比为
在 Rt△ SAO 中,由于 SA=a,∠SAO=60°,所以 SO=
O 为 a. 16
考查棱柱、棱锥的侧面积及体积的计算方法.要求会用棱柱、棱锥的侧面积及体积公式 求棱柱、棱锥的侧面积及体积,会运用“分解与组合” (即“割补法” ) 、 “等积变形”等方法, 使问题化繁为简,化难为简,化未知为已知. 求体积常见方法有:①直接法(公式法) ;②分割法;③补形法. 3. (1)正方体的内切球与其外接球的体积之比为 A. 1∶ 3 B. 1∶3 C. 1∶3 3 D. 1∶9 ( C )
, B 、 C 两点的球面距离是 ,则二面角 B OA C 的大小是 4 3 2 A. B. C. D. 3 4 3 2
( C )
(8)如图,在等腰梯形 ABCD 中,AB=2DC=2,∠DAB=60° ,E 为 AB 的中点,将△ADE 与△ BEC 分别沿 ED、EC 向上折起,使 A、B 重合于点 P,则 P-DCE 三棱锥的外接球的体积 为 ( C ) A.
C1 O1 D1 F H A1 E C D A
B1
B1O1 DD1 6 = a, 6 B1 D
B
1 1 1 1 S B1EDF ·O1H= · ·EF·B1D·O1H= · 3 3 2 3 6 1 1 · 2 a· 3 a· a= a3. 6 2 6
V C1 B1EDF = h1+h2=B1D1= 2 a,∴V C1 B1EDF =V B1 C1EF +V DC1EF =

3
R,
3 R. 2
(12)如图,半径为 2 的半球内有一内接正六棱锥 P ABCDEF ,则 B 此正六棱锥的侧面积是________. A
C
D E F
解:显然正六棱锥 P ABCDEF 的底面的外接圆是球的一个大圆,于是可求得底面边长 为 2,又正六棱锥 P ABCDEF 的高依题意可得为 2,依此可求得 6 7 考查球的概念及性质.要求要求会用球的表面积、体积公式求球的表面积、体积,会解决 一些球与柱、锥的组合的简单的几何体问题.
4 。 5
(9)如图,在正三棱柱 ABC A1 B1C1 中, AB 1 .若二面角
3 C AB C1 的大小为 60 ,则点 C 到平面 ABC1 的距离为_____. . 4
(10)如图,已知正三棱柱 ABC A1B1C1 的底面边长为 1,高为 8,
A B
C
A1
C1
一质点自 A 点出发,沿着三棱柱的侧面绕行两周 到达 A1 点的最短路线的长为 10. ..
(5)已知正方体外接球的体积是
32 ,那么正方体的棱长等于 3
C.
A. 2 2
B.
2 3 3
4 2 3
D.
4 3 3
( A )
(6)表面积为 2 3 的正八面体的各个顶点都在同一个球面上, 则此球的体积为
A.
2 3
B.
1 3
C.
2 3
D.
2 2 3
(7)已知球 O 的半径是 1, A 、 B 、 C 三点都在球面上, A 、 B 两点和 A 、 C 两点的球面 距离都是
考查棱柱、棱锥的概念和性质,以及棱柱、棱锥为载体考查计算能力,想象能力和逻辑推 理能力. 要求理解棱柱、直棱柱、正棱柱、平行六面体、长方体及正方体等有关概念,掌握棱 柱的性质及长方体对角线性质;理解棱锥、正棱锥的意义,掌握棱锥、正棱锥的性质. 2. (1)底面边长为 2 3 ,斜高为 2 的正三棱锥的体积等于 ( A )
解法一:连结 A1C1、B1D1 交于 O1,过 O1 作 O1H⊥B1D 于 H, ∵EF∥A1C1,∴A1C1∥平面 B1EDF.∴C1 到平面 B1EDF 的 距离就是 A1C1 到平面 B1EDF 的距离 . ∵平面 B1D1D ⊥平面 B1EDF,∴O1H⊥平面 B1EDF,即 O1H 为棱锥的高. ∵△B1O1H∽△B1DD1,∴O1H=
T 等于 S
B.
( A )
1 9
4 9
C.
1 4
D.
1 3
(6)两相同的正四棱锥组成如图 1 所示的几何体,可放棱长为 1 的正方体内,使正四棱锥 的底面 ABCD 与正方体的某一个平面平行,且各顶点 均在正方体的面上,则这样的几何体 ... 体积的可能值有 (A)1 个 (B)2 个 (D ) (C)3 个 (D)无穷多个
解法二:连结 EF,设 B1 到平面 C1EF 的距离为 h1,D 到平面 C1EF 的距离为 h2,则
1 1 3 ·S C1EF · (h1+h2)= a. 3 6 1 解法三:V C1 B1EDF =V 多面体A1B1E D1C1FD -V E A1B1C1D1 -V E C1D1D = a3. 6
arctan 2 .
(6)若一条直线与一个正四棱柱各个面所成的角都为 ,则 cos =______
6 3
(7)过三棱柱 ABC-A1B1C1 的任意两条棱的中点作直线,其中与平面 ABB1A1 平行的直线 共有 条.6 (8)如图,已知正三棱柱 ABC-A1B1C1 的所有棱长都相等,D 是 A1C1 的 中点, 则直线 AD 与平面 B1DC 所成角的正弦值为 .
相关文档
最新文档