2014高中数学 第二章 平面向量 平面向量的线性运算强化训练 新人教A版必修4
江苏省2014年高考数学(文)二轮复习专题提升训练:8 平面向量的线性运算及综合应用

常考问题8 平面向量的线性运算及综合应用(建议用时:50分钟)1.(2012·苏州期中)已知向量a =(2,x ),b =(x -1,1),若a ∥b ,则x 的值为________. 解析 由a ∥b ,得2-x (x -1)=0,解得x =2或-1. 答案 2或-12.已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13则|b | 等于________. 解析 向量a 与b 的夹角为120°,|a |=3,|a +b |=13, 则a ·b =|a ||b |·cos 120°=-32|b |, |a +b |2=|a |2+2a ·b +|b |2.所以13=9-3|b |+|b |2,则|b |=-1(舍去)或|b |=4. 答案 43.已知非零向量a ,b ,c 满足a +b +c =0,向量a 与b 的夹角为60°,且|a |=|b |=1,则向量a 与c 的夹角为________.解析 因为a +b +c =0,所以c =-(a +b ).所以|c |2=(a +b )2=a 2+b 2+2a ·b =2+2cos 60°=3.所以|c |= 3.又c ·a =-(a +b )·a =-a 2-a ·b =-1-cos 60°= -32,设向量c 与a 的夹角为θ,则cos θ=a ·c |a ||c |=-321×3=-32.又0°≤θ≤180°,所以θ=150°. 答案 150°4.(2013·天一、淮阴、海门中学联考)在△ABC 中,已知AB →·AC →=4,AB →·BC →=-12,则|AB→|=________. 解析 将AB →·AC →=4,AB →·BC →=-12两式相减得AB →·(AC →-BC →)=AB →2=16,则|AB →|=4. 答案 45.(2013·新课标全国Ⅱ卷)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD→=________.解析 由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →)=(AD →+12AB →)·(AD→-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.答案 26.(2013·安徽卷改编)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是________.解析 由|OA →|=|OB →|=OA →·OB→=2,知cos ∠AOB =12,又0≤∠AOB ≤π,则∠AOB =π3,又A ,B 是两定点,可设A (3,1),B (0,2),P (x ,y ),由OP→=λOA →+μOB →,可得⎩⎨⎧x =3λ,y =λ+2μ⇒⎩⎪⎨⎪⎧λ=33x ,μ=y 2-36x .因为|λ|+|μ|≤1,所以⎪⎪⎪⎪⎪⎪33x +⎪⎪⎪⎪⎪⎪y 2-36x ≤1,当⎩⎨⎧x ≥0,3y -3x ≥0,时,3y +3x ≤6由可行域可得S 0=12×2×3=3,所以由对称性可知点P 所表示的区域面积S =4S 0=4 3. 答案 4 37.如图,在正方形ABCD 中,已知AB =2,M 为BC 的中点,若N 为正方形内(含边界)任意一点,则AM →·AN →的最大值是________.解析 由数量积的定义得AM →·AN →=|AM →|·|AN→|cos ∠NAM ,当N 点与C 点重合时,|AN→|cos ∠NAM 最大,解三角形得最大值为65,所以AM →·AN→的最大值是6.8.在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3P B →|的最小值为______. 解析 建立如图所示的直角坐标系,设DC =m ,P (0,t ),t ∈[0,m ],由题意可知,A (2,0),B (1,m ),P A →=(2,-t ),P B →=(1,m -t ),P A →+3P B →=(5,3m -4t ),|P A →+3P B →|=52+(3m -4t )2≥5,当且仅当t =34m 时取等号,即|P A →+3P B →|的最小值是5. 答案 59.(2013·南通模拟)已知a =(sin α,sin β),b =(cos(α-β),-1),c =(cos(α+β),2),α,β≠k π+π2(k ∈Z ). (1)若b ∥c ,求tan α·tan β的值; (2)求a 2+b·c 的值.解 (1)若b ∥c ,则2cos(α-β)+cos(α+β)=0, ∴3cos αcos β+sin αsin β=0,∵α,β≠k π+π2(k ∈Z ),∴tan αtan β=-3. (2)a 2+b·c =sin 2α+sin 2β+cos(α-β)cos(α+β)-2 =sin 2α+sin 2β+cos 2αcos 2β-sin 2αsin 2β-2 =sin 2α+cos 2αsin 2β+cos 2αcos 2β-2 =sin 2α+cos 2α-2=1-2=-1.10.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2). (1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,C =π3,求△ABC 的面积. (1)证明 因为m ∥n ,所以a sin A =b sin B ,即a ·a 2R =b ·b 2R (其中R 是△ABC 外接圆的半径),所以a =b .所以△ABC 为等腰(2)解 由题意,可知m ·p =0,即a (b -2)+b (a -2)=0,所以a +b =ab ,由余弦定理,知4=c 2=a 2+b 2-2ab cos π3=(a +b )2-3ab ,即(ab )2-3ab -4=0,所以ab =4或ab =-1(舍去).所以S △ABC =12ab sin C =12×4×sin π3= 3.11.(2013·苏北四市模拟)如图所示,A ,B 分别是单位圆与x 轴、y 轴正半轴的交点,点P 在单位圆上,∠AOP =θ(0<θ<π),C 点坐标为(-2,0),平行四边形OAQP 的面积为S .(1)求O A →·O Q →+S 的最大值; (2)若CB ∥OP ,求sin ⎝ ⎛⎭⎪⎫2θ-π6的值.解 (1)由已知,得A (1,0),B (0,1),P (cos θ,sin θ), 因为四边形OAQP 是平行四边形, 所以O Q →=O A →+O P →=(1,0)+(cos θ,sin θ) =(1+cos θ,sin θ). 所以O A →·O Q →=1+cos θ. 又平行四边形OAQP 的面积为 S =|O A →|·|O P →|sin θ=sin θ,所以O A →·O Q →+S =1+cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4+1.又0<θ<π,所以当θ=π4时,O A →·O Q →+S 的最大值为2+1. (2)由题意,知C B →=(2,1),O P →=(cos θ,sin θ), 因为CB ∥OP ,所以cos θ=2sin θ.又0<θ<π,cos 2θ+sin 2θ=1, 解得sin θ=55,cos θ=255,所以sin2 θ=2sin θcos θ=45,cos2θ=cos 2θ-sin 2θ=35.所以sin ⎝ ⎛⎭⎪⎫2θ-π6=sin 2θcos π6-cos 2θsin π6=45×32-35×12=43-310. 备课札记:。
高中数学第二章平面向量新人教A版必修4

平面向量一、选择题1.下列命题中正确的是( )( A ) 两个相等的向量的起点,方向,长度必须都相同( B) 若a,b是两个单位向量,则a= b( C) 若向量a和b共线,则向量a, b 的方向相同( D) 零向量的长度为0,方向是任意的2.如图,在平行四边形ABCD 中,下列结论中错误的是( )( A ) ( C) AB DCAB AD BD( B )( D )AD AB ACAD CB03.在四边形ABCD 中,CB AB BA( )(A) DB (B) CA(C) CD (D) DC4.已知a,b为非零向量,且|a+ b|=| a|+| b|,则一定有( )( A ) a=b ( B ) a∥b,且a,b方向相同( C) a=-b ( D ) a∥b,且a,b方向相反5.化简下列向量: ( 1) AB BC CA (2) AB AC BD CD(3) FQ QP EF EM (4) OA OB AB,结果为零向量的个数是( )(A)1 (B)2 (C)3 (D)4二、填空题6.对于下列命题①相反向量就是方向相反的向量②不相等的向量一定不平行③相等的向量一定共线④共线的单位向量一定相等⑤共线的两个向量一定在同一条直线上其中真命题的序号为______.3 3点A 的位置向量为 ______.8.一艘船以 5 km 的速度出发向垂直于对岸的方向行驶,而船实际的航行方向与水流成30°,则船的实际速度的大小为______ ,水流速度的大小为______.9.如图,在□ABCD中,AO a ,DO b ,用向量a, b 表示下列向量CB______AB =_____.10.已知平面内有□ABCD和点O,若OA a ,OB b,OC c ,OD d,则a-b+c -d=______.三、解答题11.化简:(1) AB AC BD(2) AB CD CB DA12.在单位圆中, B 是 OA 的中点, PQ 过 B 且 PQ∥Ox,MP⊥ Ox,NQ⊥ Ox,则在向量OM,ON,MP,NQ,OP,OQ,OB,OA,PQ 中.( 1) 找出相等的向量;( 2) 找出单位向量;( 3) 找出与OM共线的向量;( 4) 向量OM,ON的长度.13.已知正方形A BCD 的边长为1,若AB a ,BC b ,AC c ,求作向量a-b+c,并求出 |a-b+c|.14.已知向量a, b 满足:| a|=3,| a+ b|=5,| a- b|=5,求| b|.向量的线性运算 ( 二 ) 一、选择题1.若 3( x+ 3a) - 2( a-x) =0,则向量 x= ( ) ( A ) 2a ( B) - 2a ( C) 7a ( D ) 7 a5 52.若AB5e, CD7e且 | AD | | BC |,则四边形ABCD 是 ( ) ( A ) 平行四边形( B ) 非等腰梯形( C)菱形( D)等腰梯形3.如图所示, D 是△ ABC 的边上的中点,则向量CD 等于()(A) BC 1BA ( B ) BC1BA 2 2(C) BC 1BA (D) BC 1 BA2 2 )4.已知向量1- 2e2,b=- 2e1+ 4e2,则向量a与b满足关系 (a= e( A ) b= 2a ( B) 共线且方向相反 ( C) 共线且方向相同(D)不平行5.下列结论中正确的个数是 ( )①若| b|=2| a|,则 b=±2a ②若 a∥ b,b∥ c,则 a∥ c ③若 m a=m b,则a=b④ 0a=0⑤若向量a与b共线,则一定存在一个实数,使得 a= b(A)0个(B)1个(C)2个(D)3 个二、填空题6.化简: 5( 3a- 2b) + 4( 2b-3a) = ______.7.与非零向量a共线的单位向量为 ____________.8.数轴上的点 A,B,C 的坐标分别为2x,- 2,x,且AB 3BC ,则x=______;|AB|= ______.9.已知向量 a 与 b 方向相反,|a|=6,| b|=4,则 a=______b.10.在□ ABCD 中,AB a ,AD b ,AN3NC ,M为BC的中点,则 MN____.三、解答题11.点 D 是△ ABC 边 BC 上一点,且BD 1 BC.设试AB a,AC b,用向量a,b表示3AD.12.已知向量a, b 满足求| a|∶| b|.11 1(a3b)(a b)(3a2b) ,求证:向量 a 与 b 共线,并52 513.已知|a|= 1,|b|= 2.若a=b,求|a-b|的值.14.已知平面中不同的四点A,B,C,D 和非零向量a,b,且AB a2b,CD 5a6b,CD =7a-2b.( 1) 证明: A, B, D 三点共线;( 2) 若a与b共线,证明A, B, C,D 四点共线.向量的分解与向量的坐标表示一、选择题1.已知向量a= ( 4,2) ,向量 b=( x,3),且 a∥b,则x=( )(A)9 (B)6 (C)5 (D)32.已知点 A( 0, 1) , B( 1, 2) , C( 3, 4) ,则AB 2BC的坐标为 ( )( A)( 3,3) ( B)( -3,- 3) ( C)( - 3, 3) ( D)( 3,- 3)3.已知基底 { e1,e2} ,实数 x,y 满足 ( 3x- 4y) e1+ ( 2x-3y) e2= 6e1+ 3e2,则 x- y 的值等于( )(A)3(B)-3(C)0(D)24.在基底 { e1,e2} 下,向量a=e1+ 2e2,b= 2e1-e2,若a∥b,则的值为()(A)0(B)-21(D)-4( C)25.设向量a= ( 1,- 3) ,b= ( - 2,4) ,c= ( - 1,- 2) ,若表示向量4a,4b-2c,2( a-c) ,d 的有向线段首尾相连能构成四边形,则向量 d 为( )( A)( 2,6) ( B)( -2,6)( C)( 2,- 6) ( D)( - 2,- 6)二、填空题6.点 A( 1,- 2) 关于点 B 的对称点为 ( - 2, 3) ,则点 B 的坐标为 ______.7.若 M( 3,- 2) ,N( - 5,- 1) 且MP 1 MN,则 P 点的坐标为 ______________.28.已知点 O( 0,0) , A( 1,2) ,B( 4,5) ,点 P 满足OP OA t AB ,当点P在x轴上时,t= _______.9.已知□ABCD 的三个顶点A( - 1, 3) , B( 3, 4) ,C( 2, 2) ,则顶点D的坐标为 ______.10.向量OA(k,12) , OB (4,5) , OB (10, k) 若A、B、C三点共线,则k= ______.三、解答题11.已知梯形ABCD 中,AB2DC ,M,N分别是DC,AB的中点.设 AD a,AB b 选择基底 { a,b} ,求向量DC,NM在此基底下的分解式.12.已知向量a=( 3,-2),b=(-2,1), c=( 7,-4),( 1) 证明:向量a, b 是一组基底;( 2) 在基底 { a,b} 下,若c= x a+ y b,求实数x, y 的值.13.已知向量a=( 1,2), b=(-3,x).若 m=2a+ b, n= a-3b,且 m∥ n,求实数x的值并判断此 m 时 n 与的方向相同还是相反.14.已知点O( 0,0) , A( 1, 4) ,B( 4,- 2) ,线段 AB 的三等分点C,D ( 点 C 靠近 A) .OC2OD平面向量的数量积及其运算律一、选择题1.若| a |= 4, | b |= 3,〈a , b 〉= 135°,则 a 2 b = ( )(A)6( B)(C)6 2 (D) 622.已知 | a |= 8, e 为单位向量,〈 a , e 〉2π,则 a 在 e 方向上的正射影的数量为 ( )3(A)4 3(B)4(C) 43(D)-4 3.若向量 a , b , c 满足 a 2 b = a 2 c ,则必有 ()( A ) a = 0( B) b = c( C) a =0 或 b = c ( D ) a ⊥ ( b - c )4.若| a |= 1,| b |= 2,且 ( a + b ) ⊥ a ,则〈 a , b 〉= ()( A) 30° ( B) 60°( C) 120° (D)150°5.平面上三点 A ,B ,C ,若 | AB | 3,|BC | 4,|CA | 5,则 AB BC BC CA CA AB= ( )A .25 ( B) -25(C)50(D)-50二、填空题6.已知 a 2 b =- 4, a 在 b 方向上的正射影的数量为-8,则在| a |和 | b | 中,可求出具体数值的是 ______,它的值为 ______.7.已知 a , b 均为单位向量, 〈 a , b 〉= 60°,那么| a + 3b | = ______. 8.已知| a |= 4,| b | = 1,| a - 2b | = 4,则 cos 〈a , b 〉= ______.9.下列命题中,正确命题的序号是______.( 1) | a | 2=a 2;( 2) 若向量 a , b 共线,则 a 2 b =| a || b | ;( 3)( a 2 b ) 2= a 22 b 2;( 4) 若 a 2 b = 0,则 a = 0 或 b = 0( 5)( a -b ) 2 ( a +b ) =| a | 2-| b | 2;10.设向量 a , b , c 满足 a + b +c = 0, ( a -b ) ⊥ c , a ⊥b .若| a |= 1,则 | a | 2+| b |2+| c | 2的值是 ______. 三、解答题11.已知| a |= 5,| b |= 4,〈a , b 〉π,求 ( a + b ) 2 a 和| a + b |.312.向量 a , b 满足 ( a - b ) 2 ( 2a + b ) =- 4,且 | a | = 2,| b |= 4,求〈 a ,b 〉.13.已知 O 为△ ABC 所在平面内一点,且满足(OB OC) (OB OA) 0 ,试判断△ ABC的形状.14.已知向量 a , b 满足:| a |= 1,| b | = 2,| a - b | = 7 .( 1) 求| a - 2b |; ( 2) 若 ( a + 2b ) ⊥( k a - b ) ,求实数 k 的值.向量数量积的坐标运算与度量公式一、选择题1.已知 a = ( - 4, 3) , b = ( 5,6) ,则 3a 2-4a 2 b =()(A)83(B)63(C)57(D)232.已知向量 a ( 3, 1) , b 是不平行于 x 轴的单位向量,且 a b3 ,则 b =()(A)(3, 1) (B) (1,3 ) (C) (1,3 3) ( D)( 1,0)2222443.在△ ABC 中, A( 4, 6) , B( - 4,10) , C( 2, 4) ,则△ ABC 是 ( )( A ) 等腰三角形( B) 锐角三角形( C) 钝角三角形( D ) 直角三角形4.已知 a = ( 0, 1) ,b = ( 1,1) ,且〈 aπ的值为( )b ,a 〉,则实数2(A)-1(B)0(C)1(D)25.已知 a = ( 1, 2) ,b = ( - 2,- 4) , | c |5 ,若 (ab )c 5 ),则〈 a , c 〉= (2( A) 30°( B) 60°( C) 120°(D)150°二、填空题,b 〉=.若a + = ( - ,-1) , - =,- ,则=,〈 a ______ .6 b 2 a b ( 4 3) a 2 b ______7.向量 a = ( 5, 2) 在向量 b =( - 2, 1) 方向上的正射影的数量为 ______. 8.在△ ABC 中, A( 1, 0) , B( 3, 1) , C( 2, 0) 则∠ BCA = ____________. 9.若向量 a 与 b = ( 1, 2) 共线,且满足 a 2 b =- 10,则 a = ______.10.已知点 A( 0,3) ,B( 1,4) ,将有向线段 AB 绕点 A 旋转角π到 AC 的位置,则点C 的2坐标为 ______. 三、解答题11.已知 a = ( - 3,2) ,b = ( 1,2) ,求值: | a + 2b |,( 2a - b ) 2 ( a +b ) ,cos 〈a + b ,a - b 〉.12.若 |a |2 13 , b = ( - 2, 3) ,且 a ⊥ b ,求向量 a 的坐标.13.直角坐标系 xOy 中,已知点 A( 0,1) 和点 B( -3, 4) ,OC 为△ AOB 的内角平分线,且OC 与 AB 交于点 C ,求点 C 的坐标.14.已知 k Z ,AB ( k ,1),AC ( 2,4),| AB | 4 ,且△ ABC 为直角三角形, 求实数 k 的值.用心爱心专心测试十二向量的应用Ⅰ学习目标1.会用向量的方法解决某些简单的平面几何问题.2.会用向量的方法解决物理中简单的力学和速度问题;能将物理问题转化为数学问题,同时会用建立起来的数学模型解释相关的物理问题.Ⅱ基础性训练一、选择题1.作用于原点的两个力f1=( 1,1), f2=( 2,3),为使它们平衡,需要增加力f3,则力 f3 的大小为 ( )( A)( 3,4) ( B)( -3,- 4)( C) 5 (D)252.在水流速度为自西向东,10 km / h 的河中,如果要使船以10 3 km/ h的速度从河南岸垂直到达北岸,则船出发时行驶速度的大小和方向( )( A ) 北偏西 30°, 20 km/ h( B ) 北偏西 60°, 20 km / h( C) 北偏东 30°, 20 km/ h( D ) 北偏东 60°, 20 km / h3.若平行四边形ABCD 满足| AB AD | | AB AD |,则平行四边形ABCD 一定是 ( )(A)正方形(B)矩形(C)菱形(D)等腰梯形4.已知□ABCD 对角线的交点为O,P 为平面上任意一点,且PO =a,则PA PB PC PD = ( )( A ) 2a ( B) 4a ( C) 6a ( D ) 8a5.已知非零向量AB与 AC满足(AB AC)BC 0且 AB.AC 1|AB | |AC | |AB| |AC| 2,则△ ABC为 ( )( A ) 三边均不相等的三角形( B ) 直角三角形( C) 等腰非等边三角形( D ) 等边三角形二、填空题6.自 50 m 高处以水平速度10 m/ s 平抛出一物体,不考虑空气阻力,则该物2s 时的速度的大小为 ______,与竖直向下的方向成角为,则tan=______( g=10 m/ s2).7.夹角为 120°的两个力f1和 f2作用于同一点,且| f 1|=| f2|=m( m>0),则 f1和 f2的合力 f 的大小为______, f 与 f2的夹角为____________.8.正方形ABCD 中, E,F 分别为边DC , BC 的中点,则cos∠ EAF = ____________.9.在△ ABC 中,有命题:①AB AC BC ;②若 ( AB AC) ( AB A C )0 ,则△ABC 为等腰三角形;③AB BC CA=0;④若 AB BC 0 ,则为△ABC锐角三角形.上述命题中正确的是____________( 填上你认为正确的所有序号)三、解答题10.水平电线AB 对竖直电杆BD 的拉力为300 N,斜拉索BC 的拉力为600 N,此时电杆恰好不偏斜,求斜拉索与地面成角的大小以及由此引起的电杆对地面的压力( 电杆自重不计).11.某运动员在风速为东偏北60°, 2 m/ s 的情况下正在以 10 m/ s 的速度向东跑.若风停止,运动员用力不变的情况下,求该运动员跑步速度的大小和方向.12.对于平行四边形ABCD ,点 M 是 AB 的中点,点N 在 BD 上,且BN 1 BD.用向量3的方法证明:M, N, C 三点共线.Ⅲ拓展性训练13.在 Rt△ABC 中,∠ C=90°,且 CA= CB, D 是 CB 的中点, E 是 AB 上一点,且AE=2EB.求证: AD ⊥ CE.14.如图,已知点A( 4, 0) , B( 4,4) , C( 2, 6) ,求 AC 与 OB 的交点 P 的坐标.测试十三平面向量全章综合练习一、选择题1.向量( AB MB) (BO CB) OM 化简后等于( )(A) AC (B) BC ( C) AB (D) AM2.点 A 的坐标为 ( 1,- 3) ,向量AB的坐标为 ( 3,7) ,则点 B 的坐标为 ( ) ( A)( 4,4) ( B)( -2,4) ( C)( 2, 10) ( D)( -2,- 10)3.已知向量a= ( -2, 4) ,b= ( - 1,- 2) , c=( 2,3),则( a+ b) 2 ( a- c)的值为( )(A)10 (B)14 ( C) -10 (D)-144.已知向量a= ( 2,t) ,b= ( 1, 2) .若 t= t1时,a∥b; t= t 2时,a⊥b,则 ( ) ( A ) t1=- 4, t2=- 1 ( B ) t1=- 4, t2= 1( C) t1= 4, t2=- 1 ( D ) t1= 4, t2= 15.若点 O 是△ ABC 所在平面内一点,满足OA OB OB OC OC OA ,则点O是△ABC 的 ( )( A ) 三个内角的角分线的交点( B ) 三条边的垂直平分线的交点( C) 三条中线的交点( D ) 三条高线的交点二、填空题6.河水的流速为 2 m/ s,一只小船想要以垂直于河岸方向10 m/ s 的速度驶向对岸,则小船在静水中的速度的大小应为______________.7.数轴上的点A,B,点 A 的坐标为- 3,且向量AB的长度为5,则点 B 的坐标为 ______.8.已知p= ( - 2, 2) ,q= ( 1,3) ,则p在q方向上的正射影的数量为______.9.已知向量a=( 2,3), b=(-1,2),若( a+b)⊥( a+ b),则实数=______.10.给出下列命题:①a b b; a2a②| a|-| b|<| a- b|;③ |a2b|=|a||b|;④ ( b2 c) a- ( c2 a) b与c垂直;⑤已知 a,b 是非零向量,若| a+ b|=| a- b|,则a⊥ b;a2= b2.⑥已知 a, b 是两个单位向量,则所有正确的命题的序号为____________ .三、解答题11.已知点A( - 2, 1) , B( 1,3) .求线段 AB 中点 M 和三等分点P, Q 的坐标.12.已知 | a|= 2, | b|= 4,〈a,b〉2π.求|a-b|和〈a,a-b〉的余弦值.313.已知向量a=( 1,2), b=( x,1).( 1) 求与 a 垂直的单位向量的坐标;( 2) 求| b-2a|的最小值以及此时 b 的坐标;( 3) 当 x 为何值,a+ 2b与b- 2a平行,并确定它们此时是同向还是反向.14.如图,以原点O 和 A( 5,2) 为两个顶点作等腰直角△OAB,使∠ B= 90°.求点 B 的坐标和 AB 的坐标.参考答案第二章平面向量测试七向量的线性运算 ( 一 )一、选择题1.D 2.C 3.C 4.B 5.C二、填空题6.③7.“东偏北 60°, 6 km”或“北偏东30°, 6 km ” 8. 10 km / h 5 3 km/ h9.b-a;a+b10.0三、解答题11.解: ( 1) CD;( 2) 原式=(AB BC CD) DA AD DA =0.12.解: ( 1) MP NQ OB ;( 2) OP,OQ,OA;( 3) ON,PQ ;( 4)|OM | | ON | 3 213.解:AB a, BC b, AC c ,所以DB a b,BE AC c, DE DB BE a b c ,| a- b+ c|=2.14.解:设AB a, AD b ,做□ABCD.则 AC a b, DB a b ,可得 AC BD 5 ,所以□ABCD为矩形,|b | | AD | 52 32=4.测试八 向量的线性运算 ( 二 )一、选择题1.D 2.D 3.A 4. B 5. A二、填空题6. 3a - 2b 7.a 8.- 4; 6 9. a 3b 10. 1 b 1a| a |244三、解答题11.答: AD2 a 1b .33712.略解:化简得 9a = 7b ,即 ab ,所以 a ∥ b ;| a |∶| b |= 7∶ 9.91,λ= 113.略解:由题意,得| a |=| λ|| b |,∴ | λ|=,22| a - b |=| λ- 1|| b |= 2| λ- 1|= 1 或 3.14. (1) 证明:∵ BDCD CB 2a 4b ,∴ BD 2 AB ,∴ AB // BD ,因为二者均经过点 B ,所以 A , B , C 三点共线. (2)证明:∵ a 与 b 共线,设 a = λb ,∴ BD ( 2 4)b , CD (7 2)b∵CD0, BD 0 ∴7λ- 2≠0, 2λ+ 4≠0.∴ BD 24CD ,7 2∴ BD // CD ,所以 B , C , D 三点共线,又 A ,B , D 三点共线.所以 A , B ,C , D 四点共线.测试九 向量的分解与向量的坐标表示一、选择题1.B 2. B 3.A 4.D 5.D 二、填空题6.( 1,1)7.( 1, 3) 8. t2 9.( -2,1) 10.- 2 或 112 223三、解答题11.答: DC1b ; NM a1b .2412. ( 1) 证明:∵32 ,∴ a 与 b 不平行,所以向量 a , b 是一组基底.213x 2 y 7,x 1, ( 2) 略解: ( 7,- 4) = x( 3,- 2) + y( - 2, 1) ,y4,所以2.2x y13.略解: m =( - 1, 4+x) , n =( 10, 2- 3x) ,因为 m ∥ n ,所以- ( 2- 3x) - 10( 4+ x) =0, x =- 6,此时 m = ( - 1,- 2) , n = ( 10, 20) ,有 n =- 10m ,所以 m 与 n 方向相反.14.略解: ( 1) OC OA AC OA 1(1,4)1(2,2) .AB (3, 6)3 3OD OA AD OA 2AB (1,4)2(3, 6) (3,0) .3 3( 2) OC 2OD ( 2,2) 2(3,0) (8,2) .OE OB OC 2OD ( 4, 2) (8,2) (12,0) .测试十平面向量的数量积及其运算律一、选择题1.D 2.D 3.D 4.C 5.B二、填空题6.|b|; 1 7.13 8.19.①⑤10. 42 4提示:10.由a+b+c=0,得c=-a-b,又 ( a-b) ⊥c,∴ (a-b) 2 (-a-b)=0,2 2∴-| a|- a2 b+a2 b+| b|=0,∴|b|=|a|=1.又 c=- a- b,222 2 ∴| c|=|- a- b|=(- a- b) 2 (- a- b)=| a|+2a2 b+| b|=2.另外,可以结合图示,分析解决问题.三、解答题11.解:a2 b= 10, ( a+b) 2 a=a2+a2 b= 35,|a b | ( a b) 2 a 2 2a b b2 61 .12.解:由题意得2a 2-a2 b-b2=- 4,所以 2a2-a2 b-b2=- 4,得a2 b=-4,cos 〈a,b〉 a b 1, 〈a,b〉=120°| a || b | 213.略解:因为(OB OC) (OB OA) 0 ,所以CB AB=0,从而CB AB ,△ABC 为直角三角形.14.略解: ( 1) |a-b|2=a2- 2ab+b2= 7,所以a2 b=- 1,| a-2b|2= a2-4ab+4b2=21,即|a2b | 21.( 2) 由已知得 ( a+ 2b) 2 ( k a-b) = 0,即 k a2-ab+ 2k ab- 2b2= 0,得 k=- 7.测试十一向量数量积的坐标运算与度量公式一、选择题1.A 2.B 3.D 4.A 5.C提示:5.设c= ( x,y) ,由 | c | 5 ,得x2+y2=5,,①,由 ( a b ) c55 5,得 ( 1, 2) ( x, y),∴ x 2 y,, ②222由①②解得 c( 1 3, 13) ,或 c ( 1 3, 13) .22 2213) 时, cos 〈a c5 1 , 当c (3, 1, 〉222a c5 52|a || c |∴〈 a ,c 〉= 120°,另一种情况,计算结果相同.二、填空题6.- 5; 135° 7. 8 510. ( - 1,4) 或 ( 1,2)58.135° 9. ( - 2,- 4)提示:10.设 C( x , y) ,则 AB(1,1), AC ( x, y 3) ,由 AC ⊥ AB 得, AB AC 0 ,即 x + y - 3= 0,, ①又 | AB | AC , ∴ 2= x 2+ ( y - 3) 2,, ②. 结合①②,解得,x 1,x 1y 或y 4 ∴ C( 1, 2) 或 C( -1,4) .2,三、解答题11.答: |a 2b |37 ;( 2a - b ) 2 ( a + b ) =22; cos a b , ab 55.12.解:设 a = ( x ,y) ,则2x 3 y 0 x 6 x6 x2y252,解得:y 4 或,所以 a =( 6,4) 或y 4a = ( -6,- 4) .13.解:设 C( x , y) ,则 OC( x, y) ,由已知可得: 〈 OA,OC 〉=〈 OB, OC 〉AC // ABx y 113 则,所以,解得OC OCOB OC 3 4 x, y,2yxy2|OA ||OB|55所以 C( 1, 3).2 214.解:由 | AB |4 得 k 2≤ 15,∵ k ∈ Z ,∴ k =- 3,- 2,- 1, 0, 1, 2,3,·2k 4 0 所以 k =- 2;当 A = 90°时, AB ACAB ·BC 0,BC (2 - k ,3)当 C= 90°时,,所以 2( 2- k) +12= 0, k= 8( 舍 ) .AC·BC 0,BC (2 - k,3)综上 k=- 1 或- 2 或 3.测试十二向量的应用一、选择题1.C2.A3.B4.B5.D提示:ABm, AC5.设n ,则|m|=|n|=1,|AB| |AC|由已知 (m n) BC 0 .∴ m BC n BC,∴ m BC cos(x B)n BC cos C ∴c osB= c osC,又B、C∈( 0,)∴B= C.又由已知 m n 1,2∴ m n cos A 1 2∴ cos A 1,又(0,π)2∴A= 60°∴△ ABC 为等边三角形.二、填空题18.46. 10 5m/s;7. m, 60°,9.②③2 5三、解答题10.答:= 60°;300 3N.11.解:如图,建立平面直角坐标系,作□ABCD,设|OC | 2,| OB | 10,则C( 1,3 ),B( 10, 0) ,CB (9, 3),得 |CB| 2 21 9.17m/s,tan AOB3.9由计算器计算得∠ AOB≈ 10. 89°.该运动员跑步速度的大小为9. 17 m/ s,方向为东偏南约10. 89°.MN // MC量,再证明二者具有关系 MN MC 即可.设AB e 1 , AD e 2 ,则 BDe 1 e 2 , BN1e 1 1e 2 .3 3MC1e 1 e 2 , MN MB BN 1e 1 ( 1e 11e 2 ) 1 e 1 1e 2 .22 33 6 3所以 MN1MC ,所以 M , N ,C 三点共线.313.证明:设此等腰直角三角形的直角边长为a ,AD CE( AC CD) (CA AE) AC CA AC AECD CA CD AE|AC|2| AC || AE | cos45 0 |CD || AE |cos45a 22 a 21 a 20 所以 AD ⊥ CE .33或以点 C 为原点, CA , CB 所在的直线分别为x ,y 轴建立平面直角坐标系,则 A( a , 0) , D (0, 1 a), E(1 a, 2a), AD ( a, 1 a), CE ( 1 a, 2a),23 3233可得出 AD CE1 a2 1 a 20 ,所以 AD ⊥CE .3 314.解:设 P( x , y) ,则 OP (x, y) , OB = ( 4, 4) ,由 OP,OB ,共线得 4x -4y = 0,,, ①,AP ( x 4, y) , AC = ( - 2, 6) ,由 AP, AC 共线得 6( x - 4) - y( - 2) =0,, ②,由①②解得, P( 3, 3) .测试十三 平面向量全章综合练习一、选择题 1.A2.A3.B4.C5.D二、填空题6. 2 26m/s7.-8 或 2 2 109.1710.④⑤⑥8.59三、解答题11.解: ABOB OA (3,2) ,OM1(OB OA) ( 1,2),所以 M (1,2),2 22OPOA1AB (1, 5) ,所以 p( 1, 5), OQ OA 2AB (0, 7) ,3 3 33 3 7所以 Q(0, ) .2 7 , cos 〈 a , a -b 〉2712.答:| a -b |7.13.略解: ( 1) 设单位向量为 e = k( - 2, 1) = ( - 2k , k) ,因为 | e | = 1,得 k55,2 5 52 5 5e (5 , 5 ) 或 e ( 5 , 5 ) .(2)|b 2 | ( x 2) 29 ,当 x = 2 时, | b - 2a |最小值为 3,此时 b = ( 2,1) .a ( 3) x 1 ,反向.214.解:设 B( x , y) ,则 AB( x 5, y 2), OBAB OB 0(x, y) ,由已知得,| AB| |OB|x( x5) y( y 2) 0x 3x2 7所以,解得 2 或 2 ,x2y2( x 5)21( y 2)2y 1 7 y 2 32 2 所以 B(3,7)或 B(7,3),AB ( 3, 1)或 AB ( 7,3),222 22 22 2用心 爱心 专心。
高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,
高中数学第二章平面向量2.2平面向量的线性运算2.2.3向量数乘运算及其几何意义课件新人教A版必修

一级达标重点名校中学课件
2.本例(1)中,若点F为边AB的中点,设a=D→E,b=D→F,用a,b表示D→B. [解] 由题意ab==A12→A→BB--12AA→→DD,, 解得 AA→→BD==4323aa--2343bb,, 所以D→B=A→B-A→D=23a+23b.
一级达标重点名校中学课件
A,B,D三点共线.
(2)先用共线向量定理引入参数λ得
→ AP
=λ
→ AB
,再用向量减法的几何意义向
O→P=xO→A+yO→B变形,最后对比求x+y.
一级达标重点名校中学课件
(1)A,B,D
[(1)∵
→ AB
=e1+2e2,
B→D=
B→C+
→ CD
=-5e1+6e2+7e1-2e2=
2(e1+2e2)=2A→B.
A [对于①,b=-a,有a∥b; 对于②,b=-2a,有a∥b; 对于③,a=4b,有a∥b; 对于④,a与b不共线.]
一级达标重点名校中学课件
4.若|a|=5,b与a方向相反,且|b|=7,则a=________b. 【导学号:84352202】
-57 [由题意知a=-57b.]
一级达标重点名校中学课件
一级达标重点名校中学课件
2.点C是线段AB靠近点B的三等分点,下列正确的是( )
A.A→B=3B→C
B.A→C=2B→C
C.A→C=12B→C
D.A→C=2C→B
D [由题意可知:A→B=-3B→C;A→C=-2B→C=2C→B.故只有D正确.]
一级达标重点名校中学课件
3.如图2-2-27,在平行四边形ABCD中,对角线AC 与BD交于点O,A→B+A→D=λA→O,则λFra bibliotek________.
高中数学第二章平面向量2.2.3向量数乘运算及其几何意义课后习题新人教A版必修4

高中数学第二章平面向量223向量数乘运算及其几何意义课后习题新人教A 版必修4一、A 组1.已知非零向量 a, b 满足a +4b =0,则( )C a 与b 的方向相同D. a 与b 的方向相反解析:T a +4b =0,二 a =-4b, | a |= 4| b | ,且 a 与 b 的方向相反.答案:D1妙 4- BCA.1 -BA-BCB. Z:BA - BCC.--D.--I 1 IICD = -(CA + CB 解析:T 点D 是边AB 的中点,二).I~~TV 1I r^(CA + CB -BA + BC.•卫dg )=上.故选D .答案:D3.设a, b 不共线 J =a +k b, =n a +b(k ,m€ R),则A , B C 三点共线时有( )A.k=mB.km-仁0C km+1=0D.k+m=0i-1解析:若ABC 三点共线,则’共线,I I.存在唯一实数入,使二上=入“,.a +kb =X (m a +b),A. | a |+ 4| b |= 0B. a 与b 是相反向量2.如图所示1加=1*即 a +k b = Xm a + 入 b, •」几一/• km=1.即 km-1=0.答案:BA. △ ABC 的内部B. AC 边所在直线上C. AB 边所在直线上D. BC 边所在直线上4.如图,已知 lAB =a, AC =b,図/=3。
£,用a, b 表示眉D ,贝则4DA. a +Jb3 1B. 4a+4bC. ]a + ; b)5.已知P 是厶ABC 所在平面内的一点,池色=入卩月+PB ,其中入€ R 则点P —定在(上+解析:,兀入PP R, .UP R»PACB +•上P加••虽以共线.•••C P,A三点共线,故选B.答案:B6.化简:3(6a+»-^k 解析:原式=18a+3b-9a- 3b=9a.答案:9a7.如图,在平行四边形ABCD^ , E是CD的中点,且人月=a,4D=b,贝肖E = _____________________________________________________________________________I I I I I I解析:BE=BC^-CE = AD +答案—a+b &导学号08720054 在△ ABC中,点M为边AB的中点,若。
2014高考数学一轮汇总训练《平面向量的数量积及平面向量的应用 》理 新人教A版

第三节平面向量的数量积及平面向量的应用[备考方向要明了]年会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其[归纳²知识整合]1.平面向量的数量积平面向量数量积的定义已知两个非零向量a和b,它们的夹角为θ,把数量|a||b|cos θ叫做a和b的数量积(或内积),记作a²b.即a²b=|a||b|cos θ,规定0²a=0.2.向量数量积的运算律(1)a²b=b²a(2)(λa)²b=λ(a²b)=a²(λb)(3)(a+b)²c=a²c+b²c[探究] 根据数量积的运算律,判断下列结论是否成立.(1)a²b=a²c,则b=c吗?(2)(a²b)c=a(b²c)吗?提示:(1)不一定,a =0时不成立,另外a ≠0时,a ²b =a ²c .由数量积概念可知b 与c 不能确定; (2)(a ²b )c =a (b ²c )不一定相等.(a ²b )c 是c 方向上的向量,而a (b ²c )是a 方向上的向量,当a 与c 不共线时它们必不相等.3.平面向量数量积的有关结论 已知非零向量a =(x 1,y 1),b =(x 2,y 2)[自测²牛刀小试]1.(教材习题改编)已知|a |=5,|b |=4,a ²b =-10,则a 与b 的夹角为( ) A.π3 B.23π C.π6D.56π 解析:选B 设a 与b 的夹角为θ,则a ²b =|a ||b |cos θ=5³4cos θ=-10,即cos θ=-12.又∵θ∈[0,π],∴θ=23π.2.(教材习题改编)等边三角形ABC 的边长为1,BC =a ,CA =b ,AB=c ,那么a ²b+b ²c +c ²a 等于( )A .3B .-3 C.32D .-32解析:选D 由题意知|a |=|b |=|c |=1,且a 与b 的夹角为120°,b 与c 的夹角为120°,c 与a 的夹角也为120°.故a ²b +b ²c +c ²a =-32.3.设向量a ,b 满足|a |=|b |=1,a ²b =-12,则|a +2b |=( ) A. 2 B. 3 C. 5D.7解析:选B |a +2b |=|a +2b |2=|a |2+4a ²b +4|b |2=1-2+4= 3.4.(教材习题改编)已知|a |=3,|b |=4,且a 与b 不共线,若向量a +k b 与a -k b 垂直,则k =________.解析:∵(a +k b )⊥(a -k b ), ∴(a +k b )²(a -k b )=0, 即|a |2-k 2|b |2=0.又∵|a |=3,|b |=4,∴k 2=916,即k =±34.答案:±345.若向量a =(1,1),b =(2,5),c =(3,x )满足条件(8a -b )²c =30,则x =________. 解析:由题意可得8a -b =(6,3),又(8a -b )²c =30,c =(3,x ),则18+3x =30,解得x =4.答案:4[例1] (1)(2012²天津高考)已知△ABC 为等边三角形,AB =2.设点P ,Q 满足AP =λAB ,AQ =(1-λ) AC ,λ∈R ,若BQ ²CP =-32,则λ=( )A.12B.1±22C.1±102D.-3±222(2)(2012²上海高考)在平行四边形ABCD 中,∠A =π3,边AB 、AD 的长分别为2、1.若M 、N 分别是边BC 、CD 上的点,且满足|BM||BC |=|CN ||CD |,则AM ²AN 的取值范围是________. [自主解答] (1)以点A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则B (2,0),C (1,3),由AP =λAB,得P (2λ,0),由AQ =(1-λ) AC ,得Q (1-λ,3(1-λ)),所以BQ ²CP=(-λ-1,3(1-λ))²(2λ-1,-3)=-(λ+1)²(2λ-1)-3³3(1-λ)=-32,解得λ=12.(2)建立平面直角坐标系,如图.则B (2,0),C ⎝ ⎛⎭⎪⎫52,32,D ⎝ ⎛⎭⎪⎫12,32.令BM BC =CN CD=λ,则M ⎝⎛⎭⎪⎫λ2+2,32λ,N ⎝ ⎛⎭⎪⎫52-2λ,32.∴AM ²AN =⎝ ⎛⎭⎪⎫λ2+2²⎝ ⎛⎭⎪⎫52-2λ+34λ=-λ2-2λ+5=-(λ+1)2+6.∵0≤λ≤1,∴AM ²AN∈[2,5].[答案] (1)A (2)[2,5] ——————————————————— 平面向量数量积的类型及求法(1)向量数量积有两种计算公式:一是夹角公式a ²b =|a ||b |cos θ;二是坐标公式a ²b =x 1x 2+y 1y 2.(2)求较复杂的向量数量积的运算时,可先利用向量数量积的运算律或相关公式进行化简.注意以下两个重要结论的应用: ①(a +b )2=a 2+2a ²b +b 2; ②(a +b )²(a -b )=a 2-b 2.1.(2012²江苏高考)如图,在矩形ABCD 中,AB =2,BC =2,点E为BC 的中点,点F 在边CD 上,若AB ²AF =2,则AE ²BF的值是________.解析:以A 为坐标原点,AB ,AD 所在的直线分别为x ,y 轴建立直角坐标系,则B (2,0),E (2,1),D (0,2),C (2,2).设F (x,2)(0≤x ≤2),由AB ²AF =2⇒2x =2⇒x =1,所以F (1,2),AE ²BF=(2,1)²(1-2,2)= 2.答案: 2[例2] 已知|a |=4,|b |=3,(2a -3b )²(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |和|a -b |.[自主解答] (1)∵(2a -3b )²(2a +b )=61,解得a ²b =-6.∴cos θ=a ²b |a ||b |=-64³3=-12, 又0≤θ≤π,∴θ=2π3.(2)|a +b |2=a 2+2a ²b +b 2=13,∴|a +b |=13. |a -b |2=a 2-2a ²b +b 2=37. ∴|a -b |=37.本例条件不变,若AB=a ,BC =b ,试求△ABC 的面积.解:∵AB 与BC 的夹角θ=23π,∴∠ABC =π-23π=13π.又|AB|=|a |=4,|BC |=|b |=3,∴S △ABC =12|AB ||BC |sin ∠ABC =12³4³3³32=3 3.———————————————————1.利用数量积求解长度问题的处理方法 (1)a 2=a ²a =|a |2或|a |=a ²a .(2)|a ±b |=a ±b 2=a 2±2a ²b +b 2.(3)若a =(x ,y ),则|a |=x 2+y 2. 2.求向量夹角的方法(1)利用向量数量积的定义知,cos θ=a ²b|a ||b |,其中两向量夹角的范围为0°≤θ≤180°,求解时应求出三个量:a ²b ,|a |,|b |或者找出这三个量之间的关系.(2)利用坐标公式,若a =(x 1,y 1),b =(x 2,y 2),则 cos θ=x 1x 2+y 1y 2x 21+y 21²x 22+y 22. (3)三角函数法,可以把这两个向量的夹角放在三角形中;利用正余弦定理、三角形的面积公式等求解.2.(1)已知平面向量α,β,|α|=1,β=(2,0),α⊥(α-2β),求|2α+β|的值;(2)已知三个向量a 、b 、c 两两所夹的角都为120°,|a |=1,|b |=2,|c |=3,求向量a +b +c 与向量a 的夹角.解:(1)∵β=(2,0),∴|β|=2,又α⊥(α-2β),∴α²(α-2β)=α2-2α²β=1-2α²β=0. ∴α²β=12.∴(2α+β)2=4α2+β2+4α²β=4+4+2=10. ∴|2α+β|=10.(2)由已知得(a +b +c )²a =a 2+a ²b +a ²c =1+2cos 120°+3cos 120°=-32,|a +b +c |=a +b +c 2=a 2+b 2+c 2+2a ²b +2a ²c +2b ²c=1+4+9+4cos 120°+6cos 120°+12cos 120° = 3.设向量a +b +c 与向量a 的夹角为θ, 则cos θ=a +b +c ²a |a +b +c ||a |=-323=-32,即θ=150°,故向量a +b +c 与向量a 的夹角为150°.[例3] 已知|a |=4,|b |=8,a 与b 的夹角是120°. (1)计算|a +b |;(2)当k 为何值时,(a +2b )⊥(k a -b ).[自主解答] (1)|a +b |2=|a |2+2a ²b +|b |2=16+2³4³8³⎝ ⎛⎭⎪⎫-12+64=48,故|a +b |=4 3.(2)若(a +2b )⊥(k a -b ),则(a +2b )²(k a -b )=0,即k a 2+(2k -1)a ²b -2b 2=16k -16(2k -1)-2³64=0,解得k =-7. 即k =-7时,两向量垂直. ——————————————————— 两向量垂直的判断方法及应用(1)若a ,b 为非零向量,则a ⊥b ⇔a ²b =0;若非零向量a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.(2)一对向量垂直与向量所在的直线垂直是一致的,向量的线性运算与向量的坐标运算是求解向量问题的两大途径.3.在直角三角形ABC 中,已知AB=(2,3),AC =(1,k ),求k 的值.解:(1)当A =90°时,∵AB ⊥AC ,∴AB ²AC=0.∴2³1+3k =0,解得k =-23.(2)当B =90°时,∵AB ⊥BC, 又BC =AC -AB=(1,k )-(2,3)=(-1,k -3),∴AB ²BC=2³(-1)+3³(k -3)=0,解得k =113.(3)当C =90°时,∵AC ⊥BC,∴1³(-1)+k (k -3)=0,即k 2-3k -1=0.∴k =3±132.综上可得k 的值为-23或113或3±132.[例4] 设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b . [自主解答] (1)由a 与b -2c 垂直,a ²(b -2c )=a ²b -2a ²c =0,即4sin(α+β)-8cos(α+β)=0,tan(α+β)=2. (2)b +c =(sin β+cos β,4cos β-4si n β)|b +c |2=sin 2β+2sin βcos β+cos 2β+16cos 2β-32cos βsin β+16sin 2β =17-30sin βcos β=17-15sin 2β,最大值为32, 所以|b +c |的最大值为4 2.(3)由tan αtan β=16得sin αsin β=16cos αcos β,即 4cos α²4cos β-sin αsin β=0, 所以a ∥b . ———————————————————平面向量与三角函数的综合问题的命题形式与解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.4.在△ABC 中,已知2AB ²AC =3|AB|²|AC |=3|BC |2,求角A ,B ,C 的大小.解:设BC =a ,AC =b ,AB =c ,∵由2AB ²AC =3|AB|²|AC |得2bc cos A =3bc ,∴cos A =32, 又∵A ∈(0,π),∴A =π6.由3|AB |²|AC |=3|BC |2得bc =3a 2,由正弦定理得sin C ²sin B =3sin 2A =34, ∴sin C ²sin ⎝⎛⎭⎪⎫5π6-C =34,即sin C ²⎝ ⎛⎭⎪⎫12cos C +32sin C =34,∴2sin C ²cos C +23sin 2C =3, ∴sin 2C -3cos 2C =0, ∴sin ⎝ ⎛⎭⎪⎫2C -π3=0,由A =π6知0<C <5π6,∴-π3<2C -π3<4π3,从而2C -π3=0或2C -π3=π,即C =π6或C =2π3.故A =π6,B =2π3,C =π6或A =π6,B =π6,C =2π3.3个防范——与向量夹角有关的易误点 (1)若a ²b >0,则a 与b 的夹角为锐角或0°; (2)若a ²b <0,则a 与b 的夹角为钝角或180°;(3)在求△ABC 的三边所对应向量的夹角时,要注意是三角形的内角还是外角.如等边△ABC 中,AB 与BC的夹角应为120°而不是60°.4个区别——向量运算与实数运算的区别(1)在实数运算中,若ab =0,则a 与b 中至少有一个为0.而在向量数量积的运算中,不能从a ²b =0推出a =0或b =0成立.实际上由a ²b =0可推出以下四种结论:①a =0,b =0;②a =0,b ≠0;③a ≠0,b =0;④a ≠0,b ≠0,但a ⊥b .(2)在实数运算中,若a ,b ∈R ,则|ab |=|a |²|b |,但对于向量a ,b 却有|a ²b |≤|a |²|b |,当且仅当a ∥b 时等号成立.这是因为|a ²b |=|a |²|b |²|cos θ|,而|cos θ|≤1.(3)实数运算满足消去律:若bc =ca ,c ≠0,则有b =a .在向量数量积的运算中,若a ²b =a ²c (a ≠0),则不一定得到b =c .(4)实数运算满足乘法结合律,但向量数量积的运算不满足乘法结合律,即(a ²b )²c 不一定等于a ²(b ²c ),这是由于(a ²b )²c 表示一个与c 共线的向量,而a ²(b ²c )表示一个与a 共线的向量,而c 与a 不一定共线.创新交汇——平面向量与其他知识的交汇1.平面向量的数量积是每年高考的重点和热点内容,且常与三角函数、数列、三角形、解析几何等交汇命题,且常考常新.2.此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质.[典例] (2012²广东高考)对任意两个非零的平面向量α和β,定义α∘β=α²ββ²β.若两个非零的平面向量a ,b 满足a 与b 的夹角θ∈⎝ ⎛⎭⎪⎫π4,π2,且a ∘b 和b ∘a 都在集合⎩⎨⎧⎭⎬⎫n 2|n ∈Z 中,则a ∘b =( )A.52 B.32 C .1 D.12[解析] a ∘b =a ²b b 2=|a ||b ||b |2cos θ=|a ||b |cos θ,b ∘a =|b ||a |²cos θ,因为|a |>0,|b |>0,0<cos θ<22,且a ∘b 、b ∘a ∈⎩⎨⎧⎭⎬⎫n 2| n ∈Z ,所以|a ||b |cos θ=n 2,|b ||a |cos θ=m2,其中m ,n ∈N *,两式相乘,得m ²n 4=cos 2θ,因为0<cos θ<22,所以0<cos 2θ<12,得到0<m ²n <2,故m =n =1,即a ∘b =12.[答案] D [名师点评]1.本题具有以下创新点(1)本题属新定义问题,命题背景新颖;(2)考查知识新颖,本题把向量的数量积、夹角、不等式、集合等问题通过新定义有机结合在一起,较好地考查了考生的阅读理解能力和知识的迁移、转化的能力.2.解决本题的关键有以下几点(1)读懂、读透题目中所给的新定义α∘β=α²ββ²β的意义.(2)理解a ∘b 与b ∘a 都在集合⎩⎨⎧⎭⎬⎫n 2| n ∈Z 中的实际意义是|a ||b |cos θ与|b ||a |cos θ都能表示成n2(n ∈Z )的形式.(3)善于转化,通过两式相乘,将问题转化为0<cos 2θ<12,即0<m ²n <2成立,从而求得结论.[变式训练]1.已知向量OZ 与1OZ 关于x 轴对称,j =(0,1),则满足不等式OZ 2+j ²1ZZ ≤0的点Z (x ,y )的集合用阴影表示为( )解析:选C 依题意得,动点Z 的坐标满足:(x 2+y 2)+(0,1)²(0,-2y )=x 2+y 2-2y ≤0,即x 2+(y -1)2≤1,易知该不等式表示的平面区域是以点(0,1)为圆心,1为半径的圆及其内部.2.已知平面内的向量OA ,OB 满足:|OA |=|OB |=2,OA 与OB 的夹角为π2,又OP =λ1OA +λ2OB,0≤λ1≤1,1≤λ2≤2,则点P 的集合所表示的图形的面积是( )A .8B .4C .2D .1解析:选B 如图,以O 为原点,OA 所在直线为x 轴,OB所在直线为y 轴,建立平面直角坐标系,则A (2,0),B (0,2),设P (x ,y ),则由OP =λ1OA +λ2OB,得(x ,y )=λ1(2,0)+λ2(0,2)=(2λ1,2λ2),即⎩⎪⎨⎪⎧x =2λ1,y =2λ2.又因为⎩⎪⎨⎪⎧0≤λ1≤1,1≤λ2≤2,所以⎩⎪⎨⎪⎧0≤x ≤2,2≤y ≤4.所以点P的集合为{(x ,y )|0≤x ≤2,2≤y ≤4},它表示正方形区域(如图中阴影部分所示),所以点P 的集合所表示的图形的面积为2³2=4.一、选择题(本大题共6小题,每小题5分,共30分)1.(2012²重庆高考)设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( ) A. 5 B.10 C .2 5D .10解析:选B 由a ⊥b ,可得a ²b =0,即x -2=0,得x =2,所以a +b =(3,-1),故|a +b |=32+-12=10.2.(2012²湖北高考)若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A .-π4B.π6C.π4D.3π4解析:选C 2a +b =2(1,2)+(1,-1)=(3,3),a -b =(1,2)-(1,-1)=(0,3).在平面直角坐标系中,根据图形得2a +b 与a -b 的夹角为π4.3.如图,在△ABC 中,AD ⊥AB ,BC =3BD ,|AD|=1,则AC ²AD=( )A .2 3B.32C .-32D. 3解析:选D 建系如图.设B (x B,0),D (0,1),C (x C ,y C ),BC=(x C -x B ,y C ), BD=(-x B,1), ∵BC =3BD,∴x C -x B =-3x B ⇒x C =(1-3)²x B ,y C =3,AC =((1-3)x B ,3),AD=(0,1),AC ²AD = 3.4.已知|a |=6,|b |=3,a ²b =-12,则向量a 在向量b 方向上的射影的数量是( ) A .-4 B .4 C .-2D .2解析:选A 设a 与b 的夹角为θ,∵a ²b 为向量b 的模与向量a 在向量b 方向上的射影的数量的乘积,而cos θ=a ²b |a ||b |=-23,∴|a |cos θ=6³⎝ ⎛⎭⎪⎫-23=-4. 5.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ²PB的最小值为( )A .-4+ 2B .-3+ 2C .-4+2 2D .-3+2 2解析:选 D 设∠APB =2θ,|PO |=x ,则PA ²PB =|PA |²|PB|²cos 2θ=|PA |2cos 2θ=(|PO |2-1)²(1-2sin 2θ)=(x 2-1)²⎝ ⎛⎭⎪⎫1-2x 2=x 2-2-1+2x 2≥-3+22,当且仅当x 2=2x2即x =42时取等号.6.已知|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+12|a |x 2+a²b x 在R 上有极值,则a 与b 的夹角范围为( )A.⎝⎛⎭⎪⎫0,π6B.⎝ ⎛⎦⎥⎤π6,πC.⎝⎛⎦⎥⎤π3,πD.⎝⎛⎦⎥⎤π3,2π3解析:选C f (x )=13x 3+12|a |x 2+a ²b x 在R 上有极值,即f ′(x )=x 2+|a |x +a²b =0有两个不同的实数解,故Δ=|a |2-4a²b >0⇒cos 〈a ,b 〉<12,又〈a ,b 〉∈[0,π],所以〈a ,b 〉∈⎝ ⎛⎦⎥⎤π3,π. 二、填空题(本大题共3小题,每小题5分,共15分)7.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k =________.解析:∵a +b 与k a -b 垂直, ∴(a +b )²(k a -b )=0,化简得(k -1)(a ²b +1)=0,根据a 、b 向量不共线,且均为单位向量得a ²b +1≠0,得k -1=0,即k =1.答案:18.(2012²北京高考)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ²CB的值为________;DE ²DC的最大值为________.解析:法一:以AB ,AD 为基向量,设AE =λAB (0≤λ≤1),则DE =AE -AD=λAB -AD ,CB =-AD ,所以DE ²CB =(λAB -AD )²(-AD)=-λAB ²AD +AD 2=-λ³0+1=1.又DC =AB ,所以DE ²DC =λAB-AD )²AB =λAB 2-AD ²AB=λ³1-0=λ≤1,即DE ²DC的最大值为1.法二:建立如图所示的平面直角坐标系,令E 点坐标为(t ,0)(0≤t ≤1)可得DE ²CB=(t , -1) ²(0, -1)=1, DE ²DC=(t , -1) ²(1, 0)=t ≤1故DE ²CB =1,DE ²DC的最大值为1.答案:1 19.(2012²湖南高考)如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP ²AC=________.解析:设AC 与BD 的交点为O ,则AP ²AC =AP ²2AO =2AP 2+2AP ²PO=2³32+0=18.答案:18三、解答题(本大题共3小题,每小题12分,共36分)10.已知a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,求实数λ的取值范围. 解:∵a 与a +λb 均为非零向量,且夹角为锐角, ∴a ²(a +λb )>0,即(1,2)²(1+λ,2+λ)>0. ∴(1+λ)+2(2+λ)>0. ∴λ>-53.当a 与a +λb 共线时,存在实数m ,使a +λb =m a , 即(1+λ,2+λ)=m (1,2),∴⎩⎪⎨⎪⎧1+λ=m ,2+λ=2m ,解得λ=0.即当λ=0时,a 与a +λb 共线,综上可知,λ>-53且λ≠0.11.已知△ABC 为锐角三角形,向量m =(3cos 2A ,sin A ),n =(1,-sin A ),且m ⊥n . (1)求A 的大小;(2)当AB=p m ,AC =q n (p >0,q >0),且满足p +q =6时,求△ABC 面积的最大值.解:(1)∵m ⊥n ,∴3cos 2A -sin 2A =0. ∴3cos 2A -1+cos 2A =0, ∴cos 2A =14.又∵△ABC 为锐角三角形, ∴cos A =12,∴A =π3.(2)由(1)可得m =⎝ ⎛⎭⎪⎫34,32,n =⎝ ⎛⎭⎪⎫1,-32. ∴|AB |=214p ,|AC |=72q . ∴S △ABC =12|AB |²|AC |²sin A =2132pq .又∵p +q =6,且p >0,q >0, ∴p ²q ≤p +q2,∴p ²q ≤3. ∴p ²q ≤9.∴△ABC 面积的最大值为2132³9=18932.12.已知向量a =(1,2),b =(cos α,sin α).设m =a +t b (t 为实数). (1)若α=π4,求当|m |取最小值时实数t 的值;(2)若a ⊥b ,问:是否存在实数t ,使得向量a -b 和向量m 的夹角为π4,若存在,请求出t ;若不存在,请说明理由.解:(1)因为α=π4,所以b =⎝⎛⎭⎪⎫22,22,a ²b =322, 则|m |=a +t b 2=5+t 2+2t a ²b= t 2+32t +5=⎝⎛⎭⎪⎫t +3222+12,所以当t =-322时,|m |取到最小值,最小值为22.(2)存在满足题意的实数t , 由条件得cos π4=a -b ²a +t b |a -b ||a +t b |,又因为|a -b |=a -b 2=6,|a +t b |=a +t b 2=5+t 2,(a -b )²(a +t b )=5-t , 则有5-t 6³5+t2=22,且t <5, 整理得t 2+5t -5=0,所以存在t =-5±352满足条件.1.下列判断:①若a 2+b 2=0,则a =b =0;②已知a ,b ,c 是三个非零向量,若a +b =0,则|a ²c |=|b ²c |; ③a ,b 共线⇔a ²b =|a ||b |; ④|a ||b |<a ²b ; ⑤a ²a ²a =|a |3; ⑥a 2+b 2≥2a ²b ;⑦非零向量a ,b 满足a ²b >0,则a 与b 的夹角为锐角;⑧若a ,b 的夹角为θ,则|b |cos θ表示向量b 在向量a 方向上的射影的数量. 其中正确的是________.解析:由于a 2≥0,b 2≥0,所以,若a 2+b 2=0,则a =b =0,故①正确;若a +b =0,则a =-b ,又a ,b ,c 是三个非零向量,所以a ²c =-b ²c ,所以|a ²c |=|b ²c |,②正确;a ,b 共线⇔a ²b =±|a ||b |,所以③错;对于④,应有|a ||b |≥a ²b ,所以④错; 对于⑤,应该是a ²a ²a =|a |2a ,所以⑤错;a 2+b 2≥2|a ||b |≥2a ²b ,故⑥正确;当a 与b 的夹角为0°时,也有a ²b >0,因此⑦错;|b |cos θ表示向量b 在向量a 方向上的射影的数量,可取全体实数,而非射影长,故⑧错.综上可知①②⑥正确. 答案:①②⑥2.平面上有四个互异点A 、B 、C 、D ,已知(DB +DC -2DA )²(AB -AC)=0,则△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .无法确定解析:选B 由(DB +DC -2DA )²(AB -AC)=0,得[(DB -DA )+(DC -DA )]²(AB -AC)=0,所以(AB +AC )²(AB -AC)=0.所以|AB |2-|AC |2=0,故|AB|=|AC |,故△ABC 是等腰三角形.3.已知A ,B ,C 的坐标分别为A (3,0),B (0,3),C (cos α,sin α),α∈⎝ ⎛⎭⎪⎫π2,3π2.(1)若|AC |=|BC|,求角α的值;(2)若AC ²BC =-1,求2sin 2α+sin 2α1+tan α的值.解:(1)∵AC=(cos α-3,sin α), BC=(cos α,sin α-3), ∴AC 2=(cos α-3)2+sin 2α=10-6cos α, BC 2=cos 2α+(sin α-3)2=10-6sin α. 由|AC |=|BC |,可得AC 2=BC 2,即10-6cos α=10-6sin α,得sin α=cos α. 又∵α∈⎝ ⎛⎭⎪⎫π2,3π2,∴α=5π4.(2)由AC ²BC=-1,得(cos α-3)cos α+sin α(sin α-3)=-1, ∴sin α+cos α=23.①又2sin 2α+sin 2α1+tan α=2sin 2α+2sin αcos α1+sin αcos α=2sin αcos α,由①式两边分别平方,得1+2sin αcos α=49,∴2sin αcos α=-59.∴2sin 2α+sin 2α1+tan α=-59.4.已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且⎝ ⎛⎭⎪⎫PC +12 PQ ²⎝ ⎛⎭⎪⎫PC -12 PQ =0. (1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任一条直径,求PE ²PF的最值.解:(1)设P (x ,y ),则Q (8,y ).由⎝ ⎛⎭⎪⎫PC +12 PQ ²⎝ ⎛⎭⎪⎫PC -12 PQ =0,得|PC |2-14|PQ |2=0,即(x -2)2+y 2-14(x -8)2=0,化简得x 216+y 212=1. 所以点P 在椭圆上,其方程为x 216+y 212=1.(2)PE ²PF的最大值为19;PE ²PF的最小值为12-4 3.。
江苏省2014年高考数学(文)二轮复习专题提升训练:8 平面向量的线性运算及综合应用

常考问题8 平面向量的线性运算及综合应用(建议用时:50分钟)1.(2012·苏州期中)已知向量a =(2,x ),b =(x -1,1),若a ∥b ,则x 的值为________. 解析 由a ∥b ,得2-x (x -1)=0,解得x =2或-1. 答案 2或-12.已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13则|b | 等于________. 解析 向量a 与b 的夹角为120°,|a |=3,|a +b |=13, 则a ·b =|a ||b |·cos 120°=-32|b |, |a +b |2=|a |2+2a ·b +|b |2.所以13=9-3|b |+|b |2,则|b |=-1(舍去)或|b |=4. 答案 43.已知非零向量a ,b ,c 满足a +b +c =0,向量a 与b 的夹角为60°,且|a |=|b |=1,则向量a 与c 的夹角为________.解析 因为a +b +c =0,所以c =-(a +b ).所以|c |2=(a +b )2=a 2+b 2+2a ·b =2+2cos 60°=3.所以|c |= 3.又c ·a =-(a +b )·a =-a 2-a ·b =-1-cos 60°= -32,设向量c 与a 的夹角为θ,则cos θ=a ·c |a ||c |=-321×3=-32.又0°≤θ≤180°,所以θ=150°. 答案 150°4.(2013·天一、淮阴、海门中学联考)在△ABC 中,已知AB →·AC →=4,AB →·BC →=-12,则|AB→|=________. 解析 将AB →·AC →=4,AB →·BC →=-12两式相减得AB →·(AC →-BC →)=AB →2=16,则|AB →|=4. 答案 45.(2013·新课标全国Ⅱ卷)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD→=________.解析 由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →)=(AD →+12AB →)·(AD→-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.答案 26.(2013·安徽卷改编)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是________.解析 由|OA →|=|OB →|=OA →·OB→=2,知cos ∠AOB =12,又0≤∠AOB ≤π,则∠AOB =π3,又A ,B 是两定点,可设A (3,1),B (0,2),P (x ,y ),由OP→=λOA →+μOB →,可得⎩⎨⎧x =3λ,y =λ+2μ⇒⎩⎪⎨⎪⎧λ=33x ,μ=y 2-36x .因为|λ|+|μ|≤1,所以⎪⎪⎪⎪⎪⎪33x +⎪⎪⎪⎪⎪⎪y 2-36x ≤1,当⎩⎨⎧x ≥0,3y -3x ≥0,时,3y +3x ≤6由可行域可得S 0=12×2×3=3,所以由对称性可知点P 所表示的区域面积S =4S 0=4 3. 答案 4 37.如图,在正方形ABCD 中,已知AB =2,M 为BC 的中点,若N 为正方形内(含边界)任意一点,则AM →·AN →的最大值是________.解析 由数量积的定义得AM →·AN →=|AM →|·|AN→|cos ∠NAM ,当N 点与C 点重合时,|AN→|cos ∠NAM 最大,解三角形得最大值为65,所以AM →·AN→的最大值是6.8.在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3P B →|的最小值为______. 解析 建立如图所示的直角坐标系,设DC =m ,P (0,t ),t ∈[0,m ],由题意可知,A (2,0),B (1,m ),P A →=(2,-t ),P B →=(1,m -t ),P A →+3P B →=(5,3m -4t ),|P A →+3P B →|=52+(3m -4t )2≥5,当且仅当t =34m 时取等号,即|P A →+3P B →|的最小值是5. 答案 59.(2013·南通模拟)已知a =(sin α,sin β),b =(cos(α-β),-1),c =(cos(α+β),2),α,β≠k π+π2(k ∈Z ). (1)若b ∥c ,求tan α·tan β的值; (2)求a 2+b·c 的值.解 (1)若b ∥c ,则2cos(α-β)+cos(α+β)=0, ∴3cos αcos β+sin αsin β=0,∵α,β≠k π+π2(k ∈Z ),∴tan αtan β=-3. (2)a 2+b·c =sin 2α+sin 2β+cos(α-β)cos(α+β)-2 =sin 2α+sin 2β+cos 2αcos 2β-sin 2αsin 2β-2 =sin 2α+cos 2αsin 2β+cos 2αcos 2β-2 =sin 2α+cos 2α-2=1-2=-1.10.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2). (1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,C =π3,求△ABC 的面积. (1)证明 因为m ∥n ,所以a sin A =b sin B ,即a ·a 2R =b ·b 2R (其中R 是△ABC 外接圆的半径),所以a =b .所以△ABC 为等腰(2)解 由题意,可知m ·p =0,即a (b -2)+b (a -2)=0,所以a +b =ab ,由余弦定理,知4=c 2=a 2+b 2-2ab cos π3=(a +b )2-3ab ,即(ab )2-3ab -4=0,所以ab =4或ab =-1(舍去).所以S △ABC =12ab sin C =12×4×sin π3= 3.11.(2013·苏北四市模拟)如图所示,A ,B 分别是单位圆与x 轴、y 轴正半轴的交点,点P 在单位圆上,∠AOP =θ(0<θ<π),C 点坐标为(-2,0),平行四边形OAQP 的面积为S .(1)求O A →·O Q →+S 的最大值; (2)若CB ∥OP ,求sin ⎝ ⎛⎭⎪⎫2θ-π6的值.解 (1)由已知,得A (1,0),B (0,1),P (cos θ,sin θ), 因为四边形OAQP 是平行四边形, 所以O Q →=O A →+O P →=(1,0)+(cos θ,sin θ) =(1+cos θ,sin θ). 所以O A →·O Q →=1+cos θ. 又平行四边形OAQP 的面积为 S =|O A →|·|O P →|sin θ=sin θ,所以O A →·O Q →+S =1+cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4+1.又0<θ<π,所以当θ=π4时,O A →·O Q →+S 的最大值为2+1. (2)由题意,知C B →=(2,1),O P →=(cos θ,sin θ), 因为CB ∥OP ,所以cos θ=2sin θ.又0<θ<π,cos 2θ+sin 2θ=1, 解得sin θ=55,cos θ=255,所以sin2 θ=2sin θcos θ=45,cos2θ=cos 2θ-sin 2θ=35.所以sin ⎝ ⎛⎭⎪⎫2θ-π6=sin 2θcos π6-cos 2θsin π6=45×32-35×12=43-310. 备课札记:。
人教版高二必修四数学第二章平面向量试题

以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。
【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。
5、已知点M是 ABC的重⼼,若,求的值。
6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。
2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。
2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。
【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。