概率及概率密度分布函数-PPT

合集下载

概率论随机变量的分布函数ppt课件

概率论随机变量的分布函数ppt课件

因此, A 是不可能事件
P{A} 0.
ppt课件
12
例1: 设随机变量X具有概率密度
ke 3 x
x0
f (x)
0 x0
(1)试确定常数k,(2)求F(x),(3)并求P{X>0.1}。
解: (1)由于
f (x)dx
ke3xdx k 1
,解得k=3.
0
3
于是X的概率密度为
f
(
x)
O
x
(3) 在 x= 处曲线有拐点,且以x轴为渐近线 ;
(4) 对固定的,改变的值,图形沿Ox轴平移;
(5) 对固定的,改变, 越小,图形越尖.
正态分布的分布函数为: F ( x)
ppt课件
1
2
e dt x
(t )2 2 2
28
标准正态分布
当=0, =1时,称X服从标准正态分布,记作X~N(0,1).
例3 设电阻值R是一个随机变量,均匀分布在800欧~1000
欧,求R的概率密度及R落在850欧~950欧的概率.
解: 由题意,R的概率密度为
1 f (r) 1000 800
, 800 r 1000
0
, 其它
950 1
而 P{850 X 950}
dr 0.5
200 ppt课件
850
18
2. 指数分布
注 (4)式及连续性随机变量分布函数的定义表示 了分布函数与概率密度间的两个关系.利用这些 关系,可以根据分布函数和概率密度中的一个推 出另一个.
ppt课件
10
连续型随机变量的分布函数与概率密度的几何意义:
1. F(x)等于曲线f(x)在(-∞,x]上的曲边梯形的面积。

3.1分布函数及概率密度函数

3.1分布函数及概率密度函数

x
x
2020年5月28日星期四
返回主目录
7
目录
上页
下页
返回
第三章 连续型随机变量及其分布
4) 对任意x(,), F(x)是右连续的.
2020年5月28日星期四
返回主目录
8
目录
上页
下页
返回
3.1 分布函数与 概率密度函数
例: 设随机变量X在区间[0,1]上取值,这是一个 连续随机变量。当0≤x≤1时,概率P {0≤X≤ x} 与x2成正比。试求X的分布函数F(x)。
返回主目录
9
目录
上页
下页
返回
例: 设随机变量X在区间[0,1]上取值,这是一个 连续随机变量。当0≤a≤1时,概率P {0≤x≤ a } 与a2成正比。试求X的分布函数F(x)。
0, x 0;
F (x)
x
2
,0
x
1;
1, x 1.
F '(x)
f
(x)
2x,0 x 1;
0, 其他
x
F (x) f (t)dx
0,
F
(
x)
1
4 3
, ,
4 1,
x 1, 1 x 2,
2 x 3, x 3.
2020年5月28日星期四返回主目录4目录上页
下页
返回
引例:
分布函数 F (x) 在 x = xk (k =1, 2 ,…) 处有跳跃, 其跳跃值为 pk=P{X= xk}.
X -1
pk
1 4
23
11 24
30 P{x1 X x2} F (x2 ) F (x1)
f (x)
x2 x1

分布函数与概率密度函数的求法ppt文件

分布函数与概率密度函数的求法ppt文件

04
分布函数与概率密度函数的求解方法
离散型随机变量的求解方法
定义法
根据随机变量的定义,利用公式计算离散型随机变量的概率,从而得到其分布函 数和概率密度函数。
表格法
将随机变量取值的所有可能结果列成一个表格,计算每个可能结果的概率,从而 得到其分布函数和概率密度函数。
连续型随机变量的求解方法
公式法
连续型随机变量的关系
• 连续型随机变量的分布函数是一个连续函数,它描述了随机变量取某个范围内的概率。例如,正态分布的 分布函数可以表示为
• f(x) = 1/√(2πσ^2) * exp(-(x-μ)^2/(2σ^2)), x∈R • 其中,μ是均值,σ是标准差。 • 连续型随机变量的概率密度函数是一个连续函数,它描述了随机变量取某个范围内的概率密度。例如,正
分布函数与概率密度函数的 求法
xx年xx月xx日
contents
目录
• 分布函数的定义与性质 • 概率密度函数的定义与性质 • 分布函数与概率密度函数的关系 • 分布函数与概率密度函数的求解方法 • 分布函数与概率密度函数的应用
01
分布函数的定义与性质
分布函数的定义
离散型随机变量的分布函数
对于离散型随机变量X,其分布函数F(x)定义为事件{X≤x}的概率,即F(x)=P(X≤x)。
分布函数与概率密度函数在统计分析中的应用
参数估计
假设检验
方差分析
相关分析
回归分析
利用样本数据估计未知 参数,包括点估计和区 间估计。
利用样本数据对未知参 数进行假设检验,包括 参数检验和非参数检验 。
分析多个因素对观测值 的影响,判断各因素对 观测值的影响是否显著 。
研究两个或多个变量之 间的相关关系,包括线 性相关和非线性相关。

4-1 正态分布的概率密度与分布函数

4-1 正态分布的概率密度与分布函数

0.7580 (1 0.9032) 0.6612.
概率论与数理统计教程(第五版)
目录
上一页 下一页
返回
结束
§4.1 正态分布的概率密度与分布函数
[例3] 设随机变量X 服从正态分布N ( , 2 ) , 求 X 落 在区间 ( k , k ) 内的概率,这里 k 1 ,2 ,3 ,.
概率论与数理统计教程(第五版)
目录
上一页 下一页
返回
结束
§4.1 正态分布的概率密度与分布函数
P( X 30) P(30 X 30)
(30 20) ( 30 20)
40
40
(0.25) (1.25)
(0.25) [1 (1.25)]
0.5987 (1 0.8944) 0.4931.
其形状.
f (x)
6. 固定 , 改变 ,
1
则当 很小时,
1.5
曲线的形状与一尖塔相似;
3
当 值增大时,
7.5
O
x
曲线将趋于平坦.
概率论与数理统计教程(第五版)
目录
上一页 下一页
返回
结束
§4.1 正态分布的概率密度与分布函数
正态分布 N ( , 2 )的分布函数为
F(x) 1
P( X 100 1.2) 1 P( X 100 1.2) 1 P( X 100 2) 0.6
1 P(2 X 100 2) 1[ (2) (2)]
0.6 1[0.9772 (1 0.9772)] 0.0456 4.56%.
概率论与数理统计教程(第五版)
目录
上一页 下一页
返回
所以,在三次测量中至少有一次误差的绝对值不超过

概率论与数理统计连续型随机变量及其概率分布ppt课件

概率论与数理统计连续型随机变量及其概率分布ppt课件

0 x
则t , dt d
1-(x)
x1
2
3
F(x) 1
(t )2
1 x e
2 2
dt
x
2
e 2 d
( x )
2
2
4. P{a X b} (b ) ( a )
P{X b} (b ) P{X a} 1 (a )
例6
设 X ~ N(1,4) , 求 P (0 X 1.6)
解:X 的密度函数为
f
x
1 10
e
x 10
0
x0 x0
令:B={ 等待时间为10-20分钟 }
则 PB P10 X 20
20
1
x
e 10 dx
10 10
x
e 10
20
e 1
e 2
0.2325
10
例5 假定一大型设备在任何长为 t 的时间内发生
故障的次数 N( t ) 服从参数为t 的Poisson分布,
P(2
X
4)
4
2
2
2
2
(0)
0.3
2
0.8
P( X 0) 0.2
解二 图解法
0.2 0.15
0.1 0.05
0.3 0.2
-2
2
4
6
由图 P( X 0) 0.2
例 3 原理
设 X ~ N ( , 2), 求 P(| X | 3 )
解 P(| X | 3 ) P( 3 X 3 )
应用场合:
若随机变量X在区间(a,b)内等可能的取值,则
X ~ U a,b
例3 秒表的最小刻度差为0.01秒. 若计时精度 是取最近的刻度值, 求使用该秒表计时产生的 随机误差X 的概率密度, 并计算误差的绝对值 不超过0.004秒的概率.

第二讲 分布的概率密度函数与分布函数2

第二讲 分布的概率密度函数与分布函数2

2013-3-13
山东工商学院计算机学院

2013-3-13 山东工商学院计算机学院 25


【4-9】 利用函数binopdf()产生二项分布的概率密度函数,并进行显示 >> x=0:10; >> y=binopdf(x,10,0.5); >> plot(x,y,'r*')
2013-3-13
山东工商学院计算机学院
26
0.25
【例4-4】 利用函数poisscdf()产生泊松分布的概率密
度函数,并进行显示
>> x=1:50; >> y=poisscdf(x,25); >> figure; >> plot(x,y,'r+'); >> title('泊松分布');
2013-3-13
山东工商学院计算机学院
13
泊松分布 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
参数为lambda的泊松分布的概率密度函数值poisspdfxlambdapoisspdf参数为mkn的超几何分布的概率密度函数值hygepdfxmknhygepdf参数为p的几何分布的概率密度函数值geopdfxpgeopdf参数为np的二项分布的概率密度函数值binopdfxnpbinopdf参数为ab的韦伯分布概率密度函数值weibpdfxabweibpdf参数为b的瑞利分布概率密度函数值raylpdfxbraylpdf参数为ndelta的非中心卡方分布概率密度函数值ncx2pdfxndeltancx2pdf参数为ndelta的非中心t分布概率密度函数值nctpdfxndeltanctpdf参数为n1n2delta的非中心f分布概率密度函数值ncfpdfxn1n2deltancfpdf参数为rp的负二项式分布概率密度函数值nbinpdfxrpnbinpdf参数为musigma的对数正态分布概率密度函数值lognpdfxmusigmalognpdf分布概率密度函数值betapdfxabbetapdf分布概率密度函数值gampdfxabgampdf第一自由度为n1第二自由度为n2的f分布概率密度函数值fpdfxn1n2fpdf自由度为n的t分布概率密度函数值tpdfxntpdf自由度为n的卡方分布概率密度函数值chi2pdfxnchi2pdf参数为musigma的正态分布概率密度函数值normpdfxmusigmanormpdf参数为lambda的指数分布概率密度函数值exppdfxlambdaexppdf均匀分布离散概率密度函数值unidpdfxnunidpdfab上均匀分布连续概率密度在xx处的函数值unifpdfxabunifpdf注释调用形式函数名参数为ab的参数为ab的参数为lambda的泊松分布的累积分布函数值fxpxxpoisscdfxlambdapoisscdf参数为mkn的超几何分布的累积分布函数值hygecdfxmknhygecdf参数为p的几何分布的累积分布函数值fxpxxgeocdfxpgeocdf参数为np的二项分布的累积分布函数值fxpxxbinocdfxnpbinocdf参数为ab的韦伯分布累积分布函数值fxpxxweibcdfxabweibcdf参数为b的瑞利分布累积分布函数值fxpxxraylcdfxbraylcdf参数为ndelta的非中心卡方分布累积分布函数值ncx2cdf

条件分布律条件分布函数条件概率密度ppt课件

条件分布律条件分布函数条件概率密度ppt课件

第三章 随机变量及其分布
一、随机变量的独立性
§4随机变量的独立性
设 (X, Y )是二维随机变量,其联合分布函数为 F (x, y) ,又随机变量X 的分布函数为FX (x), 随机变量Y 的分布函数为FY ( y).
如果对于任意的x, y,有
F (x, y) FX (x) FY (y)
则称 X, Y 是相互独立的随机变量.
第三章 随机变量及其分布
一 、离散型随机变量的条件分布律
§3条件分布
设 ( X ,Y ) 是二维离散型随机变量,其分布律为 P{ X= xi ,Y= yj }= pi j , i , j=1,2,...
(X, Y ) 关于 X 和关于 Y 的边缘分布律分别为:
P{ X xi } pi• pi j , i 1,2, j 1
1 2
- 2)
(y
- 2 )2
2 2
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
又随机变量Y 的边缘密度函数为
§3条件分布
fY (y)
1
- ( y-2 )2
e 2
2 2
2 2
(- < y < )
因此,对任意的 y,fY ( y) 0,
( ) ( ) f X Y
xy
f (x, y) fY (y)
所以,当0 < y < 1时, 0,
其它.
fY (y) f (x,
-
y)dx
y 1 dx - ln(1 -
0 1- x
y
y).
所以,随机变量 Y 的密度函数为
1
fY
(y)
ln(1 -
0,
y),

概率及概率密度分布函数

概率及概率密度分布函数

概率及概率密度分布函数概率及概率密度分布函数是概率论中的重要概念,用于描述随机变量的分布情况。

概率研究的是随机事件的可能性,而概率密度分布函数则描述了连续型随机变量在某个取值范围内的概率密度。

一、概率的基本概念概率在概率论中是指某个事件发生的可能性大小。

常用的概率表示方法有百分数、分数和小数等形式。

如果某个事件必然发生,则其概率为1;如果某个事件不可能发生,则其概率为0。

对于其他事件,其概率一般介于0和1之间。

二、概率的计算方法根据概率的定义,我们可以通过实验来确定某个事件发生的概率。

在实验中,若某事件发生的次数为m,总共进行实验的次数为n,则该事件发生的概率可用频率表示为m/n。

此外,还有一些常用的概率计算方法,如加法定理、乘法定理、条件概率等。

加法定理适用于求两个事件中至少一个发生的概率;乘法定理适用于求两个相继独立事件同时发生的概率;条件概率则描述了在已知某事件发生的情况下,另一个事件发生的概率。

三、概率密度分布函数概率密度分布函数是用来描述连续型随机变量的分布情况的数学函数。

对于一个连续型随机变量X,其概率密度函数f(x)定义为在x处的概率密度。

一般来说,概率密度函数为非负的连续函数,并满足积分为1的条件。

在实际应用中,概率密度分布函数可以用图像形式表示出来,常用的图像表示方法有直方图、正态分布曲线等。

直方图可以直观地反映出某一区间内的事件发生的概率密度,而正态分布曲线则是一种常见的连续概率分布曲线。

四、概率密度分布函数的应用概率密度分布函数在概率统计学中有着广泛的应用。

它可以用于描述各种现实世界的随机现象,如人类身高、体重的分布,机器零件的寿命,气象数据等。

通过分析概率密度分布函数,我们可以得到关于随机变量的各种统计量,如期望、方差、标准差等。

这些统计量能够帮助我们对随机变量的分布特征进行全面的描述和分析。

总结:概率及概率密度分布函数是概率论中重要的概念,用于描述随机变量的分布情况。

概率是指某个事件发生的可能性大小,可以通过实验或计算得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档