蛋白质沉淀浓缩方法原理及详细解析

蛋白质沉淀浓缩方法原理及详细解析
蛋白质沉淀浓缩方法原理及详细解析

蛋白质沉淀浓缩方法原理及详细解析

在生化制备中,沉淀主要用于浓缩目的,或用于除去留在液相或沉淀在固相中的非必要成分。在生化制备中常用的有以下几种沉淀方法和沉淀剂:

1.盐析法多用于各种蛋白质和酶的分离纯化。

2.有机溶剂沉淀法多用于生物小分子、多糖及核酸产品的分离纯化,有时也用于蛋白质沉淀。

3.等电点沉淀法用于氨基酸、蛋白质及其它两性物质的沉淀。但此法单独应用较少,多与其它方法结合使用。

4.非离子多聚体沉淀法用于分离生物大分子。

5.生成盐复合物沉淀用于多种化合物,特别是小分子物质的沉淀。

6.热变性及酸碱变性沉淀法用于选择性的除去某些不耐热及在一定PH值下易变性的杂蛋白。

第一节盐析法

一般来说,所有固体溶质都可以在溶液中加入中性盐而沉淀析出,这一过程叫盐析。在生化制备中,许多物质都可以用盐析法进行沉淀分离,如蛋白质、多肽、多糖、核酸等,其中以蛋白质沉淀最为常见,特别是在粗提阶段。

盐析法分为两类,第一类叫Ks分段盐析法,在一定PH和温度下通过改变离子强度实现,用于早期的粗提液;第二种叫Kb分段盐析法,在一定离子强度下通过改变PH和温度来实现,用于后期进一步分离纯化和结晶。

一.影响盐析的若干因素

1.蛋白质浓度

高浓度蛋白溶液可以节约盐的用量,但许多蛋白质的b 和Ks常数十分接近,若蛋白浓度过高,会发生严重的共沉淀作用;在低浓度蛋白质溶液中盐析,所用的盐量较多,而共沉淀作用比较少,因此需要在两者之间进行适当选择。用于分步分离提纯时,宁可选择稀一些的蛋白质溶液,多加一点中性盐,使共沉淀作用减至最低限度。一般认为%%的蛋白质浓度比较适中。

2.离子强度和类型

一般说来,离子强度越大,蛋白质的溶解度越低。在进行分离的时候,一般从低离子强度到高离子强度顺次进行。每一组分被盐析出来后,经过过滤或冷冻离心收集,再在溶液中逐渐提高中性盐的饱和度,使另一种蛋白质组分盐析出来。

离子种类对蛋白质溶解度也有一定影响,离子半径小而很高电荷的离子在盐析方面影响较强,离子半径大而低电荷的离子的影响较弱,下面为几种盐的盐析能力的排列次序:磷酸钾>硫酸钠>磷酸铵>柠檬酸钠>硫酸镁。

3.PH值

一般来说,蛋白质所带净电荷越多溶解度越大,净电荷越少溶解度越小,在等电点时蛋白质溶解度最小。为提高盐析效率,多将溶液PH值调到目的蛋白的等电点处。但必须注意在水中或稀盐液中的蛋白质等电点与高盐浓度下所测的结果是不同的,需根据实际情况调整溶液PH值,以达到最好的盐析效果。

4.温度

在低离子强度或纯水中,蛋白质溶解度在一定范围内随温度增加而增加。但在高浓度下,蛋白质、酶和多肽类物质的溶解度随温度上升而下降。在一般情况下,蛋白质对盐析温度无特殊要求,可在室温下进行,只有某些对温度比较敏感的酶要求在0-4℃进行。

二.硫酸铵的使用

硫酸铵中常含有少量的重金属离子,对蛋白质巯基有敏感作用,使用前必须用H2S处理:将硫酸铵配成浓溶液,通入H2S饱和,放置过夜,用滤纸除去重金属离子,浓缩结晶,100℃烘干后使用。另外,高浓度的硫酸铵溶液一般呈酸性(PH=左右),使用前也需要用氨水或硫酸调节至所需PH。

硫酸铵的加入有以下几种方法:1)加入固体盐法用于要求饱和度较高而不增大溶液体积的情况;2)加入饱和溶液法用于要求饱和度不高而原来溶液体积不大的情况;3)透析平衡法先将盐析的样品装于透析袋中,然后浸入饱和硫酸铵中进行透析,透析袋内硫酸铵饱和度逐渐提高,达到设定浓度后,目的蛋白析出,停止透析。该法优点在于硫酸铵浓度变化有连续性,盐析效果好,但手续烦琐,需不断测量饱和度,故多用于结晶,其它情况少见。

使用固体硫酸铵时:1)必须注意饱和度表中规定的温度,一般有0℃或室温两种,加入固体盐后体积的变化已考虑在表中;2)分段盐析中,应考虑每次分段后蛋白质浓度的变化。一种蛋白质如经二次透析,一般来说,第一次盐析分离范围(饱和度范围)比较宽,第二次分离范围较窄。3)盐析后一般放置半小时至一小时,待沉淀完全后才过滤或离心。过滤多用于高浓度硫酸铵溶液,因为此种情况下,硫酸铵密度较大,若用离心法需要较高离心速度和长时间的离心操作,耗时耗能。离心多用于低浓度硫酸铵溶液。

第二节有机溶剂沉淀法

有机溶剂的沉淀机理是降低水的介电常数,导致具有表面水层的生物大分子脱水,相

互聚集,最后析出。该法优点在于:1)分辨能力比盐析法高,即蛋白质或其它溶剂只在一个比较窄的有机溶剂浓度下沉淀;2)沉淀不用脱盐,过滤较为容易;3)在生化制备中应用比盐析法广泛。其缺点是对具有生物活性的大分子容易引起变性失活,操作要求在低温下进行。总体来说,蛋白质和酶的有机溶剂沉淀法不如盐析法普遍。

有机溶剂的选择首先是能和水混溶,使用较多的有机溶剂是乙醇、甲醇、丙酮,还有二甲基甲酰胺、二甲基亚砜、乙腈和2-甲基-2,4戊二醇等。

有多种因素影响有机溶剂的沉淀效果:1)温度低温可保持生物大分子活性,同时降低其溶解度,提高提取效率;2)样品浓度和PH 与盐析法中的作用基本相同;3)金属离子一些多价阳离子如Zn2++和Ca2+在一定PH下能与呈阴离子状态的蛋白质形成复合物,这种复合物在水中或有机溶剂中的溶解度都大大下降,而且不影响蛋白质的生物活性。4)离子强度盐浓度太大或太低都对分离有不利影响,对蛋白质和多糖而言盐浓度不超过5%比较合适,使用的乙醇量不超过二倍体积为宜。

第三节其他沉淀法

一.等电点沉淀法

两性电解质分子上的净电荷为零时溶解度最低,不同的两性电解质具有不同的等电点,以此为基础可进行分离。如工业上生产胰岛素时,在粗提液中先调去除碱性蛋白质,再调去除酸性蛋白质。

利用等电点除杂蛋白时必须了解制备物对酸碱的稳定性,不然盲目使用十分危险。不少蛋白质与金属离子结合后,等电点会发生偏移,故溶液中含有金属离子时,必须注意调整PH值。等电点法常与盐析法、有机溶剂沉淀法或其他沉淀方法联合使用,以提高其沉淀能力。

二.生成盐复合物沉淀法

1.金属复合盐法

许多有机物质包括蛋白在内,在碱性溶液中带负电荷,能与金属离子形成沉淀。根据有机物与它们之间的作用机制,可分为羧酸、胺及杂环等含氮化合物类,如铜锌镉;亲羧酸疏含氮化合物类,如概镁铅;亲硫氢基化合物类,如汞银铅。蛋白质-金属离子复合物的重要性质是它们的溶解度对溶液的介电常数非常敏感,调整水溶液的介电常数(如加入有机溶剂),即可沉淀多种蛋白。

2.有机盐法

含氮有机酸如苦味酸、苦酮酸、鞣酸等能与有机分子的碱性功能团形成复合物而沉淀析出。但此法常发生不可逆的沉淀反应,故用于制备蛋白质时,需采用较温和的条件,有时还需加入一定的稳定剂。

3.无机复合盐法

如磷钨酸盐、磷钼酸盐等。

以上盐类复合物都具有很低的溶解度,极易沉淀析出。若沉淀为金属复合盐,可通以H2S使金属变成硫化物而除去,若为有机酸盐或磷钨酸盐,则加入无机酸并用乙醚萃取,把有机酸和磷钨酸等移入乙醚中除去,或用离子交换法除去。值得注意的是此类方法常使蛋白质发生不可逆沉淀,应用时必须谨慎。

三.选择性变性沉淀

其原理是利用蛋白质、酶和核酸等生物大分子对某些物理或化学因素敏感性不同,有选择地使之变性沉淀,以达到分离提纯的目的。

此方法可分为:1)利用表面活性剂(三氯乙酸)或有机溶剂引起变性;2)利用对热的不稳定性,加热破坏某些组分,而保存另一些组分;3)酸碱变性。

四.非离子多聚物沉淀法

非离子多聚物是六十年代发展起来的一类重要沉淀剂,最早用于提纯免疫球蛋白、沉淀一些细菌和病毒,近年来逐渐广泛应用于核酸和酶的分离提纯。这类非离子多聚物包括不同分子量的聚乙二醇、NPEO、葡聚糖、右旋糖酐硫酸钠等,其中应用最多的是聚乙二醇。

用非离子多聚物沉淀生物大分子和微粒,一般有两种方法:1)选用两种水溶性非离子多聚物组成液液两相体系,不等量分配,而造成分离。此方法基于不同生物分子表面结构不同,有不同分配系数。并外加离子强度、PH值和温度等影响,从而扩大分离效果。2)选用一种水溶性非离子多聚物,使生物大分子在同一液相中,由于被排斥相互凝聚而沉淀析出。该方法操作时先离心除去大悬浮颗粒,调整溶液PH值和温度至适度,然后加入中性盐和多聚物至一定浓度,冷贮一段时间,即形成沉淀。

非离子多聚物沉淀法的应用,主要在细菌和病毒、核酸和蛋白质三个方面。如可以葡聚糖和聚乙二醇为两相系统分离单链DNA、双链DNA和多种RNA制剂;在20世纪六十年代,聚乙二醇开始用于蛋白质纯化,其分子量多在2000-6000之间变化,多数认为PEG6000沉淀蛋白较好

沉淀蛋白质的常用方法

沉淀蛋白质的常用方法(TCA、乙醇、丙酮沉淀蛋白操作步骤) TCA-DOC For precipitation of very low protein concentration 1) To one volume of protein solution, add 1/100 vol. of 2% DOC (Na deoxycholate, detergent). 2) Vortex and let sit for 30min at 4oC. 3) Add 1/10 of Trichloroacetic acid (TCA) 100% vortex and let sit ON at 4oC (preparation of 100% TCA: 454ml H2O/kg TCA. Maintain in dark bottleat careful, use gloves!!!). 4) Spin 15min 4oC in microfuge at maximum speed (15000g). Carefully discharge supernatant and retain the pellet: dry tube by inversion on tissue paper (pellet may be difficult to see). [OPTION: Wash pellet twice with one volume of cold acetone (acetone keep at –20oC). Vortex and repellet samples 5min at full speed between washes]. 5) Dry samples under vaccum (speed vac) or dry air. For PAGE-SDS, resuspend samples in a minimal volume of sample buffer. (The presence of some TCA can give a yellow colour as a consequence of the acidification of the sample buffer ; titrate with 1N NaOH or 1M TrisHCl to obtain the normal blue sample buffer colour.) Normal TCA To eliminate TCA soluble interferences and protein concentration 1) To a sample of protein solution add Trichloroacetic acid (TCA) 100% to get 13% final concentration. Mix and keep 5min –20oC and then 15min 4oC; or longer time at 4oC without the –20oC step for lower protein concentration. Suggestion: leave ON if the protein concentration is very low. (preparation of 100% TCA: 454ml H2O/kg TCA. Maintain in dark bottleat careful, use gloves!!!). 2) Spin 15min 4oC in microfuge at maximum speed (15000g). Carefully discharge supernatant and retain the pellet: dry tube by inversion on tissue paper (pellet may be difficult to see). 3) For PAGE-SDS, resuspend samples in a minimal volume of sample buffer. (The presence of some TCA can give a yellow colour as a consequence of

沉淀蛋白质的常用方法

沉淀蛋白质的常用方法(TCA、乙醇、丙 酮沉淀蛋白操作步骤) TCA-DOC For precipitation of very low protein concentration 1) To one volume of protein solution, add 1/100 vol. of 2% DOC (Na deoxycholate, detergent). 2) Vortex and let sit for 30min at 4oC. 3) Add 1/10 of Trichloroacetic acid (TCA) 100% vortex and let sit ON at 4oC (preparation of 100% TCA: 454ml H2O/kg TCA. Maintain in dark bottleat careful, use gloves!!!). 4) Spin 15min 4oC in microfuge at maximum speed (15000g). Carefully discharge supernatant and retain the pellet:

dry tube by inversion on tissue paper (pellet may be difficult to see). [OPTION: Wash pellet twice with one volume of cold acetone (acetone keep at –20oC). Vortex and repellet samples 5min at full speed between washes]. 5) Dry samples under vaccum (speed vac) or dry air. For PAGE-SDS, resuspend samples in a minimal volume of sample buffer. (The presence of some TCA can give a yellow colour as a consequence of the acidification of the sample buffer ; titrate with 1N NaOH or 1M TrisHCl to obtain the normal blue sample buffer colour.) Normal TCA To eliminate TCA soluble interferences and protein concentration

盐析法

盐析法综述 摘要:沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。盐析法是其中的一种,盐析法是在中药水提液中,加入无机盐至一定浓度,或达饱和状态,可使某些成分在水中溶解度降低,从而与水溶性大的杂质分离。常作盐析的无机盐有氯化钠、硫酸钠、硫酸镁、硫酸铵等。 关键词:沉淀法;盐析;原理;方法评价;蛋白质盐析 沉淀法 沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。 有机溶剂沉淀法多用于生物小分子、多糖及核酸产品的分离纯化,有时也用于蛋白质沉淀。有机溶剂的沉淀机理是降低水的介电常数,导致具有表面水层的生物大分子脱水,相互聚集,最后析出。等电点沉淀法用于氨基酸、蛋白质及其它两性物质的沉淀。但此法单独应用较少,多与其它方法结合使用。两性电解质分子上的净电荷为零时溶解度最低,不同的两性电解质具有不同的等电点,以此为基础可进行分离。、非离子多聚体沉淀法用于分离生物大分子非离子多聚物是六十年代发展起来的一类重要沉淀剂,最早用于提纯免疫球蛋白、沉淀一些细菌和病毒,近年来逐渐广泛应用于核酸和酶的分离提纯。最常用的是铅盐法,可以用于除去杂质,也可用于沉淀有效成分。沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合液中加人适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。一般来说,所有固体溶质都可以在溶液中加入中性盐而沉淀析出,这一过程叫盐析。在生化制备中,许多物质都可以用盐析法进行沉淀分离,如蛋白质、多肽、多糖、核酸等,其中以蛋白质沉淀最为常见,特别是在粗提阶段。 对沉淀形式的要求 (1)沉淀的溶解度要小,以保证被测组分能沉淀完全。 (2)沉淀要纯净,不应带入沉淀剂和其他杂质。 (3)沉淀易于过滤和洗涤,以便于操作和提高沉淀的纯度。 (4)沉淀易于转化为称量形式。 盐析法 胶体的盐析 胶体的盐析是加盐而使胶粒的溶解度降低,形成沉底析出的

浓缩蛋白方法

1,透析袋浓缩法 利用透析袋浓缩蛋白质溶液是应用最广的一种。将要浓缩的蛋白溶液放入透析袋(无透析袋可用玻璃纸代替),结扎,把高分子(6 000-12 000)聚合物如聚乙二醇(碳蜡)、聚乙烯吡咯、烷酮等或蔗糖撒在透析袋外 即可。也可将吸水剂配成30%-40%浓度的溶液,将装有蛋白液的透析袋放入即可。吸水剂用过后,可放入 温箱中烘干或自然干燥后,仍可再用。 主要用于更换蛋白质的缓冲液,有透析袋即可,不需要特殊的仪器。 2,冷冻干燥浓缩法 这是浓缩蛋白质的一种较好的办法,它既使蛋白质不易变性,又保持蛋白质中固有的成分。它是在冰冻状态下直接升华去除水分。具体做法是将蛋白液在低温下冰冻,然后移置干燥器内(干燥器内装有干燥剂,如NaOH、CaCl2和硅胶等)。密闭,迅速抽空,并维持在抽空状态。数小时后即可获得含有蛋白的干燥粉末。干燥后的蛋白质保存方便,应用时可配成任意浓度使用。也可采用冻干机进行冷冻干燥。 在冷冻状态下让扬品种的液体升华 3,吹干浓缩法 将蛋白溶液装入透析袋内,放在电风扇下吹。此法简单,但速度慢,且温度不能过高,最好不要超过15℃。4,超滤膜浓缩法 此法是利用微孔纤维素膜通过高压将水分滤出,而蛋白质存留于膜上达到浓缩目的。有两种方法进行浓缩:一种是用醋酸纤维素膜装入高压过滤器内,在不断搅拌之下过滤;另一种是将蛋白液装入透析袋内置于真空干燥器的通风口上,负压抽气,而使袋内液体渗出。 主要针对小体积蛋白质溶液(几ml)此法更不易引起变性,不过得有浓缩器,不是哪个实验室都有的。 5,凝胶浓缩法 选用孔径较小的凝胶,如SephadexG25或G50,将凝胶直接加入蛋白溶液中。根据干胶的吸水量和蛋白液 需浓缩的倍数而称取所需的干胶量。放入冰箱内,凝胶粒子吸水后,通过离心除去。 6,浓缩胶浓缩法 浓缩胶是一种高分子网状结构的有机聚合物,具有很强的吸水性能。每克干胶可吸水120ml~150ml。它能 吸收低分子量的物质,如水、葡萄糖、蔗糖、无机盐等,适宜浓缩10 000分子量以上的生物大分子物质。 浓缩后,蛋白质的回收率可达80%~90%。比凝胶应用方便,直接加入被浓缩的溶液中即可。必须注意,浓 缩溶液的pH值应大于被浓缩物质的等电点,否则在浓缩胶表面产生阳离子交换,影响浓缩物质的回收率。 7,丙酮沉淀法: 试验要求的仪器简单,但是常常导致蛋白质变性。 8,免疫沉淀法: 通过免疫沉淀法,用蛋白质特异性能够定量能够分离目的蛋白。有三个步骤组成:首先将特异性抗体加入细胞提取物,第二步加入经化学固定的金黄色葡萄球菌,以确保形成大量沉淀。这些细菌通过蛋白质A和抗体形 成复合物,蛋白质A与免疫球蛋白的Fc部分有高度的亲和性。或者说,纯化的蛋白A结合Sephrarose树脂,为从细胞提取物中分离出抗原抗体复合物,提供一个固体基质。最后通过洗脱,除去尚未沉淀的杂质。 为了除去已破碎的或固定差的细胞,在用于免疫沉淀(作用)之前可以与纤细地金黄色葡萄球菌细胞,如果要用蛋白质ASephrarose树脂,参考厂家说明书。 9,硫酸铵沉淀法: 利用高浓度盐将蛋白质析出(盐析),选择硫酸按是因为:盐析有效性,pH范围广,溶解度高,溶液散热少,经济. 10, (低温)有机溶剂沉淀法: 强调低温(0-4度以下)是因为10度时蛋白会在有机溶剂中变性,可用乙醇,丙酮等。注意:Mg2+离子,pH值。 11,聚乙二醇(PEG)沉淀法: PEG是一个水溶性非离子多聚体,使用PEG时旨在个别情况下才会是蛋白质稍有变性!他溶解是散热低,形成沉淀的平衡时间短,通常达到30%时蛋白质就会达到最大量的沉淀。

盐析的操作方法

③盐析的操作方法:最常用的是固体硫酸铵加入法。欲从较大体积的粗提取液中沉淀蛋白质时,往往使用固体硫酸铵,加入之前要先将其研成细粉不能有块,要在搅拌下缓慢均匀少量多次地加入,尤其到接近计划饱和度时,加盐的速度更要慢一些,尽量避免局部硫酸铵浓度过大而造成不应有的蛋白质沉淀。盐析后要在冰浴中放置一段时间,待沉淀完全后再离心与过滤。在低浓度硫酸铵中盐析可采用离心分离,高浓度硫酸铵常用过滤方法,因为高浓度硫酸铵密度太大,要使蛋白质完全沉降下来需要较高的离心速度和 较长的离心时间。 各种饱和度需加入固体硫酸铵的量可由附录中查出。硫酸铵浓度的表示方法是以饱和溶液的百分数表示,称为百分饱和度,而不用实际的克数,这是由于当固体硫酸铵加到水溶液中去时,会出现相当大的非线性体积变化,计算浓度相当麻烦,为了克服这一困难,有人经过精心测量,确定出1L纯水提高到不同浓度所需加入硫酸铵的量,附录中的实验数据以饱和浓度的百分数表示,使用时十分方便。 ④盐析曲线的制作:如果要分离一种新的蛋白质和酶,没有文献数据可以借鉴,则应先确定沉淀该物质的硫酸铵饱和度。具体操作方法如下:取已定量测定蛋白质或酶的活性与浓度的待分离样品溶液,冷至0~5℃,调至该蛋白质稳定的pH值,分6~10次分别加入不同量的硫酸铵,第一次加硫酸铵至蛋白质溶液刚开始出现沉淀时,记下所加硫酸铵的量,这是盐析曲线的起点。继续加硫酸铵至溶液微微混浊时,静止一段时间,离心得到第一个沉淀级分,然后取上清再加至混浊,离心得到第二个级分,如此连续可得到6~10个级分,按照每次加入硫酸铵的量,查出相应的硫酸铵饱和度。将每一级分沉淀物分别溶解在一定体积的适宜的pH值缓冲液中,测定其蛋白质含量和酶活力。以每个级分的蛋白质含量和酶活力对硫酸铵饱和度作图,即可得到盐析曲线。 ⑤盐析的影响因素 (1)蛋白质的浓度:中性盐沉淀蛋白质时,溶液中蛋白质的实际浓度对分离的效果有较大的影响。通常高浓度的蛋白质用稍低的硫酸铵饱和度即可将其沉淀下来,但若蛋白质浓度过高,则易产生各种蛋白质的共沉淀作用,除杂蛋白的效果会明显下降。对低浓度的蛋白质,要使用更大的硫酸铵饱和度,但共沉淀作用小,分离纯化效果较好,但回收率会降低。通常认为比较适中的蛋白质浓度是2.5%~3.0%(质量分数),相当于25~30mg/ml。 (2)pH值对盐析的影响:蛋白质所带净电荷越多,它的溶解度就越大。改变pH值可改变蛋白质的带电性质,因而就改变了蛋白质的溶解度。远离等电点处溶解度大,在等电点处溶解度小,因此用中性盐沉淀蛋白质时,pH值常选在该蛋白质的等电点附近。

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

蛋白纯化的一般原则及方法选择

随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易lIl。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1 蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可 以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨常用的离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性指树脂与目的蛋白结合的特异性,柱效则是指蛋白的各成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2.各种蛋白纯化方法及优缺点 2.1蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸。在蛋白质的等电点处若溶液的离子强度特别高或特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白质最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保护蛋白的活性。硫酸铵分馏常用做纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG 和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果, 在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。

蛋白质沉淀浓缩方法原理及详细解析

蛋白质沉淀浓缩方法原理及详细解析 在生化制备中,沉淀主要用于浓缩目的,或用于除去留在液相或沉淀在固相中的非必要成分。在生化制备中常用的有以下几种沉淀方法和沉淀剂: 1.盐析法多用于各种蛋白质和酶的分离纯化。 2.有机溶剂沉淀法多用于生物小分子、多糖及核酸产品的分离纯化,有时也用于蛋白质沉淀。 3.等电点沉淀法用于氨基酸、蛋白质及其它两性物质的沉淀。但此法单独应用较少,多与其它方法结合使用。 4.非离子多聚体沉淀法用于分离生物大分子。 5.生成盐复合物沉淀用于多种化合物,特别是小分子物质的沉淀。 6.热变性及酸碱变性沉淀法用于选择性的除去某些不耐热及在一定PH值下易变性的杂蛋白。 第一节盐析法 一般来说,所有固体溶质都可以在溶液中加入中性盐而沉淀析出,这一过程叫盐析。在生化制备中,许多物质都可以用盐析法进行沉淀分离,如蛋白质、多肽、多糖、核酸等,其中以蛋白质沉淀最为常见,特别是在粗提阶段。 盐析法分为两类,第一类叫Ks分段盐析法,在一定PH和温度下通过改变离子强度实现,用于早期的粗提液;第二种叫Kb分段盐析法,在一定离子强度下通过改变PH和温度来实现,用于后期进一步分离纯化和结晶。 一.影响盐析的若干因素 1.蛋白质浓度 高浓度蛋白溶液可以节约盐的用量,但许多蛋白质的b 和Ks常数十分接近,若蛋白浓度过高,会发生严重的共沉淀作用;在低浓度蛋白质溶液中盐析,所用的盐量较多,而共沉淀作用比较少,因此需要在两者之间进行适当选择。用于分步分离提纯时,宁可选择稀一些的蛋白质溶液,多加一点中性盐,使共沉淀作用减至最低限度。一般认为%%的蛋白质浓度比较适中。 2.离子强度和类型

一般说来,离子强度越大,蛋白质的溶解度越低。在进行分离的时候,一般从低离子强度到高离子强度顺次进行。每一组分被盐析出来后,经过过滤或冷冻离心收集,再在溶液中逐渐提高中性盐的饱和度,使另一种蛋白质组分盐析出来。 离子种类对蛋白质溶解度也有一定影响,离子半径小而很高电荷的离子在盐析方面影响较强,离子半径大而低电荷的离子的影响较弱,下面为几种盐的盐析能力的排列次序:磷酸钾>硫酸钠>磷酸铵>柠檬酸钠>硫酸镁。 3.PH值 一般来说,蛋白质所带净电荷越多溶解度越大,净电荷越少溶解度越小,在等电点时蛋白质溶解度最小。为提高盐析效率,多将溶液PH值调到目的蛋白的等电点处。但必须注意在水中或稀盐液中的蛋白质等电点与高盐浓度下所测的结果是不同的,需根据实际情况调整溶液PH值,以达到最好的盐析效果。 4.温度 在低离子强度或纯水中,蛋白质溶解度在一定范围内随温度增加而增加。但在高浓度下,蛋白质、酶和多肽类物质的溶解度随温度上升而下降。在一般情况下,蛋白质对盐析温度无特殊要求,可在室温下进行,只有某些对温度比较敏感的酶要求在0-4℃进行。 二.硫酸铵的使用 硫酸铵中常含有少量的重金属离子,对蛋白质巯基有敏感作用,使用前必须用H2S处理:将硫酸铵配成浓溶液,通入H2S饱和,放置过夜,用滤纸除去重金属离子,浓缩结晶,100℃烘干后使用。另外,高浓度的硫酸铵溶液一般呈酸性(PH=左右),使用前也需要用氨水或硫酸调节至所需PH。 硫酸铵的加入有以下几种方法:1)加入固体盐法用于要求饱和度较高而不增大溶液体积的情况;2)加入饱和溶液法用于要求饱和度不高而原来溶液体积不大的情况;3)透析平衡法先将盐析的样品装于透析袋中,然后浸入饱和硫酸铵中进行透析,透析袋内硫酸铵饱和度逐渐提高,达到设定浓度后,目的蛋白析出,停止透析。该法优点在于硫酸铵浓度变化有连续性,盐析效果好,但手续烦琐,需不断测量饱和度,故多用于结晶,其它情况少见。 使用固体硫酸铵时:1)必须注意饱和度表中规定的温度,一般有0℃或室温两种,加入固体盐后体积的变化已考虑在表中;2)分段盐析中,应考虑每次分段后蛋白质浓度的变化。一种蛋白质如经二次透析,一般来说,第一次盐析分离范围(饱和度范围)比较宽,第二次分离范围较窄。3)盐析后一般放置半小时至一小时,待沉淀完全后才过滤或离心。过滤多用于高浓度硫酸铵溶液,因为此种情况下,硫酸铵密度较大,若用离心法需要较高离心速度和长时间的离心操作,耗时耗能。离心多用于低浓度硫酸铵溶液。 第二节有机溶剂沉淀法 有机溶剂的沉淀机理是降低水的介电常数,导致具有表面水层的生物大分子脱水,相

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

盐析法沉淀蛋白质的原理

盐析法沉淀蛋白质的原理 1 中性盐沉淀(盐析法) 在溶液中加入中性盐使生物大分子沉淀析出的过程称为“盐析”。除了蛋白质和酶以外,多肽、多糖和核酸等都可以用盐析法进行沉淀分离。 盐析法应用最广的还是在蛋白质领域,已有八十多年的历史,其突出的优点是: ①成本低,不需要特别昂贵的设备。 ②操作简单、安全。 ③对许多生物活性物质具有稳定作用。 ⑴中性盐沉淀蛋白质的基本原理 蛋白质和酶均易溶于水,因为该分子的-COOH、-NH2和-OH都是亲水基团,这些基团与极性水分子相互作用形成水化层,包围于蛋白质分子周围形成1nm~100nm颗粒的亲水胶体,削弱了蛋白质分子之间的作用力,蛋白质分子表面极性基团越多,水化层越厚,蛋白质分子与溶剂分子之间的亲和力越大,因而溶解度也越大。亲水胶体在水中的稳定因素有两个:即电荷和水膜。因为中性盐的亲水性大于蛋白质和酶分子的亲水性,所以加入大量中性盐后,夺走了水分子,破坏了水膜,暴露出疏水区域,同时又中和了电荷,破坏了亲水胶体,蛋白质分子即形成沉淀。

⑵中性盐的选择 常用的中性盐中最重要的是(NH4)2SO4,因为它与其他常用盐类相比有十分突出的优点: 1) 溶解度大:尤其是在低温时仍有相当高的溶解度,这是其他盐类所不具备的。由于酶和各种蛋白质通常是在低温下稳定,因而盐析操作也要求在低温下(0~4℃)进行。 2) 分离效果好:有的提取液加入适量硫酸铵 盐析,一步就可以除去75%的杂蛋白,纯 度提高了四倍。 3) 不易引起变性,有稳定酶与蛋白质结构的 作用。有的酶或蛋白质用2~3mol/L浓度的 (NH4)2SO4保存可达数年之久。 4) 价格便宜,废液不污染环境。 ⑶盐析的操作方法 最常用的是固体硫酸铵加入法。将其研成细粉,在搅拌下缓慢均匀少量多次地加入,接近计划饱和度时,加盐的速度更要慢一些,尽量避免局部硫酸铵浓度过大而造成不应有的蛋白质沉淀。盐析后要在冰浴中放置一段时间,待沉淀完全后再离心与过滤。 在低浓度硫酸铵中盐析可采用离心分离,高浓度硫酸铵常用过滤方法。

蛋白质沉淀浓缩方法原理及详细解析之令狐文艳创作

蛋白质沉淀浓缩方法原理及详细解析 令狐文艳 在生化制备中,沉淀主要用于浓缩目的,或用于除去留在液相或沉淀在固相中的非必要成分。在生化制备中常用的有以下几种沉淀方法和沉淀剂: 1.盐析法多用于各种蛋白质和酶的分离纯化。 2.有机溶剂沉淀法多用于生物小分子、多糖及核酸产品的分离纯化,有时也用于蛋白质沉淀。 3.等电点沉淀法用于氨基酸、蛋白质及其它两性物质的沉淀。但此法单独应用较少,多与其它方法结合使用。 4.非离子多聚体沉淀法用于分离生物大分子。 5.生成盐复合物沉淀用于多种化合物,特别是小分子物质的沉淀。 6.热变性及酸碱变性沉淀法用于选择性的除去某些不耐热及在一定PH值下易变性的杂蛋白。 第一节盐析法 一般来说,所有固体溶质都可以在溶液中加入中性盐而沉淀析出,这一过程叫盐析。在生化制备中,许多物质都可以用盐析法进行沉淀分离,如蛋白质、多肽、多糖、核酸等,其中以蛋白质沉淀最为常见,特别是在粗提阶段。 盐析法分为两类,第一类叫Ks分段盐析法,在一定PH和温度下通过改变离子强度实现,用于早期的粗提液;第二种叫Kb分段盐析法,在一定离子强度下通过改变PH和温度来实现,用于后期进一步分离纯化和结晶。 一.影响盐析的若干因素 1.蛋白质浓度 高浓度蛋白溶液可以节约盐的用量,但许多蛋白质的b 和Ks常数十分接近,若蛋白浓度过高,会发生严重的共沉淀作用;在低浓度蛋白质溶液中盐析,所用的盐量较多,而共沉淀作用比较少,因此需要在两者之间进行适当选择。用于分步分离提纯时,宁可选择稀一些的蛋白质溶液,多加一点中性盐,使共沉淀作用减至最低限度。一般认为2.5%-3.0%的蛋白质浓度比较适中。 2.离子强度和类型 一般说来,离子强度越大,蛋白质的溶解度越低。在进行分离的时候,一般从低离子强度到高离子强度顺次进行。每一组分被盐析出来后,经过过滤或冷冻离心收集,再在溶液中逐渐提高中性盐的饱和度,使另一种蛋白质组分盐析出来。

实验---蛋白质的沉淀反应与颜色反应

实验蛋白质的沉淀反应与颜色反应 一、实验目的 掌握鉴定蛋白质的原理和方法。熟悉蛋白质的沉淀反应,进一步熟悉蛋白质的有关反应。 二、实验原理 蛋白质分子中某种或某些集团可与显色剂作用,产生颜色。不同的蛋白质由于所含的氨基酸不完全相同,颜色反应亦不完全相同。颜色反应不是蛋白质的专一反应,一些非蛋白物质也可产生同样的颜色反应,因此不能根据颜色反应的结果来决定被测物是否为蛋白质。另外,颜色反应也可作为一些常用蛋白质定量测定的依据。蛋白质是亲水性胶体,在溶液中的稳定性与质点大小、电荷、水化作用有关,但其稳定性是有条件的,相对的。如果条件发生了变化,破坏了蛋白质的稳定性,蛋白质就会从溶液中沉淀出来。 三、实验仪器 1、吸管 2、滴管 3、试管 4、电炉 5、pH试纸 6、水浴锅 7、移液管 四、实验试剂 1、卵清蛋白液:鸡蛋清用蒸馏水稀释10-20倍,3-4层纱布过滤,滤液放在冰箱里冷藏备用。 2、0.5%苯酚:1g苯酚加蒸馏水稀释至200ml。

3、Millon’s试剂:40g汞溶于60ml浓硝酸(水浴加温助溶)溶解后,冷却,加二倍体积的蒸馏水,混匀,取上清夜备用。此试剂可长期保存。 4、尿素晶体 5、1%CuSO 4:1g CuSO 4 晶体溶于蒸馏水,稀释至100ml 6、10%NaOH:10g NaOH溶于蒸馏水,稀释至100ml 7、浓硝酸 8、0.1%茚三酮溶液:0.1g茚三酮溶于95%的乙醇并稀释至100ml. 9、冰醋酸 10、浓硫酸 11、饱和硫酸铵溶液:100ml蒸馏水中加硫酸铵至饱和。 12、硫酸铵晶体:用研钵研成碎末。 13、95%乙醇。 14、醋酸铅溶液:1g醋酸铅溶于蒸馏水并稀释至100ml 15、氯化钠晶体 16、10%三氯乙酸溶液:10g三氯乙酸溶于蒸馏水中并稀释至100ml 17、饱和苦味酸溶液:100ml蒸馏水中加苦味酸至饱和。 18、1%醋酸溶液。 五、实验步骤 蛋白质的颜色反应 (一)米伦(Millon’s)反应

蛋白纯化硫酸铵沉淀盐析法

蛋白纯化硫酸铵沉淀盐析 还能想起那些在荧屏中曾经震撼过我们,具有超能力的英雄么? 蜘蛛侠,敏捷,灵活迅速飞流直下,忽闪直冲高楼; 绿巨人浩克,力量,速度,耐力,在我们的想象力中膨胀; 还有,我们随身携带星形盾牌,品格高尚的美国队长…… 幻想里中的人物形象存在我们的记忆力,然而生物背景出身的我们,总归要锻炼出属于自己的实验技能,即便是相同的实验步骤,每个人做出来的结果也不尽相同,差别在哪?反复练习,用心总结出属于自己的心得,转化为自己的实验“超能力”吧。本文总结了蛋白纯化硫酸铵沉淀详细的实验原理、步骤,供大家参考。 -------锻炼属于我们自己的实验“超能力”之一 我是超级蜘蛛精 看我有劲儿不? 冲啊,我是美国队长 而我是一只冷静的科研小蜗牛 这次,我们所要分享的便是一种很常见,但是也很重要的蛋白质纯化方法:硫酸铵沉淀蛋白法,一起走进实验室吧。 硫酸铵沉淀法是粗分离蛋白时常用的纯化和浓缩蛋白的技术。蛋白质的溶解度和盐浓度密切相关,在低浓度的条件下,随着盐浓度的增加,蛋白质的溶解度

增加;但在高浓度的盐溶液里,盐离子竞争性的

结合蛋白表面的水分子,破坏蛋白表面的水化膜,溶解度降低,蛋白质在疏水作用下聚集形成沉淀。每种蛋白质的溶解度不同,因此可以用不同浓度的盐溶液来沉淀不同的蛋白质。硫酸铵的溶解度大,解离形成大量的NH4+、SO42-离子,会结合大量的水分子,使蛋白质的溶解度下降,另外,其温度系数小,不易使蛋白质变性,因此,蛋白质粗分离时硫酸铵沉淀法是很重要的一种技术,后续可采用层析技术进一步纯化蛋白,效率更高。硫酸铵沉淀法是常用的分离免疫球蛋白的方法。 各种不同蛋白质盐析需要不同浓度的硫酸铵溶液。在实验中建议配置不同梯度浓度的硫酸铵溶液来确定蛋白质沉淀所需的最佳浓度。 (1)参照如下表格配置不同浓度的硫酸铵溶液; 例如,在25 ℃条件下,配置饱和度为100 %的硫酸铵溶液,称取767 g的硫酸铵固体,边搅拌边加入到1 L的蒸馏水中,完全溶解后,用氨水或者硫酸调节pH 到7.0。 (2)沉淀蛋白 将样品离心,去除沉淀,保留上清液并测量体积;一边搅拌一边慢慢的加入硫酸

蛋白质提取常用试剂及操作方法

蛋白质提取常用试剂及操作方法 一、原料选择和前处理 (一)原料的选择 早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。但至目前经常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料,因而对提取要求更复杂一些。原料的选择主要依据实验目的定。从工业生产角度考虑,注意选含量高、来源丰富及成本低的原料。尽量要新鲜原料。但有时这几方面不同时具备。含量丰富但来源困难,或含量来源均理想,但分离纯化操作繁琐,反而不如含量略低些易于获得纯品者。一般要注意种属的关系,如鲣的心肌细胞色素C 较马的易结晶,马的血红蛋白较牛的易结晶。要事前调查制备的难易情况。若利用蛋白质的活性,对原料的种属应几乎无影响。如利用胰蛋白酶水解蛋白质的活性,用猪或牛胰脏均可。但若研究蛋白质自身的性质及结构时,原料的来源种属必须一定。研究由于病态引起的特殊蛋白质(本斯.琼斯氏蛋白、贫血血红蛋白)时,不但使用种属一定的原料,而且要取自同一个体的原料。可能时尽量用全年均可采到的原料。对动物生理状态间的差异(如饥饿时脂肪和糖类相对减少),采收期及产地等因素也要注意。 (二)前处理 1.细胞的破碎 材料选定通常要进行处理。要剔除结缔组织及脂肪组织。如不能立即进行实验,则应冷冻保存。除了提取及胞细外成分,对细胞内及多细胞生物组织中的蛋白质的分离提取均须先将细胞破碎,使其充分释放到溶液中。不同生物体或同一生物体不同的组织,其细胞破坏难易不一,使用方法也不完全相同。如动物胰、肝、脑组织一般较柔软,作普通匀浆器磨研即可,肌肉及心组织较韧,需预先绞碎再制成匀桨。 ⑴机械方法 主要通过机械切力的作用使组织细胞破坏。常用器械有:①高速组织捣碎机(转速可达10000rpm,具高速转动的锋利的刀片),宜用于动物内脏组织的破碎;②玻璃匀浆器(用两个磨砂面相互摩擦,将细胞磨碎),适用于少量材料,也可用不锈钢或硬质塑料等,两面间隔只有十分之几毫米,对细胞破碎程度较高速捣碎机高,机械切力对分子破坏较小。小量的也可用乳钵与适当的缓冲剂磨碎提取,也可加氧化铝、石英砂及玻璃粉磨细。但在磨细时局部往往生热导致变性或pH 显著变化,尤其用玻璃粉和氧化铝时。磨细剂的吸附也可导致损失。 ⑵物理方法 主要通过各种物理因素的作用,使组织细胞破碎的方法。 Ⅰ.反复冻融法 于冷藏库或干冰反复于零下15~20℃使之冻固,然后缓慢地融解,如此反复操作,使大部分细胞及细胞内颗粒破坏。由于渗透压的变化,使结合水冻结产生组织的变性,冰片将细胞膜破碎,使蛋白质可溶化,成为粘稠的浓溶液,但脂蛋白冻结变性。 Ⅱ.冷热变替法 将材料投入沸水中,于90℃左右维持数分钟,立即置于冰浴中使之迅速冷却,绝大部分细胞被破坏。 Ⅲ.超声波法 暴露于9~10 千周声波或10~500 千周超声波所产生的机械振动,只要有设备该法方便且效果也好,但一次处理量较小。应用超声波处理时应注意避免溶液中气泡的存在。处理一些

有机溶剂蛋白质沉淀

蛋白质纯化方法 蛋白质浓缩有多种方法,有盐析,超滤,离子交换,有机溶剂沉淀等方法。 有机溶剂沉淀法:有机溶剂能降低溶液的电解常数,从而增加蛋白质分子上不同电荷的引力,导致溶解度的降低;另外,有机溶剂与水的作用,能破坏蛋白质的水化膜,故蛋白质在一定浓度的有机溶剂中的溶解度差异而分离的方法,称“有机溶剂分段沉淀法”,它常用于蛋白质或酶的提纯。使用的有机溶剂多为乙醇和丙酮。高浓度有机溶剂易引起蛋白质变性失活,操作必须在低温下进行,并在加入有机溶剂时注意搅拌均匀以避免局部浓度过大。由此法析出的沉淀一般比盐析容易过滤或离心沉降,分离后的蛋白质沉淀,应立即用水或缓冲液溶解,以降低有机溶剂浓度。操作时的pH值大多数控制在待沉淀蛋白质的等电点附近,有机溶剂在中性盐存在时能增加蛋白质的溶解度,减少变性,提高分离的效果,在有机溶剂中添加中性盐的浓度为0.05mol/L左右,中性盐过多不仅耗费有机溶剂,可能导致沉淀不好。沉淀的条件一经确定,就必须严格控制,才能得到可重复的结果。医学教育`网搜集整理有机溶剂浓度通常以有机溶剂和水容积比或用百分浓度表示。有机溶剂沉淀蛋白质分辨力比盐析法好,溶剂易除去;缺点是易使酶和具有活性的蛋白质变性。故操作时要求条件比盐析严格。对于某些敏感的酶和蛋白质,使用有机溶剂沉淀尤其要小心。 可与水混合的有机溶剂,如酒精、甲醇、丙酮等,对水的亲和力很大,能破坏蛋白质颗粒的水化膜,在等电点时使蛋白质沉淀。在常温下,有机溶剂沉淀蛋白质往往引起变性。例如酒精消毒灭菌就是如此,但若在低温条件下,则变性进行较缓慢,可用于分离制备各种血浆蛋白质。

蛋白质浓缩技术是免疫学中常用的手段,现介绍几种常用的浓缩技术。 (一)透析袋浓缩法 利用透析袋浓缩蛋白质溶液是应用最广的一种。将要浓缩的蛋白溶液放入透析袋(无透析袋可用玻璃纸代替),结扎,把高分子(6 000-12 000)聚合物如聚乙二醇(碳蜡)、聚乙烯吡咯、烷酮等或蔗糖撒在透析袋外即可。也可将吸水剂配成30%-40%浓度的溶液,将装有蛋白液的透析袋放入即可。吸水剂用过后,可放入温箱中烘干或自然干燥后,仍可再用。 (二)冷冻干燥浓缩法 这是浓缩蛋白质的一种较好的办法,它既使蛋白质不易变性,又保持蛋白质中固有的成分。它是在冰冻状态下直接升华去除水分。具体做法是将蛋白液在低温下冰冻,然后移置干燥器内(干燥器内装有干燥剂,如NaOH、CaCl2和硅胶等)。密闭,迅速抽空,并维持在抽空状态。数小时后即可获得含有蛋白的干燥粉末。干燥后的蛋白质保存方便,应用时可配成任意浓度使用。也可采用冻干机进行冷冻干燥。 (三)吹干浓缩法 将蛋白溶液装入透析袋内,放在电风扇下吹。此法简单,但速度慢,且温度不能过高,最好不要超过15℃。 (四)超滤膜浓缩法 此法是利用微孔纤维素膜通过高压将水分滤出,而蛋白质存留于膜上达到浓缩目的。有两种方法进行浓缩:一种是用醋酸纤维素膜装入高压过滤器内,在不断搅拌之下过滤;另一种是将蛋白液装入透析袋内置于真空干燥器的通风口上,负压抽气,而使袋内液体渗出。 (五)凝胶浓缩法 选用孔径较小的凝胶,如SephadexG25或G50,将凝胶直接加入蛋白溶液中。根据干胶的吸水量和蛋白液需浓缩的倍数而称取所需的干胶量。放入冰箱内,凝胶粒子吸水后,通过离心除去。 (六)浓缩胶浓缩法 浓缩胶是一种高分子网状结构的有机聚合物,具有很强的吸水性能。每克干胶可吸水120ml~150ml。它能吸收低分子量的物质,如水、葡萄糖、蔗糖、无机盐等,适宜浓缩10 000分子量以上的生物大分子物质。浓缩后,蛋白质的回收率可达80%~90%。比浓缩胶应用方便,直接加入被浓缩的溶液中即可。必须注意,浓缩溶液的pH值应大于被浓缩物质的等电点,否则在浓缩胶表面产生阳离子交换,影响浓缩物质的回收率。 选择材料及预处理 以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。

相关文档
最新文档