安徽省江南十校2021届高三下学期3月一模联考理科数学试题含答案

合集下载

安徽省“江南十校”高三3月联考(图片)——数学理(数学

安徽省“江南十校”高三3月联考(图片)——数学理(数学

参考答案1.B2.C {}⎭⎬⎫⎩⎨⎧<≥=⎭⎬⎫⎩⎨⎧≥-=--=023|0232|,2,1,0,1,2x x x x x x B A 或3.C 2173023),5,1(),3,1(2±=⇒=----=-++=+m m m m m m 由条件:4.A 25211tan tan tan cos sin cos sin sin )cos (sin sin 22222=+-=+-=-ααααααααααα5.D6.A ,,7.A 设a E d a D d a C d a B d a A =-=-=-=-=,,2,3,4则2333725105=⇒⎩⎨⎧-=-=-a d a d a d a8.C 9.D 125,124,1235:4:3::πππ===⇒=C B A C B A由正弦定理知,10.B 11.D 229429,4293==--V V OAB S ABC O ,故的正四面体其体积为为棱长为由条件:12.C 作出图像,由数形结合可知:C 满足题意13. 5 由条件可知:5,5)3,1(,22max =-=-+-=z z M y x z 故时过点14.-7 72)1(,132)1(115333135-=⋅-+=⇒=+⇒==C C C x a a y x 的系数为故15.133 不妨设点P 在右支上,由条件可知P 点到右焦点距离为9,解出133********=+⇒=⇒=y x y x p p16. 对称关于点个单位右)0,3()22cos(2πm x y x cox y m --=−−−→−-=⎪⎭⎫⎝⎛--0000,32)0,3(),(y x Q y x P ππ对称点为为其上任意一点,关于设,⎪⎩⎪⎨⎧-==⇒⎪⎪⎩⎪⎪⎨⎧-==-=-1222432cos 42sin ),234sin(200πππn m k k m km x k y 展开可得:17.证明:原式转化为:12()4n n n S S S n ---=-,即,所以122[(1)2]n n S n S n --+=--+注意到,所以为首项为4,公比为2等比数列. ……6分(2)由(1)知:,所以,于是231(222)(12)2+++n n T n n +=++++-4(12)(1)2122n n n n -+=+-- 。

2021年高三3月月考(一模)数学(理)试题 含答案

2021年高三3月月考(一模)数学(理)试题 含答案

2021年高三3月月考(一模)数学(理)试题含答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.若复数则=()A.3 B.2 C. D.2.已知集合,集合B为函数的定义域,且A∪B=R,那么m的值可以是()A.﹣1 B.0C.1D.23.设向量与满足:在方向上的投影为,与垂直,则()A. B. C. D.4.设中变量x,y满足条件,则z的最小值为()A.2B.4C.8D.165.已知不重合的直线m、l和平面,,,则是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件6.已知对任意的实数,直线都不与曲线相切.则实数的取值范围为( )A. B. C. D.7.某三棱锥的三视图如图所示,其中左视图中虚线平分底边,则该三棱锥的所有面中最大面的面积是( )否是输入m 输出S 结束 S =0,i =1 S =S +ii =i +2 i<m 开始A .2B .C .2D . 8.阅读如图所示的程序框图,若输入m=xx ,则输出等于() A .10072 B.10082 C .10092 D .xx 29.函数y=sin φ取最小正值时所得偶函数为,则函数的部分图象可以为( )10.设、是双曲线:(,)的两个焦点,是上一点,若,且△最小内角的大小为,抛物线:的准线交双曲线所得的弦长为4,则双曲线的实轴长为( )A .6B .2C .D .11.已知函数f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0.若函数只有一个零点,则实数a 的取值范围是( )A. B. C. D.左(侧)视图12.已知是定义在上的函数的导函数,且满足,则不等式的解集为( ) A. B. C. D.第Ⅱ卷(13-21为必做题,22-24为选做题)二、填空题(本大题共4个小题,每小题5分,共20分。

安徽省江淮十校2021届高三第一次联考数学试题理 含答案

安徽省江淮十校2021届高三第一次联考数学试题理 含答案

安徽省江淮十校2021届高三第一次联考数学试题 理注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1.设复数z 满足3zi i =-+,则虛部是( ) A .3iB .3i -C .3D .-32.已知函数()f x 是定义在R 上的偶函数,且在[0,)+∞上单调递增,则三个数()3log 13a f =-,2π2cos 5b f ⎛⎫= ⎪⎝⎭,()0.62c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .c a b >>3.若实数x ,y 满足约束条件101010x y x y x -+≥⎧⎪++≤⎨⎪-≤⎩,则2z x y =+( )A .既有最大值也有最小值B .有最大值,但无最小值C .有最小值,但无最大值D .既无最大值也无最小值4.已知函数37()e e x xx f x -=+在[-6,6]的图像大致为( )A .B .C .D .5.现学校想了解同学们对假期学习方式的满意程度,收集如图1所示的数据;教务处通过分层抽样的方法抽取4%的同学进行满意度调查,得到的数据如图2.下列说法错误的是( )A .样本容量为240B .若50m =,则本次自主学习学生的满意度不低于四成C .总体中对方式二满意的学生约为300人D .样本中对方式一满意的学生为24人6.已知某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( )A .9π782-B .9π784-C .78π-D .9π452-7.若6(1)2x x x ⎛+ ⎝展开式中的常数项是60,则实数a 的值为( )A .±3B .±2C .3D .28.已知三个不同的平面α、β、γ,两条不同的直线m 、n ,则下列结论正确的是( ) A .αβ⊥,//m α,n β⊥是m n ⊥的充分条件 B .γ与α,β所成的锐二面角相等是//αβ的充要条件 C .αβ⊥,m α⊥,n β⊥是m n ⊥的充分条件D .α内距离为d 的两条平行线在β内的射影仍是距离为d 的两条平行线是//αβ的充要条件9.在我国南宋数学家杨辉所著的《详解九章算法》一书中,用如图所示的三角形(杨辉三角)解释了二项和的乘方规律。

2021年高三3月统一测试(一模)数学(理)试题 含解析

2021年高三3月统一测试(一模)数学(理)试题 含解析

2021年高三3月统一测试(一模)数学(理)试题含解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|x≥0},且A∩B=B,则集合B可能是() A. {1,2} B.{x|x≤1} C. {﹣1,0,1} D. R【考点】:交集及其运算.【专题】:计算题;集合.【分析】:由集合A={x|x≥0},且A∩B=B,得B⊆A,由此能求出结果.【解析】:解:∵集合A={x|x≥0},且A∩B=B,∴B⊆A,观察备选答案中的4个选项,只有{1,2}⊆A.故选:A.【点评】:本题考查交集性质的应用,是基础题,解题时要认真审题.2.(5分)在极坐标系中,圆ρ=2被直线ρsinθ=1截得的弦长为()A.B. 2 C. 2 D. 3【考点】:简单曲线的极坐标方程.【专题】:坐标系和参数方程.【分析】:首先把极坐标方程转化成直角坐标方程,进一步利用圆心到直线的距离求出弦心距,最后利用勾股定理求出弦长.【解析】:解:圆ρ=2的极坐标方程转化成直角坐标方程为:x2+y2=4.直线ρsinθ=1转化成直角坐标方程为:y=1.所以:圆心到直线y=1的距离为1.则:弦长l==.故选:C.【点评】:本题考查的知识要点:极坐标方程与直角坐标方程的互化,点到直线的距离及勾股定理的应用.3.(5分)执行如图的程序框图,若输出的S=48,则输入k的值可以为()A. 4 B. 6 C.8 D.10【考点】:程序框图.【专题】:算法和程序框图.【分析】:模拟执行程序框图,依次写出每次循环得到的n,S的值,当S=48时,由题意,此时应该满足条件n=10>k,退出循环,输出S的值为48,故应有:7<k<10.【解析】:解:模拟执行程序框图,可得n=1,S=1不满足条件n>k,n=4,S=6不满足条件n>k,n=7,S=19不满足条件n>k,n=10,S=48由题意,此时应该满足条件n=10>k,退出循环,输出S的值为48,故应有:7<k<10故选:C.【点评】:本题主要考查了程序框图和算法,根据退出循环的条件分析k的取值范围是解题的关键,属于基础题.4.(5分)已知m∈R,“函数y=2x+m﹣1有零点”是“函数y=log m x在(0,+∞)上为减函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】:必要条件、充分条件与充要条件的判断.【专题】:简易逻辑.【分析】:根据函数的性质求出m的等价条件,结合充分条件和必要条件的定义进行判断即可.【解析】:解:若函数y=f(x)=2x+m﹣1有零点,则f(0)=1+m﹣1=m<1,当m≤0时,函数y=log m x在(0,+∞)上为减函数不成立,即充分性不成立,若y=log m x在(0,+∞)上为减函数,则0<m<1,此时函数y=2x+m﹣1有零点成立,即必要性成立,故“函数y=2x+m﹣1有零点”是“函数y=log m x在(0,+∞)上为减函数”的必要不充分条件,故选:B【点评】:本题主要考查充分条件和必要条件的判断,根据函数零点和对数函数的性质求出等价条件是解决本题的关键.5.(5分)二项式(2x+)6的展开式中,常数项的值是()A.240 B.60 C.192 D.180【考点】:二项式系数的性质.【专题】:概率与统计.【分析】:利用通项公式T r+1==x6﹣3r,令6﹣3r=0,解得r=2.即可得出.【解析】:解:T r+1==x6﹣3r,令6﹣3r=0,解得r=2.∴常数项的值是==240.故选:A.【点评】:本题考查了二项式定理的通项公式、常数项,属于基础题.6.(5分)等差数列{a n}中,a,a k=(m≠k),则该数列前mk项之和为()A.B.C.D.【考点】:等差数列的前n项和.【专题】:等差数列与等比数列.【分析】:由已知求出等差数列的公差,得到a mk,然后代入前n项和公式得答案.【解析】:解:设等差数列{a n}的首项为a1,公差为d,由等差数列的性质以及已知条件得d==,∵a1+(m﹣1)d=a m,∴a1=﹣(m﹣1)=,∴a mk=+(mk﹣1)=1,∴s mk==.故选:C.【点评】:本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础的计算题.7.(5分)(xx•湖北)在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和② B.③和① C.④和③ D.④和②【考点】:简单空间图形的三视图.【专题】:计算题;空间位置关系与距离.【分析】:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得结论.【解析】:解:在坐标系中,标出已知的四个点,根据三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②,故选:D.【点评】:本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题.8.(5分)如果双曲线的离心率e=,则称此双曲线为黄金双曲线.有以下几个命题:①双曲线是黄金双曲线;②双曲线y是黄金双曲线;③在双曲线中,F1为左焦点,A2为右顶点,B1(0,b),若∠F1 B1 A2=90°,则该双曲线是黄金双曲线;④在双曲线中,过焦点F2作实轴的垂线交双曲线于M、N两点,O为坐标原点,若∠MON=120°,则该双曲线是黄金双曲线.其中正确命题的序号为()A.①和② B.②和③ C.③和④ D.①和④【考点】:双曲线的简单性质.【专题】:综合题;圆锥曲线的定义、性质与方程.【分析】:对于①②求出双曲线的离心率判断正误;对于③通过∠F1B1A2=90°,转化为a,b,c的关系,求出双曲线的离心率判断正误;对于④,MN经过右焦点F2且MN⊥F1F2,∠MON=120°,转化为a,b,c的关系,求出双曲线的离心率判断正误.【解析】:解:①双曲线中a=,c=,离心率是,故不是黄金双曲线,即①正确;②由双曲线y,可得离心率e==,故该双曲线是黄金双曲线,即②正确;③∵∠F1B1A2=90°,∴,∴b2+c2+b2+a2=(a+c)2,化为c2﹣ac﹣a2=0,由③可知该双曲线是黄金双曲线;④如图,MN经过右焦点F2且MN⊥F1F2,∠MON=120°,∴NF2=OF2,∴,∴b2=3ac,∴c2﹣a2=3ac,∴e2﹣3e﹣1=0,∴e=,∴该双曲线不是黄金双曲线,故选:B【点评】:本题考查双曲线的基本性质,a,b,c的关系,离心率的求法,考查计算能力.二、填空题共6小题,每小题5分,共30分.9.(5分)z=1+i,为复数z的共轭复数,则z+=1+.【考点】:复数代数形式的混合运算.【专题】:数系的扩充和复数.【分析】:直接利用复数的模,共轭复数化简求解即可.【解析】:解:z=1+i,=1﹣i,z+=1+i+(1﹣i)+|1+i|﹣1=1+.故答案为:1+.【点评】:本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.10.(5分)如图所示,AB是半径等于3的圆O的直径,CD是圆O的弦,BA,DC的延长线交于点P,若PA=4,PC=5,则∠CBD=30°.【考点】:与圆有关的比例线段.【专题】:计算题;压轴题.【分析】:欲求:“∠CBD”,根据圆中角的关系:∠COD=2∠CBD,只要求出∠COD即可,把它放在三角形COD中,可利用切割线定理求出CD的长,从而解决问题.【解析】:解:由割线定理得,PA×PB=PC×PD,∵PA=4,PC=5,∴4×10=5×PD,∴PD=8,∴CD=8﹣5=3,∴△CDO是等边三角形,∴∠COD=60°,从而∠CBD=30°.故填:30°或.【点评】:此题中要通过计算边长,发现直角三角形或等腰三角形或等边三角形.本题主要考查与圆有关的比例线段、圆周角定理、圆中的切割线定理,属于基础题.11.(5分)设不等式组表示的平面区域为D,在区域D内随机取一点M,则点M落在圆x2+y2=1内的概率为.【考点】:几何概型;简单线性规划.【专题】:概率与统计.【分析】:首先分别画出区域D、M,然后分别计算面积,利用几何概型的公式解答即可.【解析】:解:平面区域D以及满足条件的M如图阴影部分区域D的面积为=4,区域M的面积为,由几何概型的公式得点M落在圆x2+y2=1内的概率为;故答案为:.【点评】:本题考查了几何概型的概率公式的运用;关键是明确区域的面积,利用公式解答.12.(5分)如图,在6×6的方格纸中,若起点和终点均在格点的向量,,满足=x+y(x,y∈R),则=.【考点】:向量的三角形法则.【专题】:平面向量及应用.【分析】:根据向量的运算法则以及向量的基本定理进行运算即可.【解析】:解:将向量,,放入坐标系中,则向量=(1,2),=(2,﹣1),=(3,4),∵=x+y,∴(3,4)=x(1,2)+y(2,﹣1),即,解得,则=,故答案为:.【点评】:本题主要考查向量的分解,利用向量的坐标运算是解决本题的关键.13.(5分)若甲乙两人从6门课程中各选修3门,则甲乙所选的课程中恰有2门相同的选法有180种.【考点】:计数原理的应用.【专题】:排列组合.【分析】:根据分步计数原理,先选2门确定为甲乙相同的2门,再从剩下的4门中任选2门分配给甲乙即可.【解析】:解:先出6门中选2门,再从剩下的4门再选2门分给甲乙,故甲乙所选的课程中恰有2门相同,故有C62×A42=180种情况,故答案为:180.【点评】:本题考查分步计数原理,关键是如何分步,属于基础题14.(5分)已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,都存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=log2x};③M={(x,y)|y=e x﹣2;④M={(x,y)|y=sinx+1.其中是“垂直对点集”的序号是③④.【考点】:点到直线的距离公式.【专题】:导数的综合应用.【分析】:由题意可得:集合M是“垂直对点集”,即满足:曲线y=f(x)上过任意一点与原点的直线,都存在过另一点与原点的直线与之垂直.【解析】:解:由题意可得:集合M是“垂直对点集”,即满足:曲线y=f(x)上过任意一点与原点的直线,都存在过另一点与原点的直线与之垂直.①M={(x,y)|y=},假设集合M是“垂直对点集”,则存在两点,,满足=﹣1,化为=﹣1,无解,因此假设不成立,即集合M不是“垂直对点集”,②M={(x,y)|y=log2x},(x>0),取(1,0),则不存在点(x2,log2x2)(x2>0),满足1×x2+0=0,因此集合M不是“垂直对点集”;③M={(x,y)|y=e x﹣2,结合图象可知:集合M是“垂直对点集”;④M={(x,y)|y=sinx+1,结合图象可知:集合M是“垂直对点集”.综上可得:只有③④是“垂直对点集”.故答案为:③④.【点评】:本题考查了新定义“垂直对点集”、直线垂直与斜率的关系,考查了推理能力与计算能力,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在平面直角坐标系xOy中设锐角α的始边与x轴的非负半轴重合,终边与单位圆交于点P(x1,y1),将射线OP绕坐标原点O按逆时针方向旋转后与单位圆交于点Q(x2,y2)记f(α)=y1+y2(1)求函数f(α)的值域;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=,且a=,c=1,求b.【考点】:任意角的三角函数的定义;直线与圆的位置关系.【专题】:三角函数的图像与性质.【分析】:(1)根据三角函数的定义求出函数f(α)的表达式,即可求出处函数的值域;(2)根据条件求出C,根据余弦定理即可得到结论.【解析】:解:(Ⅰ)由三角函数定义知,y1=sinα,y2=sin(α+)=cosα,f(α)=y1+y2=cosα+sinα=sin(α+),∵角α为锐角,∴<α+<,∴<sin(α+)≤1,∴1<sin(α+)≤,则f(α)的取值范围是(1,];(Ⅱ)若f(C)=,且a=,c=1,则f(C)═sin(C+)=,即sin(C+)=1,则C=,由余弦定理得c2=a2+b2﹣2abcosC,即1=2+b2﹣2×b,则b2﹣2b+1=0,即(b﹣1)2=0,解得b=1.【点评】:本题主要考查三角函数的定义以及余弦定理的应用,根据条件求出函数的解析式是解决本题的关键.16.(13分)国家环境标准制定的空气质量指数(简称AQI)与空气质量等级对应关系如下表:下表是由天气网获得的全国东西部各6个城市xx年3月某时刻实时监测到的数据:(Ⅰ)求x的值,并根据上表中的统计数据,判断东、西部城市AQI数值的方差的大小关系(只需写出结果);(Ⅱ)环保部门从空气质量“优”和“轻度污染”的两类城市随机选取3个城市组织专家进行调研,记选到空气质量“轻度污染”的城市个数为ξ,求ξ的分布列和数学期望.【考点】:离散型随机变量的期望与方差;离散型随机变量及其分布列.【专题】:概率与统计.【分析】:(Ⅰ)根据AQI的平均数及其它几个城市的AQI值即可求出x,带入方差公式即可求出并比较出东西部城市AQI数值的方差;(Ⅱ)根据古典概型的求概率方法求出随机变量ξ分别取1,2,3时的概率,从而列出其分布列,带入数学期望公式即可求出其数学期望.【解析】:解:(Ⅰ)x=82,;(Ⅱ)“优”类城市有2个,“轻度污染”类城市有4个;根据题意ξ的所有可能取值为:1,2,3;P(ξ=1)=,P(ξ=2)=,P(ξ=3)=;∴ξ的分布列为:所以E(ξ)=.【点评】:考查对数据平均值的理解,方差的概念及计算方差的公式,古典概型的概率求解,以及组合数公式,离散型随机变量的分布列的概念,数学期望的概念及求解公式.17.(14分)如图,多面体ABCDEF中,平面ADEF⊥平面ABCD,正方形ADEF的边长为2,直角梯形ABCD中,AB∥CD,AD⊥DC,AB=AD=2,CD=4.(Ⅰ)求证:BC⊥平面BDE;(Ⅱ)试在平面CDE上确定点P,欲使点P到直线DC、DE的距离相等,且AP与平面BEF 所成的角等于30°.【考点】:直线与平面所成的角;直线与平面垂直的判定.【专题】:计算题;证明题.【分析】:(Ⅰ)欲证BC⊥平面BDE,根据直线与平面垂直的判定定理可知只需证BC与平面BDE内两相交直线垂直,根据面面垂直的性质可知ED⊥平面ABCD,则ED⊥BC,根据勾股定理可知BC⊥BD,满足定理所需条件;(Ⅱ)DE,DA,DC两两垂直,以D为顶点,DA,DC,DE分别为x轴y轴z轴,建立直角坐标系D﹣xyz,求出D,A,E,B,F,以及,,设P(o,y,z)通过|y|=|z|.设是平面BEF 的法向量,利用,求出,推出与所成的角为60°或120°.通过cos=和y|=|z|.求出P的坐标.【解析】:解:(Ⅰ)在正方形ADEF中,ED⊥AD.又因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,所以ED⊥平面ABCD.所以ED⊥BC.(3分)在直角梯形ABCD中,AB=AD=2,CD=4,可得在△BCD中,,所以BD2+BC2=CD2.所以BC⊥BD.(5分)所以BC⊥平面BDE.(6分)(Ⅱ)DE,DA,DC两两垂直,以D为顶点,DA,DC,DE分别为x轴y轴z轴,建立直角坐标系D﹣xyz,则D(0,0,0),A(2,0,0),E(0,0,2),B(2,2,0),F(2,0,2)=(2,0,0),设P(o,y,z)则|y|=|z|.令是平面BEF的法向量,则,∴令y′=1,得∴∵AP与平面BEF所成的角等于30°∴与所成的角为60°或120°.∴cos===.∴y2+z2+4yz﹣4=0又∵|y|=|z|.∴y=z或y=﹣z,当y=z时y=z=,当y=﹣z时,上式无解,∴P(0,),或P(0,﹣).【点评】:本题考查直线与平面垂直,直线与平面所成的角,空间向量的运算,考查空间想象能力,计算能力已经逻辑推理能力.18.(13分)已知函数f(x)=x﹣alnx,g(x)=﹣(a>0).(Ⅰ)若a=1,求函数f(x)的极值;(Ⅱ)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;(Ⅲ)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求a的取值范围.【考点】:利用导数研究函数的极值;利用导数研究函数的单调性.【专题】:分类讨论;函数的性质及应用;导数的综合应用;不等式的解法及应用.【分析】:(Ⅰ)求出导数,求得单调区间,进而得到极小值;(Ⅱ)求出h(x)的导数,注意分解因式,结合a>0,即可求得单调区间;(III)若在[1,e]上存在一点x0,使得f(x0)<g(x0)成立,即在[1,e]上存在一点x0,使得h(x0)<0.即h(x)在[1,e]上的最小值小于零.对a讨论,①当1+a≥e,②当1<1+a <e,求得单调区间和最小值即可.【解析】:解:(Ⅰ)f(x)=x﹣alnx的定义域为(0,+∞).当a=1时,f′(x)=.由f′(x)=0,解得x=1.当0<x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以当x=1时,函数f(x)取得极小值,极小值为f(1)=1﹣ln1=1;(Ⅱ)h(x)=f(x)﹣g(x)=x﹣alnx+,其定义域为(0,+∞).又h′(x)==.由a>0可得1+a>0,在0<x<1+a上,h′(x)<0,在x>1+a上,h′(x)>0,所以h(x)的递减区间为(0,1+a);递增区间为(1+a,+∞).(III)若在[1,e]上存在一点x0,使得f(x0)<g(x0)成立,即在[1,e]上存在一点x0,使得h(x0)<0.即h(x)在[1,e]上的最小值小于零.①当1+a≥e,即a≥e﹣1时,由(II)可知h(x)在[1,e]上单调递减.故h(x)在[1,e]上的最小值为h(e),由h(e)=e+﹣a<0,可得a>.因为>e﹣1.所以a>.②当1<1+a<e,即0<a<e﹣1时,由(II)可知h(x)在(1,1+a)上单调递减,在(1+a,e)上单调递增.h(x)在[1,e]上最小值为h(1+a)=2+a﹣aln(1+a).因为0<ln(1+a)<1,所以0<aln(1+a)<a.则2+a﹣aln(1+a)>2,即h(1+a)>2不满足题意,舍去.综上所述:a∈(,+∞).【点评】:本题考查导数的运用:求单调区间和极值、最值,同时考查不等式成立的问题转化为求函数的最值,运用分类讨论的思想方法是解题的关键.19.(14分)已知椭圆C:离心率e=,短轴长为2.(Ⅰ)求椭圆C的标准方程;(Ⅱ)如图,椭圆左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.【考点】:椭圆的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:(Ⅰ)利用短轴长及离心率即得椭圆C的标准方程.(Ⅱ)设P(x0,y0),则Q(﹣x0,﹣y0),由(I)可得直线PA、QA的方程,从而可得以MN为直径的圆,化简后令y=0,则x=,即得结论.【解析】:(Ⅰ)解:由短轴长为,得b=,由=,得a2=4,b2=2.∴椭圆C的标准方程为.(Ⅱ)结论:以MN为直径的圆过定点F(,0).证明如下:设P(x0,y0),则Q(﹣x0,﹣y0),且,即,∵A(﹣2,0),∴直线PA方程为:,∴Q(0,),直线QA方程为:,∴N(0,),以MN为直径的圆为,即,∵,∴,令y=0,则x2﹣2=0,解得x=.∴以MN为直径的圆过定点F(,0).【点评】:本题考查椭圆,及其与直线的位置关系,注意解题方法的积累,属于中档题.20.(13分)设数列{a n}满足:①a1=1;②所有项a n∈N*;③1=a1<a2<…<a n<a n+1<…设集合A m={n|a n≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值.我们称数列{b n}为数{a n}的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.(Ⅰ)若数列{a n}的伴随数列为1,1,1,2,2,2,3,请写出数列{a n};(Ⅱ)设a n=3n﹣1,求数列{a n}的伴随数列{b n}的前30项之和;(Ⅲ)若数列{a n}的前n项和S n =n2+c(其中c常数),求数列{a n}的伴随数列{b n}的前m项和T m.【考点】:数列的求和.【专题】:点列、递归数列与数学归纳法.【分析】:(Ⅰ)根据伴随数列的定义直接可得答案;(Ⅱ)由,得n≤1+log3m (m∈N*),分1≤m≤2,3≤m≤8,9≤m≤26,27≤m≤30(m∈N*)四种情况考虑即可;(III)由题意和a n与S n的关系式求出a n,代入a n≤m得n的最大值为b m,并求出伴随数列{b m}的各项,再对m分类讨论,分别求出伴随数列{b m}的前m项和T m.【解析】:解:(Ⅰ)根据题意,易得数列为1,4,7;(Ⅱ)由,得n≤1+log3m (m∈N*)当1≤m≤2,m∈N*时,b1=b2=1当3≤m≤8,m∈N*时,b3=b4=…=b8=2当9≤m≤26,m∈N*时,b9=b10=…=b26=3当27≤m≤30,m∈N*时,b27=b28=b29=b30=4∴b1+b2+…+b30=1×2+2×6+3×18+4×4=84;(III)∵a1=S1=1+c=1,∴c=0;当n≥2时,a n=S n﹣S n﹣1=2n﹣1,∴a n=2n﹣1 (n∈N*)由a n=2n﹣1≤m得:(m∈N*)因为使得a n≤m成立的n的最大值为b m,所以b1=b2=1,b3=b4=2,…,b2t﹣1=b2t=t (t∈N*)当m=2t﹣1 (t∈N*)时:=t2=,当m=2t (t∈N*)时:=t2+t=所以.【点评】:本题考查数列的应用,着重考查对抽象概念的理解与综合应用的能力,观察、分析寻找规律是难点,属难题.b32711 7FC7 翇C^30925 78CD 磍v34413 866D 虭29139 71D3 燓4(。

2021年3月安徽省江南十校2021届高三毕业班下学期一模联考理综化学试题及答案

2021年3月安徽省江南十校2021届高三毕业班下学期一模联考理综化学试题及答案

绝密★启用前安徽省江南十校联盟2021届高三毕业班下学期第_次高考模拟联合考试理综-化学试题2021年3月(在此卷上答题无效)注意事项:1•答卷前,考生务必将自己的姓名和座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题口的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.可能用到的相对原子质量:Li7 016 P31 S32 Cl 35.5 K39一、选择题:本题共7小题,每小题6分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

7.中国古代炼丹术促进了金属冶炼技术的发展。

唐代《丹房镜源》中记载了炼制铅丹的方法:“熔铅成汁,下酷点之,滚沸时下硫一小块,续下硝少许........... 炒为末,成黄丹胡粉。

”下列叙述正确的是A.上述过程中发生了置换反应B. “滚沸”中仅有物理变化C. “硝”是指硝酸D. “黃丹胡粉”是纯净物8.粗盐(含泥沙、CdCl:、MgSO.等)提纯得到的N&C1溶液中仍含有少量K;需进一步提纯才可得到试剂级氯化钠,实验装置如图所示(已知:"Cl+H'SO;(浓)县HC1 t 4-NaHSO.).下列叙述错误的是A.粗盐提纯实验需要NaOH溶液、BdCl:溶液、Xa:CO3溶液、HC1溶液B.关闭止水夹K,打开分液漏斗活塞,若液体不滴落,证明a中气密性良好C.实验过程中,c中有固体析出D.d中加入NaOH溶液吸收尾气9.阿霉素是一种抗肿瘤药物:阿霉酮是生产阿霉素的中间体,其结构如图所示:下列说法正确的是A.阿霉酮分子式为C21H1S O9B.阿霉酮分子中所有的碳原子都在同一个平面上C.1 mol阿霉酮最多可与8mol H::发生加成反应D.阿霉酮可与N E CO S溶液反应生成CO:气体10.HNO:与羟基自山基(・0H)的气相氧化反应与酸雨、光化学烟雾等重大环境问题密切相关。

2021年高三3月统一练习(一模)数学(理)试题 含解析

2021年高三3月统一练习(一模)数学(理)试题 含解析

2021年高三3月统一练习(一模)数学(理)试题含解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)在复平面内,复数对应的点的坐标为()A.(1,﹣1) B.(﹣1,1) C. D.【考点】:复数的代数表示法及其几何意义.【专题】:数系的扩充和复数.【分析】:直接利用复数代数形式的乘除运算化简得答案.【解析】:解:∵=,∴复数对应的点的坐标为(1,﹣1),故选:A.【点评】:本题考查了复数的代数表示法及其几何意义,考查了复数代数形式的乘除运算,是基础题.2.(5分)在等比数列{an }中,a3+a4=4,a2=2,则公比q等于()A.﹣2 B.1或﹣2 C. 1 D.1或2【考点】:等比数列的通项公式.【专题】:等差数列与等比数列.【分析】:由题意可得q的一元二次方程,解方程可得.【解析】:解:∵等比数列{a n}中,a3+a4=4,a2=2,∴a3+a4=2q+2q2=4,∴q2+q﹣2=0,解得q=1或q=﹣2故选:B【点评】:本题考查等比数列的通项公式,涉及一元二次方程的解法,属基础题.3.(5分)已知双曲线的一条渐近线方程是,它的一个焦点坐标为(2,0),则双曲线的方程为()A.B.C.D.【考点】:双曲线的标准方程.【专题】:圆锥曲线的定义、性质与方程.【分析】:直接利用双曲线的渐近线方程以及焦点坐标,得到关系式,求出a、b,即可得到双曲线方程.【解析】:解:双曲线的一条渐近线方程是,可得,它的一个焦点坐标为(2,0),可得c=2,即a2+b2=4,解得a=1,b=,所求双曲线方程为:.故选:C.【点评】:本题考查双曲线的方程的求法,双曲线的简单性质的应用,考查计算能力.4.(5分)当n=5时,执行如图所示的程序框图,输出的S值是()A.7 B.10 C.11 D.16【考点】:程序框图.【专题】:图表型;算法和程序框图.【分析】:模拟执行程序,依次写出每次循环得到的S,m的值,当m=5时,不满足条件m <5,退出循环,输出S的值为11,从而得解.【解析】:解:模拟执行程序,可得n=5,m=1,S=1满足条件m<5,S=2,m=2满足条件m<5,S=4,m=3满足条件m<5,S=7,m=4满足条件m<5,S=11,m=5不满足条件m<5,退出循环,输出S的值为11.故选:C.【点评】:本题主要考查了程序框图和算法,考查了循环结构和条件语句,依次写出每次循环得到的S,m的值是解题的关键,属于基本知识的考查.5.(5分)在极坐标系中,曲线ρ2﹣6ρcosθ﹣2ρsinθ+6=0与极轴交于A,B两点,则A,B两点间的距离等于()A.B.C.D. 4【考点】:简单曲线的极坐标方程.【专题】:坐标系和参数方程.【分析】:首先把极坐标方程转化成直角坐标方程,进一步利用在x轴上的两根和与两根积的关系式,利用两点间的距离公式求出结果.【解析】:解:曲线ρ2﹣6ρcosθ﹣2ρsinθ+6=0转化成直角坐标方程为:x2+y2﹣6x﹣2y+6=0.由于曲线与极轴交于A,B两点,设交点坐标为:A(x1,0),B(x2,0),令y=0,则:x2﹣6x+6=0,所以:x1+x2=6,x1x2=6.则:|AB|=|x1﹣x2|==2.故选:B【点评】:本题考查的知识要点:极坐标方程与直角坐标方程的互化,两点角的距离公式的应用,及相关的运算问题.6.(5分)如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是()A. 4 B. 5 C.D.【考点】:由三视图求面积、体积.【专题】:计算题;空间位置关系与距离.【分析】:三视图复原的几何体是放倒的直四棱柱,底面是直角梯形,利用三视图的数据直接求解几何体的体积即可【解析】:解:三视图复原的几何体是直三棱柱与三棱锥的组合体,直三棱柱底面是等腰直角三角形,腰长为3,高为3,三棱锥的底面是等腰直角三角形,腰长为3,高为1,所以该几何体任意两个顶点间距离的最大值是=3.故选:D.【点评】:本题考查几何体任意两个顶点间距离的最大值,三视图复原的几何体的形状是解题的关键.7.(5分)将函数图象向左平移个长度单位,再把所得图象上各点的横坐标缩短到原来的一半(纵坐标不变),所得图象的函数解析式是()A.B.C.y=cosx D.【考点】:由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【专题】:三角函数的图像与性质.【分析】:根据“左加右减,上加下减”图象变换规律求出函数解析式即可.【解析】:解:将函数图象向左平移个长度单位,得到的函数解析式为:y=cos[(x+)﹣]=cos;再把所得图象上各点的横坐标缩短到原来的一半(纵坐标不变),所得图象的函数解析式是:y=cosx.故选:C.【点评】:本题主要考查了函数y=Asin(ωx+φ)的图象变换,“左加右减,上加下减”,熟练记忆平移规律是解题的关键,属于基本知识的考查.8.(5分)如图所示,在平面直角坐标系xOy中,点B,C分别在x轴和y轴非负半轴上,点A在第一象限,且∠BAC=90°,AB=AC=4,那么O,A两点间距离的()A.最大值是,最小值是4 B.最大值是8,最小值是4C.最大值是,最小值是2 D.最大值是8,最小值是2【考点】:两点间距离公式的应用.【专题】:计算题;直线与圆.【分析】:设A(x,y),B(b,0),C(0,c),由条件∠BAC=90°,可得x2﹣bx+y2﹣cy=0,又b2+c2=32,可得A的轨迹方程为(x﹣)2+(y﹣)2=8,运用圆的参数方程,结合两角和的正弦公式和正弦函数的值域,即可得到最值.【解析】:解:设A(x,y),B(b,0),C(0,c),则由∠BAC=90°,可得x(x﹣b)+y(y﹣c)=0,即为x2﹣bx+y2﹣cy=0,又|BC|=4,即有b2+c2=32,即有A的轨迹方程为(x﹣)2+(y﹣)2=8,设x=+2cosα,y=+2sinα,(0),则有x2+y2=(b2+c2)+8+2bcosα+2csinα=16+2(bcosα+csinα),令b=4sinθ,c=4cosθ(0),则有x2+y2=16(cosαsinθ+sinαcosθ)=16+16sin(α+θ),当α+θ=时,取得最大值32,即有|AO|最大为4,当α+θ=0时,取得最小值16,即有|AO|最小为4,故选:A.【点评】:本题考查轨迹方程的求法,主要考查圆的参数方程的运用:求最值,同时考查两点的距离公式和正弦函数的最值求法,注意三角函数的公式的灵活运用.二、填空题共6小题,每小题5分,共30分.9.(5分)定积分.【考点】:定积分.【专题】:导数的概念及应用.【分析】:根据定积分的计算法则计算即可.【解析】:解:(x2+sinx)|=故答案为:.【点评】:本题主要考查了定积分的计算,关键是求原函数,属于基础题.10.(5分)已知二项式的展开式中各项二项式系数和是16,则n=4,展开式中的常数项是24.【考点】:二项式系数的性质.【专题】:计算题;二项式定理.【分析】:由题意知:得2n=16,即可求出n;利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r的值,将r的值代入通项求出常数项.【解析】:解:由题意知:得2n=16,∴n=4;展开式的通项为T r+1=,令4﹣2r=0得r=2∴展开式中的常数项为24故答案为:4,24【点评】:本题考查二项式系数和问题、考查利用二项展开式的通项公式解决二项展开式的特定项问题.11.(5分)若变量x,y满足约束条件则z=2x+y的最大值是6.【考点】:简单线性规划.【专题】:不等式的解法及应用.【分析】:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解析】:解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(2,2)将C(2,2)的坐标代入目标函数z=2x+y,得z=2×2+2=6.即z=2x+y的最大值为6.故答案为:6.【点评】:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.12.(5分)已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣2x,如果函数g (x)=f(x)﹣m(m∈R)恰有4个零点,则m的取值范围是(﹣1,0).【考点】:根的存在性及根的个数判断.【专题】:计算题;作图题;函数的性质及应用.【分析】:函数g(x)=f(x)﹣m(m∈R)恰有4个零点可化为函数f(x)与y=m恰有4个交点,作函数f(x)与y=m的图象求解.【解析】:解:函数g(x)=f(x)﹣m(m∈R)恰有4个零点可化为函数f(x)与y=m恰有4个交点,作函数f(x)与y=m的图象如下,故m的取值范围是(﹣1,0);故答案为:(﹣1,0).【点评】:本题考查了函数的零点与函数图象的交点的关系应用,属于基础题.13.(5分)如图,AB是圆O的直径,CD与圆O相切于点D,AB=8,BC=1,则CD=3;AD=.【考点】:与圆有关的比例线段.【专题】:选作题;立体几何.【分析】:由切割线定理可得CD2=CB•CA,求出CD,再利用余弦定理求出AD.【解析】:解:∵CD与圆O相切于点D,AB=8,BC=1,∴由切割线定理可得CD2=CB•CA=1×9,∴CD=3;连接OD,则OD⊥DC,∴cos∠COD=,∴cos∠AOD=﹣,∴AD==.故答案为:3,.【点评】:本题考查与圆有关的比例线段,考查切割线定理,考查余弦定理,考查学生分析解决问题的能力,难度中等.14.(5分)已知平面上的点集A及点P,在集合A内任取一点Q,线段PQ长度的最小值称为点P到集合A的距离,记作d(P,A).如果集合A={(x,y)|x+y=1(0≤x≤1)},点P的坐标为(2,0),那么d(P,A)=1;如果点集A所表示的图形是边长为2的正三角形及其内部,那么点集D={P|0<d(P,A)≤1}所表示的图形的面积为6+π.【考点】:两点间距离公式的应用.【专题】:新定义;直线与圆;集合.【分析】:如果集合A={(x,y)|x+y=1(0≤x≤1)},设Q(x,y),运用两点的距离公式,结合二次函数的最值,即可得到最小值;讨论P的位置,得到点集D={P|0<d(P,A)≤1}所表示的图形为三个边长分别为2,1的矩形和三个半径为1,圆心角为120度的扇形以及内部,运用面积公式计算即可得到.【解析】:解:如果集合A={(x,y)|x+y=1(0≤x≤1)},设Q(x,y),点P的坐标为(2,0),则|PQ|====,由于0≤x≤1,即有x=1取得最小值1,那么d(P,A)=1;如果点集A所表示的图形是边长为2的正三角形及其内部,若P在正三角形及其内部,则面积为0,若P∉A,则点集D={P|0<d(P,A)≤1}所表示的图形为三个边长分别为2,1的矩形和三个半径为1,圆心角为120度的扇形以及内部,即有面积为3×2×1+3×π=6+π,故答案为:1,6+π.【点评】:本题考查新定义:点P到集合A的距离的理解和运用,考查集合的含义和运算能力,属于中档题.二、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数(ω>0)的最小正周期为π.(Ⅰ)求ω的值及函数f(x)的最大值和最小值;(Ⅱ)求函数f(x)的单调递增区间.【考点】:两角和与差的正弦函数;二倍角的正弦;正弦函数的单调性.【专题】:常规题型;三角函数的图像与性质.【分析】:先利用倍角公式及两角和的正弦公式将函数f(x)化成标准形式,然后利用周期公式求出ω的值,根据正弦函数的最值求出函数f(x)的最大值和最小值;根据正弦函数的单调区间求出函数f(x)的单调区间.【解析】:解:(Ⅰ)f(x)=cos2+sin﹣===sin().因为T=,ω>0,所以ω=2.因为f(x)=sin(2x+),x∈R,所以.所以函数f(x)的最大值为1,最小值为﹣1.(Ⅱ)令2kπ,k∈Z,得2k,k∈Z,所以k,k∈Z.所以函数f(x)的单调递增区间为[,k∈Z.【点评】:本题考查了三解函数式的化简及三角函数的图象与性质,解决这类问题的关键是把三角函数式利用三角公式化成标准形式.16.(13分)(xx•高密市模拟)甲、乙两人为了响应政府“节能减排”的号召,决定各购置一辆纯电动汽车.经了解目前市场上销售的主流纯电动汽车,按续驶里程数R(单位:公里)可分为三类车型,A:80≤R<150,B:150≤R<250,C:R≥250.甲从A,B,C三类车型中挑选,乙从B,C两类车型中挑选,甲、乙二人选择各类车型的概率如下表:若甲、乙都选C类车型的概率为.(Ⅰ)求p,q的值;(Ⅱ)求甲、乙选择不同车型的概率;(Ⅲ)某市对购买纯电动汽车进行补贴,补贴标准如下表:记甲、乙两人购车所获得的财政补贴和为X,求X的分布列.【考点】:离散型随机变量及其分布列;概率的应用.【专题】:概率与统计.【分析】:(Ⅰ)利用已知条件列出方程组,即可求解p,q的值.(Ⅱ)设“甲、乙选择不同车型”为事件A,分情况直接求解甲、乙选择不同车型的概率.(Ⅲ)X 可能取值为7,8,9,10.分别求解概率,即可得到分布列.【解析】:解:(Ⅰ)由题意可得解得,.…(4分)(Ⅱ)设“甲、乙选择不同车型”为事件A,分三种情况,甲选车型A,甲选车型B,甲选车型C,满足题意的概率为:P(A)=.答:所以甲、乙选择不同车型的概率是.…(7分)(Ⅲ)X 可能取值为7,8,9,10.P(X=7)==,P(X=8)==,P(X=9)==;P(X=10)==.所以X的分布列为:…(13分)【点评】:本题考查离散型随机变量的分布列的求法,概率的应用,考查分析问题解决问题的能力.17.(14分)在如图所示的几何体中,四边形ABCD为正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.(Ⅰ)求证:CE∥平面PAD;(Ⅱ)求PD与平面PCE所成角的正弦值;(Ⅲ)在棱AB上是否存在一点F,使得平面DEF⊥平面PCE?如果存在,求的值;如果不存在,说明理由.【考点】:点、线、面间的距离计算;直线与平面平行的判定;直线与平面所成的角.【专题】:探究型;空间位置关系与距离.【分析】:(Ⅰ)设PA中点为G,连结EG,DG,可证四边形BEGA为平行四边形,又正方形ABCD,可证四边形CDGE为平行四边形,得CE∥DG,由DG⊂平面PAD,CE⊄平面PAD,即证明CE∥平面PAD.(Ⅱ)如图建立空间坐标系,设平面PCE的一个法向量为=(x,y,z),由,令x=1,则可得=(1,1,2),设PD与平面PCE所成角为a,由向量的夹角公式即可得解.(Ⅲ)设平面DEF的一个法向量为=(x,y,z),由,可得,由•=0,可解a,然后求得的值.【解析】:(本小题共14分)解:(Ⅰ)设PA中点为G,连结EG,DG.因为PA∥BE,且PA=4,BE=2,所以BE∥AG且BE=AG,所以四边形BEGA为平行四边形.所以EG∥AB,且EG=AB.因为正方形ABCD,所以CD∥AB,CD=AB,所以EG∥CD,且EG=CD.所以四边形CDGE为平行四边形.所以CE∥DG.因为DG⊂平面PAD,CE⊄平面PAD,所以CE∥平面PAD.…(4分)(Ⅱ)如图建立空间坐标系,则B(4,0,0),C(4,4,0),E(4,0,2),P(0,0,4),D(0,4,0),所以=(4,4,﹣4),=(4,0,﹣2),=(0,4,﹣4).设平面PCE的一个法向量为=(x,y,z),所以,可得.令x=1,则,所以=(1,1,2).设PD与平面PCE所成角为a,则sinα=|cos<,>|=|=||=..所以PD与平面PCE所成角的正弦值是.…(9分)(Ⅲ)依题意,可设F(a,0,0),则,=(4,﹣4,2).设平面DEF的一个法向量为=(x,y,z),则.令x=2,则,所以=(2,,a﹣4).因为平面DEF⊥平面PCE,所以•=0,即2++2a﹣8=0,所以a=<4,点.所以.…(14分)【点评】:本题主要考查了直线与平面平行的判定,直线与平面所成的角,点、线、面间的距离计算,考查了空间想象能力和转化思想,属于中档题.18.(13分)设函数f(x)=e x﹣ax,x∈R.(Ⅰ)当a=2时,求曲线f(x)在点(0,f(0))处的切线方程;(Ⅱ)在(Ⅰ)的条件下,求证:f(x)>0;(Ⅲ)当a>1时,求函数f(x)在[0,a]上的最大值.【考点】:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.【专题】:函数的性质及应用;导数的概念及应用;导数的综合应用.【分析】:(Ⅰ)求出当a=2时的f(x),求出导数,求得切线的斜率和切点,由点斜式方程即可得到切线方程;(Ⅱ)求出导数,求得单调区间,极小值也为最小值,判断它大于0,即可得证;(Ⅲ)求出导数,令导数为0,可得极值点x=lna,比较a与lna的大小,再求得f(0),f(a)作差比较,即可得到最大值.【解析】:解:(Ⅰ)当a=2时,f(x)=e x﹣2x,f(0)=1,f′(x)=e x﹣2,即有f(x)在点(0,f(0))处的切线斜率为f′(0)=e0﹣2=﹣1,即有f(x)在点(0,f(0))处的切线方程为y﹣1=﹣(x﹣0),即为x+y﹣1=0;(Ⅱ)证明:f′(x)=e x﹣2,令f′(x)=0,解得x=ln2,当x<ln2时,f′(x)<0,f(x)递减,当x>n2时,f′(x)>0,f(x)递增.即有x=ln2处f(x)取得极小值,也为最小值,且为e ln2﹣2ln2=2﹣2ln2>0,即有f(x)>0;(Ⅲ)由于f(x)=e x﹣ax,f′(x)=e x﹣a,令f′(x)=0,解得x=lna>0,当a>1,令M(a)=a﹣lna,M′(a)=1﹣=>0,M(a)在(1,+∞)递增,又M(1)=1﹣ln1=0,M(a)=a﹣lna>0,即有a>1,a>lna,当0<x<lna时,f′(x)<0,f(x)递减,lna<x<a时,f′(x)>0,f(x)递增.即有x=lna处f(x)取得最小值;f(0)=e0﹣0=1,f(a)=e a﹣a2,令h(a)=f(a)﹣f(0)=e a﹣a2﹣1,a>1时,h′(a)=e a﹣2a>0,h(1)=e﹣1﹣1=e﹣2>0,h(a)=e a﹣a2﹣1>0,当a>1时,f(a)>f(0),则有当a>1时,f(x)在[0,a]上的最大值为f(a)=e a﹣a2.【点评】:本题考查导数的运用:求切线方程和单调区间、极值和最值,同时考查构造函数运用导数判断单调性,进而判断大小,考查运算化简能力,属于中档题.19.(14分)已知椭圆C:的离心率为,右顶点A是抛物线y2=8x的焦点.直线l:y=k(x﹣1)与椭圆C相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)如果,点M关于直线l的对称点N在y轴上,求k的值.【考点】:直线与圆锥曲线的关系;椭圆的标准方程.【专题】:综合题;圆锥曲线的定义、性质与方程.【分析】:(Ⅰ)确定椭圆的几何量,即可求椭圆C的方程;(Ⅱ)设P(x1,y1),Q(x2,y2),直线l:y=k(x﹣1)与椭圆C联立,确定M的坐标,进一步可得MN中点坐标,由于M,N关于直线l对称,所以M,N所在直线与直线l垂直,即可求k的值.【解析】:解:(Ⅰ)抛物线y2=8x,所以焦点坐标为(2,0),即A(2,0),所以a=2.又因为e==,所以c=.所以b=1,所以椭圆C的方程为.…(4分)(Ⅱ)设P(x1,y1),Q(x2,y2),因为,所以=(x1+x2﹣4,y1+y2),所以M(x1+x2﹣2,y1+y2).由直线l:y=k(x﹣1)与椭圆C联立,得(4k2+1)x2﹣8k2x+4k2﹣4=0,得x1+x2﹣2=﹣,y1+y2=,即M(﹣,).设N(0,y3),则MN中点坐标为(﹣,),因为M,N关于直线l对称,所以MN的中点在直线l上,所以=k(﹣﹣1),解得y3=﹣2k,即N(0,﹣2k).由于M,N关于直线l对称,所以M,N所在直线与直线l垂直,所以,解得k=±.…(14分)【点评】:本题考查抛物线的几何性质,考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.20.(13分)如果数列A:a1,a2,…,a m(m∈Z,且m≥3),满足:①a i∈Z,(i=1,2,…,m);②a1+a2+…+a m=1,那么称数列A为“Ω”数列.(Ⅰ)已知数列M:﹣2,1,3,﹣1;数列N:0,1,0,﹣1,1.试判断数列M,N是否为“Ω”数列;(Ⅱ)是否存在一个等差数列是“Ω”数列?请证明你的结论;(Ⅲ)如果数列A是“Ω”数列,求证:数列A中必定存在若干项之和为0.【考点】:数列的应用.【专题】:新定义;探究型;等差数列与等比数列.【分析】:(Ⅰ)根据定义直接判断即可得解.(Ⅱ)假设存在等差数列是“Ω”数列,由a1+a2+…+a m=1,得a1+am=∉Z,与a i∈Z矛盾,从而可证不存在等差数列为“Ω”数列.(Ⅲ)将数列A按以下方法重新排列:设S n为重新排列后所得数列的前n项和(n∈Z且1≤n≤m),任取大于0的一项作为第一项,则满足﹣+1≤S1≤,然后利用反证法,证明即可.【解析】:(本小题共13分)解:(Ⅰ)数列M不是“Ω”数列;数列N是“Ω”数列.…(2分)(Ⅱ)不存在一个等差数列是“Ω”数列.证明:假设存在等差数列是“Ω”数列,则由a1+a2+…+a m=1 得a1+am=∉Z,与a i∈Z矛盾,所以假设不成立,即不存在等差数列为“Ω”数列.…(7分)(Ⅲ)将数列A按以下方法重新排列:设S n为重新排列后所得数列的前n项和(n∈Z且1≤n≤m),任取大于0的一项作为第一项,则满足﹣+1≤S1≤,假设当2≤n≤m时,若S n﹣1=0,则任取大于0的一项作为第n项,可以保证﹣+1≤S n≤,若S n﹣1≠0,则剩下的项必有0或与S n﹣1异号的一项,否则总和不是1,所以取0或与S n﹣1异号的一项作为第n项,可以保证﹣+1≤S n≤.如果按上述排列后存在S n=0成立,那么命题得证;否则S1,S2,…,S m这m个整数只能取值区间[﹣+1,]内的非0整数,因为区间[﹣+1,]内的非0整数至多m﹣1个,所以必存在S i=S j(1≤i<j≤m),那么从第i+1项到第j项之和为S i﹣S j=0,命题得证.综上所述,数列A中必存在若干项之和为0.…(13分)【点评】:本题主要考查了新定义和数列的应用,解答新定义的试题的关键是把题目中的定义转化已经学过的知识进行解决,属于中档题.u•L34253 85CD 藍25939 6553 敓26216 6668 晨H8&24430 5F6E 彮aj35593 8B09 謉22644 5874 塴y。

2021届江淮十校高三联考数学(理)试题及答案

2021届江淮十校高三联考数学(理)试题及答案

绝密★启用前2021届江淮十校高三联考数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.已知集合{A x y ==,{}2log 2B y y x ==+,全集U =R ,则下列结论正确的是() A .A B A =B .A B B ⋃=C .UA BD .UB A ⊆答案:D【分析】先求出集合A 和集合B ,再依次判断选项的正误. 解:由2230x x -++≥解得312x -≤≤,故312A x x ⎧⎫=-≤≤⎨⎬⎩⎭, 2log 22y x =+≥,故{}2B y y =≥,A B ∴⋂=∅,故A 错误;312A B x x ⎧⋃=-≤≤⎨⎩或}2x ≥,故B 错误;{1UA x x =<-或32x ⎫>⎬⎭,则(){}2U A B x x ⋂=≥,故C 错误; 可得UB A ⊆,故D 正确.故选:D .2.已知函数()f x 及其导函数()'f x ,若存在0x 使得()()00f x f x '=,则称0x 是()f x 的一个“巧值点”.下列选项中有“巧值点”的函数是() A .2()2f x x =+ B .()ln f x x = C .()x f x e -= D .()tan f x x =答案:B【分析】求出函数的导数,解方程()()00f x f x '=即可得解. 解:若0x 是方程()()f x f x '=的解,则0x 是“巧值点”, 选项A ,()2f x x '=,令222+=x x ,得2220x x +=-无解.选项B ,1()f x x '=,令1ln x x=,由图象知有一个根 选项C ,()xf x e -'=-,令x x e e --=-,即0x e -=无解 选项D ,21()cos f x x'=,令21tan cos x x =,即sin 22x =无解,故选:B3.已知3a =,4b =,()()23261b a b a -⋅+=,则a 与b 的夹角为() A .6πB .3π C .56π D .23π 答案:D【分析】设平面向量a 与b 的夹角为θ,由平面向量数量积的运算性质可求得a b ⋅的值,可计算出cos θ,结合0θπ≤≤可求得θ的值. 解:设平面向量a 与b 的夹角为θ,()()2223244337461b a b a ba b a a b -⋅+=-⋅-=-⋅=,可得6a b ⋅=-,所以,61cos 342a b a bθ⋅-===-⨯⋅, 0θπ≤≤,因此,23πθ=. 故选:D.4.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为() A .2 B .43C .4D .4-答案:C【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 解:解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C .5.函数2cos ()sin x x f x x x+=+在[],ππ-的图象大致为()A .B .C .D .答案:A【分析】先判断出函数()f x 的奇偶性,然后根据()1f 的取值范围判断出()f x 的大致图象. 解:()()f x f x =-,()f x ∴为奇函数,又()cos111sin11f +=+,0cos1sin1<<,0(1)1f ∴<<,故选:A .点评:思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.6.设ΔABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos cos cos c B b A a B +=-,则∠B=() A .6πB .3π C .56π D .23π 答案:D【分析】根据正弦定理,结合三角恒等变换化简即可求得. 解:由正弦定理可得:2sinCcosB sinBcosA sinAcosB+=-()2sin sinCcosB A B sinC =-+=-,1223cosB B π=-=. 故选:D点评:此题考查根据正弦定理进行边角互化,根据三角恒等变换化简求解角的大小.7.函数()f x ,()g x 满足:对任意x ∈R ,都有()224()f x x g x -+=,若关于x 的方程()cos 0g x x π+=只有5个根,则这5个根之和为() A .5 B .6C .8D .9答案:A【分析】根据题意得出()cos g x x π=-只有五个根,根据数形结合可以直接求解 解:224y x x =-+关于直线1x =对称.()y g x ∴=的图象也关于直线1x =对称,又方程()cos 0g x x π+=只有5个根,得()cos g x x π=-只有五个根,则其中一个根为1x =,另外四个根两两关于1x =对称,设关于对称的根分别为1x 和2x ,3x 和4x ,则1212x x +=和3412x x +=,∴5个根之和为1225+⨯= 故选:A点评:关键点睛:解题的关键在于利用()cos g x x π=-只有五个根,得到其中一个根为1x =,另外四个根两两关于1x =对称,设关于对称的根分别为1x 和2x ,3x 和4x ,则1212x x +=和3412x x +=,进而求解,难度属于基础题 8.已知()f x 是定义在(0,)+∞上的增函数,且恒有[]()ln 1f f x x -=,则“1a >”是“()1f x ax ≤-恒成立”的() A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:B【分析】令()ln t f x x =-,由题可求得1t =,得出()ln 1f x x =+,因为()1f x ax ≤-恒成立等价于ln 2x a x+≥对0x ∀>恒成立,利用导数求出ln 2()x x x ϕ+=的最大值即可判断.解:令()ln t f x x =-,则()ln f x x t =+.()ln 1f t t t ∴=+=()ln 1g t t t =+-是增函数且(1)0g =,1t ∴=()ln 1f x x ∴=+,ln 2()1ln 11x f x ax x ax a x+∴≤-⇔+≤-⇔≥对0x ∀>恒成立. 令ln 2()x x x ϕ+=,2ln 1()x x x ϕ--'=, 当10,e x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'>,()ϕx 单调递增;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0x ϕ'<,()ϕx 单调递减;max 1()e x e ϕϕ⎛⎫∴== ⎪⎝⎭,a e ∴≥.1a >是a e ≥的必要不充分条件.故选:B .点评:关键点睛:本题考查必要不充分条件的判断,解题的关键是求出()ln 1f x x =+,将()1f x ax ≤-恒成立等价于ln 2x a x+≥对0x ∀>恒成立,利用导数求最值. 9.已知OAB ,1OA =,2OB =,1OA OB ⋅=-,过点O 作OD 垂直AB 于点D ,点E 满足12OE ED =,则EO EA ⋅的值为() A .328- B .121-C .29-D .221-答案:D【分析】作出图形,由平面向量数量积的定义及余弦定理可得OD =,再由平面向量数量积的运算律即可得解. 解:由题意,作出图形,如图,1OA =,2OB =,1OA OB ⋅=-12cos 2cos 1OA OB AOB AOB ∴⋅=⨯∠=∠=-,1cos 2AOB ∴∠=-, 由()0,AOB π∠∈可得23AOB π∠=, 222cos 7AB OA OB OA OB AOB ∴=+-⋅⋅⋅∠=又113sin 222AOB S OA OB AOB OD AB =⋅⋅⋅∠=⋅⋅=△,则37OD =, ()222232299721EO EA OE ED DA OE OD ∴⋅=-⋅+=-=-⋅=-⨯=-.故选:D .10.函数()2sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象在[]0,2上恰有两个最大值点,则ω的取值范围为() A .[,2]ππB .9,2ππ⎡⎫⎪⎢⎣⎭C .139,122ππ⎡⎫⎪⎢⎣⎭D .917,88ππ⎡⎫⎪⎢⎣⎭答案:D【分析】设4t x πω=+,因为[]0,2x ∈,所以,244t ππω⎡⎤∈+⎢⎥⎣⎦,即函数2sin y t =的图象在,244t ππω⎡⎤∈+⎢⎥⎣⎦上恰有两个最大值点,结合正弦函数的图象可得答案.解:设4t x πω=+,因为[]0,2x ∈,所以,244t ππω⎡⎤∈+⎢⎥⎣⎦函数()2sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象在[]0,2上恰有两个最大值点 即函数2sin y t =的图象在,244t ππω⎡⎤∈+⎢⎥⎣⎦上恰有两个最大值点,如图则59 2,422πππω⎡⎫+∈⎪⎢⎣⎭,917,88πωπ⎡⎫∴∈⎪⎢⎣⎭,故选:D.点评:关键点睛:本题考查根据正弦型函数的最值的个数求参数的范围,解答本题的关键是利用换元的思想,设4t xπω=+,将问题转化为函数2siny t=的图象在,244tππω⎡⎤∈+⎢⎥⎣⎦上恰有两个最大值点,属于中档题.11.函数222,3()11,316x ax a xf xax x⎧-+<⎪=⎨-≥⎪⎩,数列{}n a满足()na f n=,*n∈N,且为递增数列.则实数a的取值范围是()A.()0,1B.33,42⎛⎫⎪⎝⎭C.3,14⎡⎫⎪⎢⎣⎭D.53,42⎡⎫⎪⎢⎣⎭答案:B【分析】根据分段函数的特征,以及数列在*n N∈是单调递增数列,列式求解. 解:{}n a是单调递增数列,所以0a>,数列{}na是单调递增数列2233321142222316aaa a a⎧<<⎪⎪⇔⇔<<⎨⎪-⋅+<-⎪⎩.故选:B.点评:易错点点睛:本题考查分段函数的单调性和数列单调性的简单综合应用,本地的易错点是1n=和2n=时,数列的单调性,容易和函数222,3y x ax a x=-+<时函数单调性搞混,此时函数单调性和数列单调性的式子是不一样的,需注意这点.12.已知函数2()(2)x x f x e a e x =+--有两个零点,则实数a 取值范围是() A .(0,1) B .(1,)+∞ C .(),1-∞ D .(,1)-∞-答案:C【分析】函数2()(2)xx f x ea e x =+--有两个零点,即2x x a e xe -=-++,令()2x x g x e xe -=-++,求出导数,得到()g x 的单调性,从而得到答案.解:令2(2)02xx x x ea e x a e xe -+--=⇒=-++.即2x x a e xe -=-++有两个实数根,设()2xxg x e xe -=-++,即()2xxg x e xe-=-++的图象与y a =有两个交点.则21()(1)x xxxx e g x e x e e---'=-+-= 令2()1xh x x e=--单调递减.又(0)0h =,∴当(,0)x ∈-∞时,()0h x >,则()0g x '>,()g x 单调递增; 当(0,)x ∈+∞时,()0h x <,则()0g x '<,()g x 单调递减.max ()(0)1g x g ∴==.又当x →-∞时,()g x →-∞,当x →+∞时,()g x →-∞1a ∴<,故选:C .点评:关键点睛:本题考查根据函数的零点个数求参数的范围,解得本题的关键是将问题转化为2x x a e xe -=-++有两个实数根,即()2xxg x e xe -=-++的图象与y a =有两个交点,利用导数研究出()g x 的单调性,属于中档题. 二、填空题13.函数()sin 22f x x x =-的图象向右平移6π个单位长度得到()y g x =的图象.命题1p :()y g x =的图象关于直线2x π=对称;命题2p :,03π⎛⎫⎪⎝⎭是()y g x =的一个对称中心.则在命题1q :12p p ∨,2q :()12p p ∧⌝,3q :()()12p p ⌝∧⌝,4q :()12p p ⌝∨中,是真命题的为________.答案:1q ,4q【分析】首先利用辅助角公式将函数化为()2sin 23f x x π⎛⎫=-⎪⎝⎭,由三角函数的图像变化规律求出()g x 的解析式,根据三角函数的性质判断1p 与2p 真假,再由复合命题的真假性判断即可得到答案.解:由()sin 22sin 23f x x x x π⎛⎫=+=-⎪⎝⎭, 则()22sin 22sin 2633g x x x πππ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()2232x k k Z πππ-=+∈,解得()7212k x k Z ππ=+∈,显然2x π=不是()g x 对称轴,故1p 为假命题. 由()223x k k Z ππ-=∈,解得()23k x k Z ππ=+∈,显然,03π⎛⎫⎪⎝⎭是()g x 对称中心,故2p 为真命题.故1p ⌝为真命题,2p ⌝为假命题,故112:q p p ∨为真命题;()212:q p p ∧⌝为假命题;()()312:q p p ⌝∧⌝为假命题;()412:q p p ⌝∨为真命题;故答案为:1q ,4q点评:关键点睛:本题考查了辅助角公式、三角函数的性质、命题真假的判断以及命题的否定、真假,解题的关键是熟记三角函数的性质以及复合命题真假判断,属于基础题. 14.已知角α的终边经过点(,6)P x --,且3cos 5α=-,则11sin tan αα+=________.答案:12-【分析】由题可判断角α的终边落在第三象限,求出4sin 5α=-,4tan 3α=即可得出.解:点P 的纵坐标为6-,且3cos 05α=-<. ∴角α的终边落在第三象限,4sin 5α∴=-,4tan 3α=115321sin tan 4442αα∴+=-+=-=-. 故答案为:12-.15.已知数列{}n a 满足()2*21232n n n a a aa n +=∈N ,数列{}n b 满足cos 2n n n b a π⎛⎫= ⎪⎝⎭,则1232020b b b b ++++=________.答案:2022245-【分析】由题设可知当2n ≥时,2(1)(1)21212n n n a aa -+--=,两式作比,可求出数列{}n a 的通项公式为,进而求得2cos 2nn n b π⎛⎫= ⎪⎝⎭,由余弦函数的特点可知当n 为奇数时,0n b =;当42n k =+时,2n n b =-;当44n k =+时,2n n b =,再利用等比数列求和公式即得结果. 解:由题设22122n nn a aa +=,当2n ≥时,2(1)(1)21212n n n a aa -+--=. 2(2)n n a n ∴=≥,又12a =满足,2nn a ∴=,*n ∈N .2cos 2n n n b π⎛⎫∴= ⎪⎝⎭当n 为奇数时,0n b =;当42n k =+时,2n n b =-;当44n k =+时,2nn b =24682020123202022222b b b b ∴++++=-+-+++()2101010112022221(4)44245512⎡⎤----+-⎣⎦===--.故答案为:2022245-点评:易错点睛:本题考查数列求通项与等比数列求和,求数列通项公式常用的方法: (1)由n a 与前n 项和n S 的关系求通项公式,利用1(2)n n n a S S n -=-≥; (2)由n a 与前n 项积n T 的关系求通项公式,利用1(2)nn n a n T T -≥=;用这个方法一定要检验1n =时是否符合,考查学生的转化能力与运算求解能力,属于中档题.16.已知函数111,22()1(2),262x x f x f x x ⎧--≤⎪⎪=⎨⎪-<≤⎪⎩,则函数()()1g x xf x =-的零点个数是________. 答案:7【分析】化简得出函数()f x 的表达式,函数()()1g x xf x =-的实数根的个数;即方程1()f x x=的实数根的个数,作出函数()f x 和1yx =的图象,结合函数图象可得出答案.解:当2x ≤时,()31212111122xx f x x x x -⎧⎪≤≤⎪=--=⎨+<⎪⎪⎩当24x <≤时,()12314(2)53424x x f x f x xx -⎧⎪<≤⎪=-=⎨-<≤⎪⎪⎩当46x <≤时,()34518(2)75628x x f x f x xx -⎧⎪<≤⎪=-=⎨-<≤⎪⎪⎩函数()()1g x xf x =-的实数根的个数;即方程1()f x x=的实数根的个数. 在同一坐标系中作出()y f x =与1y x=的图象, 由()()()11112424f f f ===,,,如图,函数()y f x =的图象与1y x =的图象有7个交点.所以函数()()1g x xf x =-的零点个数是:7 故答案为:7点评:关键点睛:本题考查函数的零点个数,解答本题的关键是得出函数函数()f x 的表达式,作出函数()f x 的图象,将问题转化为方程1()f x x=的实数根的个数,即函数()y f x =的图象与1y x=的图象的交点个数,数形结合可解,属于中档题.三、解答题17.已知函数()2()log 41()xf x kx k =++∈R 为偶函数. (1)求k 的值; (2)已知函数()()22f x xx g x m +=+⋅,[0,1]x ∈,若()g x 的最小值为1,求实数m 的值.答案:(1)1k =-;(2)1m =-.【分析】(1)由函数是偶函数根据()()f x f x -=即可求出;(2)令2x t =,则函数化为2()1h t t mt =++,[]1,2t ∈,根据二次函数的性质讨论对称轴范围即可求解.解:解析:(1)显然()f x 定义域为R ,()f x 是偶函数,()()f x f x ∴-=,对x ∀<R恒成立, 即()()22og 41lo l g 41xx kx kx -+-=++对任意x ∈R 恒成立,()()2222412log 41log 41log log 4241x xxx x kx x ---+∴=+-+===-+,1k ∴=-.(2)由(1)知()421xxg x m =+⋅+,[]0,1x ∈,令2x t =,则[]1,2t ∈,原函数变为2()1h t t mt =++,[]1,2t ∈.①当12m-<,即2m >-时,min ()(1)21h t g m ==+=,1m ∴=-符合题意; ②当122m ≤-≤,即42m -≤≤-时,222min ()1112424m m mm h t g ⎛⎫=-=-+=-= ⎪⎝⎭, 0m ∴=(舍去); ③22m->,即4m <-时,min ()(2)521h t g m ==+=,2m ∴=-(舍去). 综上:1m =-.点评:关键点睛:本题考查已知函数最值求参数,解题的关键是将函数转化为2()1h t t mt =++,[]1,2t ∈,根据二次函数的性质求解.18.在ABC 中,ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,ABC 为锐角三角形,且满足条件cos sin 3a B A c +=. (1)求A ∠的大小;(2)若2a =,求ABC 周长的取值范围. 答案:(1)3A π=;(2)(2,6⎤+⎦.【分析】(1)利用正弦定理和正弦函数的两角和公式进行求解即可; (2)利用正弦定理,作边化角,则可整理得,周长4sin 26B π⎛⎫=++ ⎪⎝⎭,进而可求解 解:解:(1)sin sin a bA B=,且sin sin a B b A =, cos sin a B A c ∴+=,即cos sin a B B c=,即sin cos sin sin A B A B C =. 即sin cos sin sin()sin cos cos sin 3A B A B A B A B A B +=+=+. 即sin sin cos sin 3A B AB =,即tan A = 因为()0,A π∈,3A π∴=.(2)sin sin sin ab cA B C ===,sin 3b B ∴=,c C =, ∴周长2sin 2(sin sin )2sin sin 233333B C B C B B π⎡⎤⎛⎫=++=++=+-+ ⎪⎢⎥⎝⎭⎣⎦,131sin cos sin 2sin cos 24sin cos 232232222B B B B B B B ⎫⎫⎛⎫=+++=++=⋅+⋅+⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,4sin 26B π⎛⎫=++ ⎪⎝⎭.又ABC 为锐角三角形,,62B ππ⎛⎫∴∈ ⎪⎝⎭,2,633B πππ⎛⎫∴+∈ ⎪⎝⎭,sin 6B π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎝⎦,∴周长的范围为(2,6⎤⎦.点评:关键点睛:解题关键在于利用正弦定理作边化角,再利用正弦的两角和与差的公式进行化简求解,主要考查学生的运算能力,难度属于中档题19.已知2()3f x x x =-,数列{}n a 前n 项和为n S ,且()n S f n =.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 满足43nn na b =⨯,数列{}n b 的前n 项和为n T ,且对于任意*n ∈N ,总存在[]4,6x ∈,使得()n T mf x >成立,求实数m 的取值范围. 答案:(1)24n a n =-;(2)1,108. 【分析】(1)本题首先可根据题意得出23n S n n =-,然后通过1n n n a S S -=-即可求出数列{}n a 的通项公式;(2)本题首先可根据24n a n =-得出223n nn b -=⨯,然后根据1160b =-<、20b =以及当3n ≥时0n b >得出n T 的最小值为16-,再然后将()n T mf x >转化为[]min 1()6mf x ->,最后分为0m ≥、0m <两种情况进行讨论,即可得出结果. 解:(1)因为2()3f x x x =-,()n S f n =,所以23n S n n =-,当2n ≥时,()()21131n S n n -=---,124n n n a S S n -=-=-, 当1n =时,112a S ==-,也满足24n a n =-, 故24n a n =-.(2)因为24n a n =-,43nn na b =⨯, 所以2424323n n nn n b --==⨯⨯,1160b =-<,20b =,当3n ≥时,0n b >, 故12T T =,为n T 的最小值,n T 的最小值为16-,因为对于任意*n ∈N ,总存在[]4,6x ∈,使得()n T mf x >成立,所以[]min 1()6mf x ->, 因为[]4,6x ∈,2239()324f x x x x ⎛⎫=-=-- ⎪⎝⎭,所以[]()4,18f x ∈, 当0m ≥时,显然[]min 1()6mf x ->不成立; 当0m <时,[]min 1()6mf x ->,即1186m ->,解得1108m <-,故实数m 的取值范围为1,108. 点评:本题考查数列通项公式的求法以及数列前n 项和的最值的求法,可根据n a 与n S 之间的关系求通项公式,在计算时要注意1n =时是否满足求出的通项公式,考查区间内函数值域的求法,考查计算能力,是难题.20.一根长为L 的铁棒AB 欲水平通过如图所示的走廊(假定通过时贴着内侧的圆弧墙壁,如图),该走廊由宽度为1m 的平行部分和一个半径为2m 的四分之一圆弧转角部分(弧CD 段,圆心为O )组成.(1)设TOS θ∠=,试将L 表示为θ的函数; (2)求L 的最小值,并说明此最小值的实际意义. 答案:(1)3(sin cos )20,sin cos 2θθπθθθ+-⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭L ;(2)624;意义是能够通过这个直角走廊的铁棒的最大长度为()624m .【分析】(1)如图,过T 作TM OC ⊥于M ,过B 作BG TM ⊥于G ,利用三角函数,求解即可;(2)设sin cos 24x πθθθ⎛⎫=+=+ ⎪⎝⎭,则有21sin cos 2x θθ-=,可得函数(()223264()211x x L x x x x --==∈--,进而利用导数求出最值解:解析:(1)如图,过T 作TM OC ⊥于M ,过B 作BG TM ⊥于G ,2cos OM θ=,32cos BG θ=-,32cos sin BT θθ-=.同理32sin AN θ=-,32sin cos AT θθ-=.32cos 32sin 3(sin cos )20,sin cos sin cos 2L AT BT θθθθπθθθθθ--+-⎛⎫⎛⎫∴=+=+=∈ ⎪ ⎪⎝⎭⎝⎭ (2)设sin cos 24x πθθθ⎛⎫=+=+ ⎪⎝⎭,0,2πθ⎛⎫∈ ⎪⎝⎭,(2x ⎤∴∈⎦.21sin cos 2x θθ-=,(()223264()211x x L x x x x --∴==∈-- ()()222686()01x x L x x--+'=<-,()L x ∴在(2上单调递减min ()(2)624L x L ∴==.则L 最小值的实际意义是:在拐弯时,铁棒的长度不能超过()624m ,否则铁棒无法通过,也就说能够通过这个直角走廊的铁棒的最大长度为()624m .点评:关键点睛:(1)解题的关键在于作出直角,利用三角函数进行求解(2)解题关键在于,设sin cos 24x πθθθ⎛⎫=+=+ ⎪⎝⎭,得函数(()223264()211x x L x x x x --==∈--,进而利用导数求出最值; 本题难度属于基础题 21.函数21()ln ()2f x x x ax a =++∈R ,23()2x g x e x =+ (1)讨论()f x 在区间(0,2)上极值点个数;(2)若对于0x ∀>,总有()()f x g x ≤,求实数a 的取值范围. 答案:(1)答案见解析;(2)1a e ≤+.【分析】(1)求()f x 的导数()f x ',讨论a 的值得出()f x '的正负情况,判断()f x 的单调性和极值点问题;(2)()()f x g x ≤等价于2ln x e x x ax -+≥,由0x >,利用分离常数法求出a 的表达式,再构造函数求最值即可求出结果.解:解析:(1)由题意得211()x ax f x x a x x++'=++=.设()21x x ax ϕ=++,其24a ∆=-,对称轴方程为2ax =-,()0=1ϕ 若()210x x ax ϕ=++≥在(0,2)恒成立,即1a x x ⎛⎫≥-+⎪⎝⎭当(0,2)x ∈时,12x x+≥(当且仅当1x =时取等号), 即2a ≥-时,()210x x ax ϕ=++≥在(0,2)恒成立,所以此时()0f x '≥恒成立,此时()f x 在(0,2)单调递增,无极值点,当2a <-时,02ax =->,由()010ϕ=> 若()2520a ϕ=+<,即52a <-,所以方程210x ax ++=在(0,2)上有唯一实根0x此时可得()f x 在()00,x 单调递增,()02x ,单调递减,函数()f x 有一个极值点. 当52a =-时,方程2251102x ax x x ++=-+=在(0,2)上有唯一实数根12x = 此时可得()f x 在10,2⎛⎫⎪⎝⎭单调递增,1,22⎛⎫ ⎪⎝⎭单调递减,函数()f x 有一个极值点. 若022a<-<,()2520a ϕ=+>且240a ∆=->,即522a -<<-时方程210x ax ++=在(0,2)有两个相异的根1x ,()212x x x <,此时()f x 在()10,x 单调递增,()12,x x 单调递减,()2,2x 单调递增,有两个极值点. 综上:当2a ≥-时,无极值点. 当52a ≤-时,1个极值点. 当522a -<<-时,2个极值点.(2)()()f x g x ≤即2ln xe x x ax -+≥,0x,即2ln (0)x e x xa x x+-≤>恒成立令2ln ()(0)x e x xx x x ϕ+-=>,2(1)ln (1)(1)()x e x x x x x xϕ-+++-'=. 0x,(0,1)x ∴∈时,()0x ϕ'<,()x ϕ∴单调递减,(1,)x ∈+∞时,()0x ϕ'>,()x ϕ∴单调递增.min ()(1)1x e ϕϕ∴==+,1a e ∴≤+.点评:关键点睛:本题考查含参数的极值的讨论和根据恒成立求参数范围,解答本题的关键是讨论()210x x ax ϕ=++≥在(0,2)上零点的个数,从而得出函数的单调性,()()f x g x ≤恒成立,即转化为2ln (0)x e x xa x x +-≤>恒成立,进一步转化为求2ln ()(0)x e x xx x xϕ+-=>的最小值,属于中档题.22.若不等式(1)ln 1k x x x -≥+对于[1,)x ∀∈+∞恒成立; (1)求实数k 的取值范围; (2)已知ln ()xf x x=,若()f x m =有两个不同的零点1x ,2x ,且12x x <.求证:123x x e m+>-(其中e 为自然对数的底数) 答案:(1)k 2≤;(2)证明见解析.【分析】(1)令1()ln 1x h x x k x -=-+,求导222122(1)1()(1)(1)k x k x h x x x x x --+'=-=++,然后令2()2(1)1x x k x ϕ=--+,利用二次函数的性质进行求解即可 (2)根据题意,把问题转化,令ln ()xf x x=,21ln ()x f x x -'=,然后,得出()f x 在(0,)e 上单调递增,在(,)e +∞单调递减,且当x →+∞时,()0f x →,1(1,)x e ∴∈,2(,)x e ∈+∞,进而得出222(3)0mx me x e +-+>①,和211(3)0mx me x e +-+<②,进而利用①-②,可求解解:解析:(1)令1()ln 1x h x x kx -=-+,(1)0h =,222122(1)1()(1)(1)k x k x h x x x x x --+'=-=++ 令2()2(1)1x x k x ϕ=--+,当k 2≤时,(1)420k ϕ=-≥,且对称轴11x k =-≤,所以当1≥x 时,'()0h x ≥,()h x 在[)1,+∞上单调递增,所以()(1)h x h ≥,所以(1)ln 1k x x x -≥+ 当2k >时,(1)420k ϕ=-<,则必存在0x 使得()h x 在()01,x 上单调递减,又(1)0h =,所以不符合题意, 综上:k 2≤(2)()f x m =有两个不同的零点,即1212ln ln x x m x x ==,11ln x mx ∴=,22ln x mx =. 又ln ()xf x x=,21ln ()x f x x -'=, ()f x ∴在(0,)e 上单调递增,在(,)e +∞单调递减,且当x →+∞时,()0f x →, 1(1,)x e ∴∈,2(,)x e ∈+∞.由(1)知,当1≥x 时,2(1)ln 1x x x -≥+, 2x e >,21x e ∴>,22221ln 1x x e x e e⎛⎫- ⎪⎝⎭∴>+,即()2222ln 1x e x x e -->+,又22ln x mx =.()()()22212mx x e x e ∴-+>-,222(3)0mx me x e ∴+-+>① 同理:11121ln 1x e e x e x ⎛⎫- ⎪⎝⎭>+,即()11121ln e x x e x -->+,()()()11112mx e x e x -+>-,211(3)0mx me x e ∴+-+<②①-②得()()222121(3)0m x x me x x -+-->,即()()2112(3)0x x m x x me -++->⎡⎤⎣⎦210x x ->,()123m x x me ∴+>-,123x x e m∴+>-,得证. 点评:关键点睛:(1)解题的关键在于令1()ln 1x h x x kx -=-+后,通过导数进行判断()h x 的单调性,进而求解;(2)解题的关键在于利用()f x m =有两个不同的零点,即1212ln ln x x m x x ==,得到11ln x mx =,22ln x mx =,进而设出ln ()x f x x=,进而可求解;本题的难度属于困难。

2021届安徽省江南十校高三下学期3月一模联考理综化学试题(教师版含解析)

2021届安徽省江南十校高三下学期3月一模联考理综化学试题(教师版含解析)

2021届“江南十校”一模联考理科综合化学注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.可能用到的相对原子质量:Li7 O16 P31 S32 C1 35.5 K 39一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 中国古代炼丹术促进了金属冶炼技术的发展。

唐代《丹房镜源》中记载了炼制铅丹的方法:“熔铅成汁,下醋点之,滚沸时下硫一小块,续下硝少许······炒为末,成黄丹胡粉。

”下列叙述正确的是( )A. 上述过程中发生了置换反应B. “滚沸”中仅有物理变化C. “硝”是指硝酸D. “黄丹胡粉”是纯净物【答案】A【解析】【分析】【详解】A."熔铅成汁,下醋点之",则铅和醋酸发生置换反应生成醋酸铅和氢气,A正确;B.置换反应产生氢气,出现“滚沸”,B错误;C.炼丹家的“硝”是指硝石,不是硝酸,C错误;D.“炒为末”,则所得产品为粗产品、未经分离提纯,“黄丹胡粉”不可能是纯净物,D错误;答案选A。

2. 粗盐(含泥沙、CaCl2、MgSO4等)提纯得到的NaCl溶液中仍含有少量K+,需进一步提纯才可得到试剂级氯化钠,实验装置如图所示(已知:NaCl+H2SO4(浓)ΔHCl↑+NaHSO4).下列叙述错误的是( )A. 粗盐提纯实验需要NaOH溶液、BaCl2溶液、Na2CO3溶液、HCl溶液B. 关闭止水夹K,打开分液漏斗活塞,若液体不滴落,证明a中气密性良好C. 实验过程中,c中有固体析出D. d中加入NaOH溶液吸收尾气【答案】B【解析】【分析】【详解】A.粗盐提纯实验需要NaOH溶液除去镁离子、BaCl2溶液除去硫酸根离子、Na2CO3溶液除去钙离子和多余的钡离子、HCl溶液除去多余的氢氧根离子和碳酸根离子,A正确;B.有管子把分液漏斗上方和圆底烧瓶内气体连通、则气体处于恒压状态,关闭止水夹K,打开分液漏斗活塞,液体必然滴落,无法证明a中气密性是否良好,B不正确;C.实验过程中,氯化钠固体和浓硫酸反应产生的氯化氢气体进入c,氯离子浓度增大,则c中有氯化钠固体析出,C正确;D.氯化氢有毒,d中加入NaOH溶液吸收尾气,D正确;答案选B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档