安徽省江南十校2019届高三摸底联考数学理试题(图片版)
安徽省江南十校2019届高三3月份综合素质检数学(理)试卷

2019年03月26日xx 学校高中数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.设集合{}{}22,1,0,1,2,|1,,U A x x x U =--=>∈则( )A.{}2,2-B. {}1,1-C. {}2,0,2-D. {}1,0,1- 2.复数i 1iz =- (i 为虚数单位),则z = ( )A.B.C. 12D. 2 3.抛物线22y x =的焦点坐标是( ) A. 1,02⎛⎫ ⎪⎝⎭B. 10,2⎛⎫ ⎪⎝⎭C. 1,08⎛⎫ ⎪⎝⎭D. 10,8⎛⎫ ⎪⎝⎭4.在△ABC 中,角A 、B 、 C 的对边分别为a 、 b 、c ,若b =3,2c B C ==,则cos 2C 的值为( )A.B. 59C. 49D. 4 5.已知边长为1的菱形ABCD 中, 60?BAD ∠=,点E 满足2BE EC =,则AE BD ⋅的值是( )A. 13-B. 12- C. 14- D. 16- 6.我国南北朝时期的科学家祖暅,提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:如果两个等高的几何体,在等高处的截面积恒等,则这两个几何体的体积相等.利用此原理求以下几何体的体积:曲线()20y x y L =≤≤绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点 O 距离为l 的平面截几何体Z ,得截面圆的面积为2l π=π.由此构造右边的几何体1Z :其中AC ⊥平面α,AC L =,1AA α⊂,1πAA =,它与Z 在等高处的截面面积都相等,图中EFPQ 为矩形,且π,PQ FP l ==,则几何体Z 的体积为( )A. 2πLB. 21πL 2C. 21πL 2D. 31πL 2 7.已知函数2()cos()3f x x ωπ=+(0)ω> (ω的最小正周期为4π,则下面结论正确的是 A. 函数f ()x 在区间()0,π上单调递增B.函数f ()x 在区间()0,π上单调递减C.函数f ()x 的图象关于直线23x π=对称 D.函数() f x 的图象关于点2,03π⎛⎫ ⎪⎝⎭对称。
江南十校2019届高三第一次联考(理科)

2019年安徽省“江南十校”综合素质检测数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合}{2,1,0,1,2--=U ,{}U x x x A ∈>=,12,则=A C U{}2,2.-A {}1,1.-B {}2,0,2.-C {}1,0,1.-D2、复数iiz -=1(i 为虚数单位),则=-z22.A 2.B 21.C 2.D 3、抛物线22x y =的焦点坐标是⎪⎭⎫ ⎝⎛21,0.A ⎪⎭⎫ ⎝⎛0,21.B ⎪⎭⎫ ⎝⎛81,0.C ⎪⎭⎫ ⎝⎛0,81.D 4、在ABC ∆中,角C B A ,,的对边分别为c b a ,,,若C B c b 2,3,72===,则C 2cos 的值为37.A 95.B 94.C 47.D 5、已知边长为1的菱形ABCD 中,︒=∠60BAD ,点E 满足→→=EC BE 2,则→→•BD AE 的值是31.-A 21.-B 41.-C 61.-D5、我国南北朝时期的科学家祖暅,提出了计算体积的祖暅原理:“幂势既同,则积不容异.” 意思是:如果两个等高的几何体,在等高处的截面积恒等,则这两个几何体的体积相等.利用此原理求以下几何体的体积:曲线)0(2L y x y ≤≤=绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点O 距离为l 的平面截几何体Z ,的截面圆的面积为l l ππ=2)(.由此构造右边的几何体1Z :其中⊥AC 平面α,πα=⊂=11,,AA AA L AC ,它与Z 在等高处的截面面积都相等,图中EFPQ 为矩形,且l FP PQ ==,π,则几何体Z 的体积为2.L A π3.L B π 221.L C π 321.L D π7、已知函数)0)(32cos()(>+=ωπωx x f 的最小正周期为π4,则下面结论正确的是.A 函数)(x f 在区间()π,0上单调递增 .B 函数)(x f 在区间()π,0上单调递减 .C 函数)(x f 的图像关于直线32π=x 对称 .D 函数)(x f 的图像关于点⎪⎭⎫⎝⎛032,π对称 8、设函数1313)(2+-•=x x x x f ,则不等式0)log 1()log 3(22<-+x f x f 的解集是⎪⎪⎭⎫⎝⎛22,0.A ⎪⎪⎭⎫ ⎝⎛+∞,22.B ()2,0.C ()+∞,2.D9、已知双曲线14222=-by x 的左、右焦点分别为21,F F ,P 为右支上一点且直线2PF 与x 轴垂直,若21PF F ∠的角平分线恰好过点()0,1,则21F PF ∆的面积为12.A 24.B 36.C 48.D10. 已知函数()()xeInx x x g x k x x f -=+-=4,11(e 是自然对数的底数),若对()[]3,1,1,021∈∃∈∀x x ,使得)()(21x g x f ≥成立,则正数k 的最小值为21.A 1.B 324.-C 324.+D11. 如图,网格线上的小正方形的边长为1,粗线(实线、虚线)画出的某几何体的三视图, 其中的曲线都是半径为1的圆周的四分之一,则该几何体的表面积为20.A 420.π+B 4320.π+C 4520.π+D12. 计算机内部运算通常使用的是二进制,用1和0两个数字与电脑的通和断两种状态相对应。
[精品]江南片2019届高三数学上学期开学摸底联考试题理(含解析)
![[精品]江南片2019届高三数学上学期开学摸底联考试题理(含解析)](https://img.taocdn.com/s3/m/9c1a72dd84868762caaed5bc.png)
精品试卷安徽省江南片2019届高三开学摸底联考理科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则()A. B.C. D.【答案】C【解析】【分析】分别解绝对值不等式与分式不等式求得集合A,B,再求得,及。
【详解】由题意得,,∴,∴.故选C.【点睛】集合与集合运算,一般先化简集合到最简形式,如果两个集合都是连续型数集,则常利用数轴求集合运算结果,如果是离散型集合运算常运用枚举法或韦恩图。
2.下列命题错误的是()A. 命题“若,则方程有实数根”的逆否命题为:“若方程无实数根,则”;B. 若为真命题,则至少有一个为真命题;C. “”是“”的充分不必要条件;D. 若为假命题,则均为假命题【答案】D【解析】对于,命题“若,则方程有实数根”的逆否命题是:“若方程无实数根,则”,故命题正确;对于,因为的真假判断是有真则真,所以命题正确;时,,时,或,是“”的充分不必要条件,故命题正确;对于,若为假命题,则为假命题,为真命题,或为真命题,为假命题,或均为假命题,命题错误,故选D.【方法点睛】本题主要考查充分条件与必要条件,“且命题”“或命题”的真假,属于中档题.判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.精品试卷3.设,则“”是“直线与直线垂直”的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件【答案】B【解析】【分析】两条直线垂直的充要条件是,故可判断两个命题之间的关系.【详解】若,则两条直线分别为、,两直线斜率的乘积为,故两条直线相互垂直;若两条直线相互垂直,则,故或,故“”是两条直线相互垂直的充分不必要条件,选B.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若则”是真命题,“若则”是假命题,则是的充分不必要条件;若“若则”是真命题,“若则”是真命题,则是的充分必要条件;若“若则”是假命题,“若则”是真命题,则是的必要不充分条件;若“若则”是假命题,“若则”是假命题,则是的既不充分也不必要条件.4.已知函数则()A. B. 4C. -4D.【答案】A【解析】试题分析:,.考点:分段函数求值.5.已知p:函数在上是增函数,q:函数是减函数,则p是q的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】命题p:可得,命题q:可得,根据充分条件、必要条件的定义进行判断即可.【详解】函数在上是增函数,;函数是减函数,,,,即p是q的必要不充分条件故选A.【点睛】本题考查绝对值函数和指数函数的基本性质和单调性,考查了必要条件、充分条件的定义,属于基础题. 充要关系的几种判断方法:(1)定义法:若,,则是的充分而不必要条件;若,,则是的必要而不充分条件;若,,则是的充要条件;若,,则是的既不充分也不必要条件。
安徽省江南十校2019届高三第二次大联考(理科)数学含答案

江南十校2019届高三第二次大联考数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,为虚数单位,若复数,,则()A. B. 或 C. 或 D. 或2.已知集合,,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要3.下列四个命题中,错误的命题是()A. 等比数列的公比为,若,则数列为递增数列B. “若,则”的逆命题为真C. 命题“,均有”的否定是:“,使得”D. 中,角的对边分别为,则“”是“”的充要条件4.已知等差数列的前项和,且,,则等于()A. B. C. D.5.如图是一个三棱锥的三视图,其正视图,侧视图都是直角三角形,则该三棱锥的外接球的表面积与体积分别为()A. ,B. ,C. ,D. ,6.已知点,,是圆内一点,直线,,,围成的四边形的面积为,则下列说法正确的是()A. B. C. D.7.已知,则的值为()A. B. C. D. 28.已知实数满足,则的最大值为()A. 3B. 4C. 5D. 69.如图,四棱锥中,底面为菱形,侧面为等边三角形,分别为的中点,给出以下结论:①平面;②平面;③平面与平面交线为,则;④平面。
则以上结论正确的序号为()A. ①③B. ②③C. ①②③D. ①②③④10.已知实数满足,则函数的最大值为()A. -4B. 8C. 4D. 011.如图,已知点为等边三角形的外接圆上一点,点是该三角形内切圆上一点,若,,则的最大值为()A. B. 2 C. D.12.已知定义在上函数:满足,为函数的导函数,且无零点,则的值为()A. 0B. 2C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.各项均不为0的等差数列满足:,等比数列的前项和为,满足,且,则的值为__________.14.已知平面向量满足:,,,则向量在方向上的投影为__________.15.已知在直角坐标系中,,,若点满足,的中点为,则的最大值为__________.16.若,满足恒成立,则实数的取值范围为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知平面向量,,.(1)若,求的值;(2)若,求函数的最大值和最小值及相应的值.18.已知函数.(1)当时,求函数的极值;(2)讨论函数的单调性.19.已知是数列的前项和,,,对,,都有成立. (1)求;(2)若,求数列的前项和.20.如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值;(2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置.21.已知椭圆,为其短轴的一个端点,分别为其左右两个焦点,已知三角形的面积为,且.(1)求椭圆的方程;(2)若动直线与椭圆交于,为线段的中点,且,求的最大值.22.已知函数.(1)讨论函数的单调性;(2)若函数,在其定义域上有且只有两个零点,求的取值范围.江南十校2019届高三第二次大联考数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,为虚数单位,若复数,,则()A. B. 或 C. 或 D. 或【答案】C【解析】【分析】根据,从而得到复数的模的平方等于2,从而得到,利用复数的乘方运算,得到结果.【详解】由已知得:或-1,故,故选C.【点睛】该题考查的是有关复数的运算问题,涉及到的知识点有复数z与其共轭复数的乘积等于复数的模的平方,复数的乘法运算法则,熟练掌握基础知识是解题的关键.2.已知集合,,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要【答案】A【解析】【分析】利用对数式的真数大于零,得到函数的定义域,从而求得集合A和集合B,之后应用真包含关系,确定出是的充分不必要条件.【详解】依题意:,,,故选A.【点睛】该题考查的是有关充分必要条件的问题,涉及到的知识点有对数型函数的定义域的求解,充分必要条件的判断等,属于简单题目.3.下列四个命题中,错误的命题是()A. 等比数列的公比为,若,则数列为递增数列B. “若,则”的逆命题为真C. 命题“,均有”的否定是:“,使得”D. 中,角的对边分别为,则“”是“”的充要条件【答案】A【解析】【分析】对选项逐个分析,可以判断得出四个选项正确与否,从而得出正确的结果.【详解】对于A项,当首项小于零时,若,可得数列为递减数列,所以A项错误;对于B项,所给命题的逆命题为:若,则,所以B项正确;对于C项,根据全称命题的否定形式,可知其为正确的,所以C项正确;对于D项,根据三角形中大边对大角,以及余弦函数在区间上是减函数,所以D项正确;故选A.【点睛】该题考查的是有关判断命题正误的问题,涉及到的知识点有等比数列的单调性,不等式的性质,余弦函数的单调性,含有一个量词的命题的否定,熟练掌握基础知识是正确解题的关键.4.已知等差数列的前项和,且,,则等于()A. B. C. D.【答案】A【解析】【分析】首先设出等差数列的首项和公差,根据题中所给的条件,写出关于和的方程组,求解即可求得和的值,之后应用等差数列的通项公式写出.【详解】由已知条件得:,解得,,故,故选A.【点睛】该题考查的是有关等差数列的通项公式的问题,涉及到的知识点有等差数列的求和公式,等差数列的通项公式,属于简单题目.5.如图是一个三棱锥的三视图,其正视图,侧视图都是直角三角形,则该三棱锥的外接球的表面积与体积分别为()A. ,B. ,C. ,D. ,【答案】D【解析】【分析】根据题中所给的几何体的三视图,可以得到该三棱锥的顶点都在以2,1,2为长、宽、高的长方体的顶点处,所以求出对应长方体的外接球的半径即可.【详解】该三棱锥的外接球即长方体的外接球由已知,长方体的三条棱长为2,1,2,故可得表面积为,体积为,故选D.【点睛】该题考查的是有关几何体的外接球的体积的问题,涉及到的知识点有根据三视图还原几何体,长方体的外接球的半径,球的体积公式,属于中档题目.6.已知点,,是圆内一点,直线,,,围成的四边形的面积为,则下列说法正确的是()A. B. C. D.【答案】A【解析】【分析】首先根据第一象限内的点在圆内,从而求得,根据直线的对称性,可知四边形是直线与坐标轴围成的三角形的面积的四倍,结合三角形的面积公式以及重要不等式求得结果. 【详解】由已知,四条直线围成的四边形面积,故选A.【点睛】该题考查的是有关四边形的面积的问题,涉及到的知识点有点与圆的位置关系,四边形的分解,三角形的面积公式,重要不等式,熟练掌握基础知识是正确解题的关键.7.已知,则的值为()A. B. C. D. 2【答案】B【解析】【分析】首先利用正弦的差角公式对已知的式子进行化简,从而求得,之后直接利用两角和的正切函数化简求解即可.【详解】由,故,故选B.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有正弦函数的差角公式,同角三角函数关系式,正切的和角公式,属于简单题目.8.已知实数满足,则的最大值为()A. 3B. 4C. 5D. 6【答案】D【解析】【分析】首先根据题中所给的约束条件画出可行域,求出三角形区域的顶点坐标,代入比较得出最大值,即可得结果.【详解】画出可行域如图,其中,,,故当时,,故选D.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,需要准确地画出约束条件对应的可行域,找出最优解,将最优解代入目标函数,求得结果.9.如图,四棱锥中,底面为菱形,侧面为等边三角形,分别为的中点,给出以下结论:①平面;②平面;③平面与平面交线为,则;④平面。
安徽省江南十校2019届高三第二次大联考(理科)数学(解析版)

江南十校2019届高三第二次大联考数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,为虚数单位,若复数,,则()A. B. 或 C. 或 D. 或【答案】C【解析】【分析】根据,从而得到复数的模的平方等于2,从而得到,利用复数的乘方运算,得到结果.【详解】由已知得:或-1,故,故选C.【点睛】该题考查的是有关复数的运算问题,涉及到的知识点有复数z与其共轭复数的乘积等于复数的模的平方,复数的乘法运算法则,熟练掌握基础知识是解题的关键.2.已知集合,,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要【答案】A【解析】【分析】利用对数式的真数大于零,得到函数的定义域,从而求得集合A和集合B,之后应用真包含关系,确定出是的充分不必要条件.【详解】依题意:,,,故选A.【点睛】该题考查的是有关充分必要条件的问题,涉及到的知识点有对数型函数的定义域的求解,充分必要条件的判断等,属于简单题目.3.下列四个命题中,错误的命题是()A. 等比数列的公比为,若,则数列为递增数列B. “若,则”的逆命题为真C. 命题“,均有”的否定是:“,使得”D. 中,角的对边分别为,则“”是“”的充要条件【答案】A【解析】【分析】对选项逐个分析,可以判断得出四个选项正确与否,从而得出正确的结果.【详解】对于A项,当首项小于零时,若,可得数列为递减数列,所以A项错误;对于B项,所给命题的逆命题为:若,则,所以B项正确;对于C项,根据全称命题的否定形式,可知其为正确的,所以C项正确;对于D项,根据三角形中大边对大角,以及余弦函数在区间上是减函数,所以D项正确;故选A.【点睛】该题考查的是有关判断命题正误的问题,涉及到的知识点有等比数列的单调性,不等式的性质,余弦函数的单调性,含有一个量词的命题的否定,熟练掌握基础知识是正确解题的关键.4.已知等差数列的前项和,且,,则等于()A. B. C. D.【答案】A【解析】【分析】首先设出等差数列的首项和公差,根据题中所给的条件,写出关于和的方程组,求解即可求得和的值,之后应用等差数列的通项公式写出.【详解】由已知条件得:,解得,,故,故选A.【点睛】该题考查的是有关等差数列的通项公式的问题,涉及到的知识点有等差数列的求和公式,等差数列的通项公式,属于简单题目.5.如图是一个三棱锥的三视图,其正视图,侧视图都是直角三角形,则该三棱锥的外接球的表面积与体积分别为()A. ,B. ,C. ,D. ,【答案】D【解析】【分析】根据题中所给的几何体的三视图,可以得到该三棱锥的顶点都在以2,1,2为长、宽、高的长方体的顶点处,所以求出对应长方体的外接球的半径即可.【详解】该三棱锥的外接球即长方体的外接球由已知,长方体的三条棱长为2,1,2,故可得表面积为,体积为,故选D.【点睛】该题考查的是有关几何体的外接球的体积的问题,涉及到的知识点有根据三视图还原几何体,长方体的外接球的半径,球的体积公式,属于中档题目.6.已知点,,是圆内一点,直线,,,围成的四边形的面积为,则下列说法正确的是()A. B. C. D.【答案】A【解析】【分析】首先根据第一象限内的点在圆内,从而求得,根据直线的对称性,可知四边形是直线与坐标轴围成的三角形的面积的四倍,结合三角形的面积公式以及重要不等式求得结果.【详解】由已知,四条直线围成的四边形面积,故选A.【点睛】该题考查的是有关四边形的面积的问题,涉及到的知识点有点与圆的位置关系,四边形的分解,三角形的面积公式,重要不等式,熟练掌握基础知识是正确解题的关键.7.已知,则的值为()A. B. C. D. 2【答案】B【解析】【分析】首先利用正弦的差角公式对已知的式子进行化简,从而求得,之后直接利用两角和的正切函数化简求解即可.【详解】由,故,故选B.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有正弦函数的差角公式,同角三角函数关系式,正切的和角公式,属于简单题目.8.已知实数满足,则的最大值为()A. 3B. 4C. 5D. 6【答案】D【解析】【分析】首先根据题中所给的约束条件画出可行域,求出三角形区域的顶点坐标,代入比较得出最大值,即可得结果. 【详解】画出可行域如图,其中,,,故当时,,故选D.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,需要准确地画出约束条件对应的可行域,找出最优解,将最优解代入目标函数,求得结果.9.如图,四棱锥中,底面为菱形,侧面为等边三角形,分别为的中点,给出以下结论:①平面;②平面;③平面与平面交线为,则;④平面。
安徽省江南十校2019届高三3月份综合素质检数学(理)试题(解析版)

101110111110⋯
⏟
2019个 ,则该数的所有数字之和为
1
A. 1973
B. 1974
二、填空题(本大题共 1 小题,共 5.0 分)
C. 1975
D. 1976
2
C.
(0,1)
8
D.
(1,0)
8
4. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若������ = 2 7,c=3,B=2C,则 cos2C 的值为( )
7
5
4
7
A. 3
B. 9
C. 9
D. 4
⃗ =2⃗
⃗⋅⃗
5. 已知边长为 1 的菱形 ABCD 中,∠BAD=60°,点 E 满足������������ ������������,则������������ ������������的值是( )
=
18
8∑������ =
1������������
=
6
,
������
=
18
8∑������ =
1������������
=
4
,
8
∑������ =
1(������������
‒
������)2
=
72
,
8
∑������ =
1(������������
‒
������)2
=
18.045
,
8
∑������ =
年份
2011 2012 2013 2014 2015 2016 2017 2018
2019年安徽省江南十校综合素质检测高三数理试题及答案

2019安徽省“江南十校”综合素质测试数学(理科)解析及评分标准一、选择题1. 答案D 【解析】{2,2}A =−,故选D.2. 答案A 【解析】|i ||||||1i |2z z ====−,故选A. 3. 答案C 【解析】标准方程为212x y =,故选C. 4. 答案B 【解析】由正弦定理知,sin sin 22cos sin sin 3B C C C C ===,cos 3C ∴= 25cos 22cos 1,9C C ∴=−=故选B.5. 答案D 【解析】12AB AD ⋅=,2+3AE AB AD =,BD AB AD =−+ 212211(+)()1323326AE BDAB AD AB AD ⋅=⋅−+=−+−⨯=−,故选D.6. 答案C 【解析】11121=2ABC A B C V L π−⋅三棱柱,故选C7 .答案C 【解析】由已知得,24ππω=,112,()cos().223f x x πω∴==+故选C. 8 .答案A 【解析】由已知得()(),()f x f x y f x R −=−=且在上单调递增,22(3log )(log 1)f x f x ∴<−由可得223log log 1x x <−21log 2x ∴<−,解得:0x <<故选A.9 .答案B 【解析】记(1,0)A ,则2224||2b c PF a −==,2214||22b c PF a a +=+=,1||1F A c =+, 2||1F A c =−,由角平分线性质得21122||||404||||PF F A c c c PF F A =⇒−=⇒=,或作1AD PF ⊥于D ,由角平分线的对称性质知1112||||||||||24DF PF PD PF PF a =−=−==,2||||1AD AF c ==−,在1Rt ADF ∆中,222112||1,||||||AF c AF AF AD =+=+,解得4c = 故12212214||||24.22PF F c S F F PF c ∆−=⨯=⋅=故选B. 10 .答案C 【解析】由已知,min min ()()f x g x ≥,由已知可得2min ()1),f x =+min ()3g x =,21)3,4k ∴+≥∴≥−故选C.11 .答案B 【解析】由已知得原几何体是由一个棱长为2的正方体挖去一个四分之一圆柱及一个八分之一球体得到的组合体,216245420,484S ππππ∴=⨯−−⨯+⨯+=+表故选B. 12 .答案C 【解析】前44组共含有数字:44(441)1980⨯+=个,198044(20191980)2019441975,S ∴=−+−=−=故选C. 二、填空题13. 答案2 【解析】0,2x y ==时,min 3022z =⨯+= 14. 答案1− 【解析】22sin cos 1sin 4cos 4αααα⋅=+,2tan 14tan 4αα=+,tan 2α=,[]123tan =tan ()11123βαβα−+−==−+⨯. 15. 答案240 【解析】[]66()=()x y z x y z ++++,含2z 的项为24226T C()x y z =+⋅,所以形如2a b x y z 的项的系数之和为246C 2=240⋅.16.【解析】由已知动点P 落在以AB 为轴、该侧面与三棱锥侧面ACD 的交线为椭圆的一部分,设其与AC 的交点为P ,此时PB 最大,由P 到AB P 为AC 的中点,且2cos ,5BAC ∠=在BAP ∆中,由余弦定理可得 PB ==. 三、解答题17【解析】(1)由1232n n a a a a b ++++=①2n ≥时,123112n n a a a a b −−++++=②①−②可得:12()n n n a b b −=−(2)n ≥,∴3322()8a b b =−=∵12,0n a a =>,设{}n a 公比为q ,∴218a q =,∴2q =…………………………3分 ∴1222n n n a −=⨯=∴12312(12)222222212n nn n b +−=++++==−−,∴21n n b =−.…………6分(2)证明:由已知:111211(21)(21)2121n n n n n n n n n a c b b +++===−⋅−−−−. ………………9分 ∴12312231111111212121212121n n n c c c c +++++=−+−++−−−−−−− 111121n +=−<−………………………………………………………………………………12分18 【解析】(1)∵2AB =,1A B ,160A AB ∠=,由余弦定理:22211112cos A B AA AB AA AB A AB =+−⋅∠,即21112303AA AA AA −−=⇒=或1−,故13AA =.………2分取BC 中点O ,连接1,OA OA ,∵ABC ∆是边长为2的正三角形,∴AO BC ⊥,且AO =1BO =,由11A AB A AC ∆≅∆得到11A B AC ==1A O BC ⊥, 且1AO =, ∵22211AO A O AA +=,∴1AO A O ⊥,…………………4分 又BCAO O =,故1A O ⊥平面ABC ,∵1A O ⊂平面1A BC ,∴平面1A BC ⊥平面ABC . ………………………………………6分 (2)解法一:以O为原点,OB 所在的直线为x 轴,取11B C 中点K ,以OK 所在的直线为y 轴,过O 作1OG AA ⊥,以OG所在的直线为z 轴建立空间直角坐标系.则111(1,0,0),(1,3,0),(1,3,0),B B C A −111(2,3,0),(0,3,0),(1,2,2)BC BB BA ∴=−==−……………………………………………8分设平面11ABB A 的一个法向量为(,,1)m x y =,则 11302(2,0,1)0220m BB y x m y m BA x y ⎧⋅==⎧=⎪⎪⇒⇒=⎨⎨=⎪⋅=−++=⎪⎩⎩设所求角为θ,则11||22278sin .39||||133BC m BC m θ⋅===…………………………………………………12分1解法二:以O 为原点,OB 所在的直线为x 轴,以1OA 所在的直线为y 轴,以OA 所在的直线为z 轴建立空间直角坐标系.则1(1,0,0),(1,0,0)B A A C ,设1(,,)C x y z ,由11=C A CA可得1(C −,11(2,6,3),(1,0,3),(1,6,0)BC AB BA ∴=−−=−=−……………………8分设平面11ABB A 的一个法向量为(,,)m x y z =,则1130,6(6,1,2)260y m AB x z x m z m BA x y ⎧=⎧⋅=−=⎪⎪=⇒⇒=⎨⎨=⎪⋅=−+=⎪⎩⎩取 设所求角为θ,则11||26278sin .39||||133BC m BC m θ⋅===⋅…………………………………………………12分 解法三:由(1)111111332C ABA AOA V BCSBCAO A O −==⨯⨯⨯⨯= 设C 到平面11ABB A 的距离为h ,则由111//CC ABB A 面知1C 到平面11ABB A 的距离也为h ,则111111sin60332C ABA ABA V hSh AB A A h −===⨯⨯⨯⨯︒==………………………………9分 设所求角为θ,则1sin hBC θ===………………………………………………………12分 19【解析】(1)由数据可知,2012,2013,2016,2017,2018五个年份考核优秀,故ξ的所有可能取值为0123,,,. 0353381(0)56C C P C ξ===,12533815(1),56C C P C ξ=== 2130535333883010(2),(3)5656C C C C P PC C ξξ======………………………………………………………………4分 故ξ的分布列为:所求0123.565628288E ξ=⨯+⨯+⨯+⨯=………………………………………………………………6分(2)解法一:8882222111()72()8360i ii i i i x x x x x x ===−=⇒=−+⨯=∑∑∑888111()()34.5()()8226.5ii i i i i i i i xx y y x y x x y y x y ===−−=⇒=−−+⨯⨯=∑∑∑故去掉2015年的数据之后686483296,777x y ⨯−⨯−==== 2222255()736067672i i i i x x x x ≠≠−=−=−−⨯=∑∑5529()()7226.5637634.57i i i i i i x x y y x y x y ≠≠−−=−=−⨯−⨯⨯=∑∑…………………………9分 所以^34.50.4872b =≈,^^2934.56 1.27772a yb x =−⋅=−⨯≈ 从而回归方程为:^0.48+1.27.y x =…………………………………………………………………………12分 解法二: 因为66x x ==,所以去掉2015年的数据后不影响^b 的值, 所以^34.50.4872b =≈, …………………………………………………………………………9分 而去掉2015年的数据之后686483296,777x y ⨯−⨯−====, ^^2934.56 1.27772a yb x =−⋅=−⨯≈ 从而回归方程为:^0.48+1.27.y x =…………………………………………………………………………12分 注: 若有学生在计算^a 时用^0.48b ≈计算得^^290.486 1.267a yb x =−⋅=−⨯≈也算对。
安徽省皖江名校联盟2019届高三开年摸底大联考数学(理)试卷(有答案)

安徽省皖江名校联盟2019届高三开年摸底大联考数学(理)试卷本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷第1至第2页,第II 卷第2至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的姓名、座位号。
2. 答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第II卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可用铅笔在答题卡...规定位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效....、草稿...............,在试题卷纸上答题无效......。
4. 考试结束,务必将试题卷和答题卡一并上交。
第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合A={x∈R|x2-3x≥0},B={-2,2},则(R A)∩B=A.B. {-2}C. {2}D. {-2,2}2. 已知复数z满足(z+4i)·(1-i)=3+2i(i为虚数单位),则z的共轭复数所对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 设向量a=(m,0),b=(1,1),且|b|2=|a|2-|a-b|2,则m=A. -1B. 0C. 1D. 24. 安徽黄山景区,每半小时会有一趟缆车从山上发车到山下,某人下午在山上,准备乘坐缆车下山,则他等待时间不多于5分钟的概率为A.B.C.D.5. 已知公比为q的等比数列{a n}中,前4项的和为a1+14,且a2,a3+1,a4成等差数列,则公比q=A. 1B.C. 1或-1D. 2或6. 2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,下图为该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图,根据统计图,给出下列结论:①2018年9~12月,该市邮政快递业务量完成件数约1500万件;②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为A. 3B. 2C. 1D. 07. 《孙子算经》是中国古代重要的数学著作,书中有一问题:“今有方物一束,外周一匝有三十二枚,问积几何?”该著作中提出了一种解决此问题的方法:“重置二位,左位减八,余加右位,至尽虚减一,即得。