生物化学问答题
生化问答题

1.蛋白质的基本单位是?氨基酸的结构通式和结构特点分别是?答:①基本单位:氨基酸②结构通式:HR-C-COOHNH2③结构特点:组成蛋白质的20种氨基酸都属于a-氨基酸(脯氨酸除外)组成蛋白质的20种氨基酸都属于L-氨基酸(甘氨酸除外)2.维持蛋白质各级结构稳定的化学键分别是?答:①维持级结构的键是肽键②维持二级结构的键是氢键③维持三级结构的键主要是氢键、离子键和疏水相互作用④维持四级结构的键主要是氢键、离子键和疏水相互作用3.蛋白质的元素组成N的含量是多少?如果用氮含量计算蛋白质的含量?答:①16%②所测含氮量乘以6.254.蛋白质二级结构主要形式有哪些?答:a-螺旋、β-折叠、β-转角和无规卷曲5.、如何用生物化学的知识解释镰刀形红细胞贫血的发病机制?答:因为蛋白质的-级结构是空间结构的基础,也是蛋白质行使功能的基础,而镰刀形红细胞贫血患者的血红蛋白B键第6位谷氨酸被缬氨酸取代,一级结构中重要部位的氨基酸改变会引起功能的改变,使血红蛋白表面产生-一个疏水小区,引起血红蛋白聚集成不落性的纤维素,导致红细胞变性成镰刀型而极易破碎,产生贫血.6、核酸的基本单位和基本组成成分分别是?答:①基本单位:核苷②成分:碱基、戊糖、磷酸7、维持DNA双螺旋结构的稳定的化学键分别是?答:主要是碱基对之间的氢键和碱基平面之间的碱基堆积力.8.mRNA、tRNA、rRNA的功能分别是?tRNA的二级结构和三级结构分别是?答:①功能:mRNA:指导蛋白质生物合成的模板tRNA:在蛋白质生物合成中转运氨基酸rRNA:蛋白质生物合成的场所②二级结构:三叶草形(四臂四环组成)三级结构:倒L形9、酶促反应的特点是?答:高效性,特异性,可调节性,高度不稳定性10.酶原的定义、酶原微活的实质、酶原与酶原激活的生理意义?举例说明答①定义:有些酶在细胞内合成或初分泌时,没有催化活性,这种酶的无活性前体称为酶原②实质:切断酶原分子中特异肽键或去除部分肽段3.生理意义(举例),酶奶是无活性的酶的前体,经水解激活后才表现出活性。
生物化学实验问答题

8.双倒数法测定米氏常数的实验中,决定实验成败的因数有哪些?
答:1)实验应在初速度时间范围内进行;2)配置不同浓度的底物溶液浓度时应该用同一母液进行稀释,以保证底物浓度的准确性;3)各种试剂的加入时间,加入量应非常精确;4)要严格控制酶促反应时间做到准确无误;5)要将酶液稀释到恰当的浓度;6)作图要准确。
1.为什么提取酶液应该在0-4°C下进行?测定酶活力时为什么要在40-45°C条件下水解淀粉?
答:应为在0-4°C环境下酶能保持其活性。因为酶的最适温度区间是40-45°C,此时酶的活性最高,测得的酶活力是真正的酶活力。
2.小麦萌发过程中淀粉酶活性升高的原因和意义是什么?
答:温度与空气湿度使酶活力上升。意义:种子萌发产生酶使淀粉水解产生葡萄糖提供能量。
9.测定酶活力应该在酶促反应进程曲线的哪段时间范围内进行?为什么?
答:在初速度范围内进行。因为此时酶表现出最大活力,最能反映出酶的最大活力。
10.空白管中为什么最后才加酶液?你还可以设计出另一种空白管吗?
答:避免酶催化底物反应生成产物。可以先加酶液,再加Na2CO3(aq),Folin-酚稀释溶液,最后再加磷酸苯二纳溶液。
答:说明其反应速率不断减慢。原因:1)随时间增加,酶活力降低。2)底物的量不断减少,减慢反应速率。3)产物浓度增加导致其反应增大。
6.加入Na2CO3的作用什么?
答:1)酶活力失去活性终止反应。2)为后面显色反应营造碱性环境。
7.为什么要用双倒数作图法而不是直接用米氏曲线来求米氏常数?
答:1)用米氏曲线作图所得Vmax为近似值,所得的Km为近似值不够准确。用双倒数做法作图可以准确计算出Vmax和Km的值;2取消其它试剂对实验结果的影响。
生物化学问答题

1、试述碱基,核苷酸和核酸在结构上的关系答:核酸的组成单元是核苷酸,(1分)核苷酸是由核苷和磷酸组成(2分),而核苷又是由核糖和碱基组成(2分),碱基分为嘌呤和嘧啶(2分),共有A、G、C、T、U五种(3分)。
3、论述tRNA的二级结构特征答:tRNA的二级结构特征是三叶草结构(1分),主要特征是四环四臂,包括是反密码子环、额外环、TΨC环、二氢尿嘧啶环(4分),四臂是反密码子臂、TΨC臂、二氢尿嘧啶臂、氨基臂(4分)。
4、写出EMP途径的限速酶及所催化的反应?答:EMP途径的限速酶及所催化的反应有三步(2分),第一步:葡萄糖在已糖激酶催化下生成6-磷酸葡萄糖,消耗1分子ATP(2分);第二步:6-磷酸果糖在磷酸果糖激酶催化下生成1,6-二磷酸果糖,消耗1分子ATP(2分);第三步:磷酸烯醇式丙酮酸在丙酮酸激酸催化下生成丙酮酸,生成1分子ATP(2分)。
5、试述一分子十八碳硬脂酸彻底氧化成CO2和H2O的化学过程,并计算产生多少ATP答:十八碳软脂酸彻底氧化成CO2和H2O的化学过程包括二部分,即β氧化,三羧酸循环:1、 β氧化过程:1、脂肪酸的活化:脂肪酸在ATP供能下活化生成酯酰辅酶A,消耗两分子ATP;2、脱氢:酯酰辅酶A在酯酰辅酶A脱氢酶催化下生成反烯酯酰辅酶A,同时生成一分子FADH;3、水化:反烯酯酰辅酶A在水化酶催化下生成β羟脂酰辅酶A;4、脱氢:β羟脂酰辅酶A在β羟脂酰辅酶A脱氢酶变成β酮脂酰辅酶A生成一分子NADH;5、硫脂解:β酮脂酰辅酶A与辅酶A进行硫解成乙酰辅酶A和少两个碳的脂酰辅酶A。
2、 三羧酸循环:1、乙酰辅酶A与草酰乙酸在柠檬酸合成酸催化合成柠檬酸;2、柠檬酸在柠檬酸异构酶生成异柠檬酸。
3、异柠檬酸在异柠檬脱氢酶催化下生成α酮戊二酸并生一分子NADH;4、α酮戊二酸在α酮戊二酸脱氢酶催化下琥珀酰辅酶A并生一分子NADH;5、琥珀酰辅酶A生成琥珀酸,并生成一分子GTP。
生物化学 问答题

1.酮体生成的意义:酮体是肝脏输出能源的一种形式。
并且酮体可通过血脑屏障,是脑组织的重要能源。
酮体利用的增加可减少糖的利用,有利于维持血糖水平恒定,节省蛋白质的消耗。
2.氨基酸脱氨基作用有哪几种方式?转氨基作用,氧化脱氨基,联合脱氨基,非氧化脱氨基3.简述一碳单位的定义、来源和生理意义某些氨基酸在分解代谢过程中产生的只含有一个碳原子的基团,称为一碳单位。
能作为合成嘌呤和嘧啶的原料,把氨基酸代谢和核酸代谢联系起来需要四氢叶酸载体。
4.维生素B12缺乏与巨幼红细胞贫血的关系是什么?由叶酸、维生素B12缺乏引起的一种大细胞性贫血。
这种贫血的特点是骨髓里的幼稚红细胞增多,红细胞核发育不良,成为特殊的巨幼红细胞。
5.鸟氨酸循环的主要过程及生理意义是什么?氨基甲酰磷酸的合成,瓜氨酸的合成,精氨酸代琥珀酸的生成,精氨酸的生成,精氨酸水解生成尿素最重要的意义是将体内蛋白质代谢产生的较高毒性的氨转化为低毒的尿素,从而排出体外。
鸟氨酸循环也叫尿素循环。
6.补救合成的生理意义补救合成节省从头合成时的能量和一些氨基酸的消耗。
体内某些组织器官,如脑、骨髓等只能进行补救合成。
7. 列举影响核苷酸合成的抗代谢物及其抗癌作用原理.6-巯基鸟嘌呤与次黄嘌呤的结构相似,可抑制次黄嘌呤核苷酸向腺苷酸和鸟甘酸的转变。
8.为什么说细胞水平的调节是机体代谢调节的基础?细胞水平调节主要通过细胞内代谢物浓度的变化,对酶的活性及含量进行调节,是最基础的代谢调节。
9.机体代谢调节方式有多种,相互之间如何联系?物质代谢通过各代谢途径的共同中间产物相互联系,但在相互转变的程度上差异很大,有些代谢反应是不可逆的。
乙酰CoA 是糖、脂、氨基酸代谢共有的重要中间代谢物,三羧酸循环是三大营养物最终代谢途径,是转化的枢纽。
10.平时与饥饿时机体内能量主要来源有何不同平时能量主要来源于对葡萄糖的利用在饥饿时整体水平的代谢调节发挥作用:(1)糖代谢变化糖异生加强,组织对葡萄糖利用降低(2)蛋白质代谢变化分解加强,氨基酸异生成糖(3)脂代谢变化脂肪动员加强,酮体生成增多11.血浆蛋白质的功能。
生物化学 问答题

1、请阐述蛋白质二级结构α-螺旋、β-折叠的结构特征。
(重要)α-螺旋(1)多肽链主链围绕中心轴有规律的螺旋式上升,形成右手螺旋;(2)氨基酸侧链伸向螺旋外侧;(3)每3.6个氨基酸残基螺旋上升一周,螺距为0.54nm;(4)靠氢键维持稳定,氢键的方向和螺旋轴平行。
β-折叠(1)主链骨架伸展成锯齿状;(2)氨基酸侧链依次伸向折叠的上下两端;(3)由若干条肽段或肽链平行或反平行排列组成片状结构;(4)相邻两条β-折叠靠氢键维持稳定,氢键的方向和肽链方向垂直。
2、试述DNA与RNA的异同点(重要)(1)从分子组成上看:DNA分子的戊糖为脱氧核糖,碱基为A、T、G、C;RNA分子的戊糖为核糖,碱基为A、U、G、C。
(2)从结构上看:DNA一级结构是由脱氧核糖核苷酸通过磷酸二酯键相连,二级结构是双螺旋;RNA一级结构是由核糖核苷酸通过磷酸二酯键相连,二级结构以单链为主,也有少量局部双螺旋结构。
(3)从功能方面看:DNA为遗传物质基础,含有大量的遗传信息;RNA的功能多样化,mRNA是蛋白质生物合成的直接模板;tRNA的功能是转运氨基酸;rRNA主要构成蛋白质的合成场所;snmRNAs参与基因表达的调控。
(4)从存在部位看:DNA主要存在于细胞核,少量存在于线粒体;RNA存在于细胞核,细胞质和线粒体中。
3、简述B-DNA双螺旋结构模型的要点。
(重要)(1)DNA是反向平行的互补双链结构。
在双链结构中,亲水的脱氧核糖基和磷酸骨架位于双链外侧,碱基位于内侧,碱基之间互补配对,以氢键结合,其中腺嘌呤与胸腺嘧啶配对,形成两个氢键,鸟嘌呤与胞嘧啶配对,形成三个氢键。
由于核苷酸连接过程中严格的方向性和碱基结构对氢键形成的限制,两条多聚核苷酸链的走向呈反向平行。
(2)DNA双链是右手螺旋结构。
螺旋直径为2nm,每旋转一周包含10.5对碱基,螺距为3.54nm。
(3)碱基间的氢键维系横向稳定性,碱基平面间的疏水性堆积力维持纵向稳定性,碱基堆积力对于双螺旋的稳定性更为重要。
生物化学试题及答案 (6)

生物化学试题及答案一、选择题1.生物大分子的共有特点是() A. 构成元素多为C、H、O、N、P等B. 构成元素多为C、H、O、N等C. 构成元素多为O、N等D. 构成元素多为C、O、N等2.氨基酸的结构中不包括()A. α-氨基酸B. β-氨基酸C. γ-氨基酸D. δ-氨基酸3.下列哪种生物分子不属于多聚体() A. DNA B. RNA C. 蛋白质 D. 糖类4.下列那种氨基酸在生物体内不能合成() A. 丝氨酸 B. 色氨酸 C. 酪氨酸 D. 酸性氨基酸5.下列哪种物质不属于核酸的组成单元() A. 核苷 B. 核苷酸 C. 核甘酸D. 核小体二、填空题6.生物大分子的特点是多_______。
7.表示核酸单体的单位是_______。
8.蛋白质由_______大分子组成。
9.糖类可以通过_______反应形成聚合物。
10._______酸性氨基酸在生物体内不能合成。
三、简答题11.生物大分子的共有特点是什么?(回答不少于50字)答:生物大分子的共有特点是构成元素多为碳、氢、氧、氮、磷等元素。
这些元素构成了生物大分子的主体骨架,赋予生物大分子特殊的结构和性质。
12.请简要说明氨基酸的结构组成。
(回答不少于50字)答:氨基酸的结构组成包括氨基(-NH2)、羧基(-COOH)以及一个R基团。
其中,氨基和羧基是氨基酸的功能团,而R基团则决定了氨基酸的种类。
氨基酸通过R基团的不同而具有不同的性质和功能。
13.请简要说明生物大分子和非生物大分子的区别(回答不少于50字)答:生物大分子和非生物大分子的区别主要体现在构成元素和结构特点上。
生物大分子的构成元素多为碳、氢、氧、氮、磷等元素,而非生物大分子的构成元素较为简单。
此外,生物大分子的结构特点复杂多样,能够发挥多种生物功能,而非生物大分子的结构相对简单,功能有限。
四、问答题14.请分别列举DNA和RNA的结构特点并比较它们之间的区别。
(回答不少于100字)答:DNA(脱氧核糖核酸)是生物体内存储遗传信息的分子。
生物化学问答题试题

问答(50%):1> 基因载体需要具备的条件答:a具有自我复制能力b含有多种限制性酶的单一识别序列,供外源基因插入c含有易于携带的选择标记d应该尽可能的小e使用安全2>种子发芽时脂肪酸转化成糖的一般过程是,写出主要的途径答:植物细胞内脂肪酸氧化分解为乙酰CoA 之后,在乙醛酸体内生成琥珀琥珀酸、乙醛乙醛酸和苹果酸;此琥珀酸可用于糖的合成,该过程称为乙醛酸循环。
乙醛酸循环是三羧酸循环的修改形式。
和TCA的区别:1.两步不同的反应。
2. 结果是2个乙酰CoA进入循环,释放出一个琥珀酸3>肿瘤细胞中,氨甲酰磷酸合成酶(carbamyl phosphate synthetase)在urea cycle和嘧啶合成过程中酶的活性怎么变化答:肿瘤细胞由于恶性增殖,需要巨大的能量供应以确保其代谢.因此会有大量的蛋白质降解,产生氨基酸,再分解放能维持能量供应.这一过程必然产生过多的氨,需要通过尿素循环排出,而cps1催化的氨甲酰磷酸合成反应正是折椅循环的限速步骤.相对于正常细胞,肿瘤细胞的高速增殖必然是cps1活性极度升高的结果.同时恶性增殖需要核苷酸,于是嘧啶的大量合成成为必须,这也使得承担嘧啶合成的cps2活性必然有提高4>(10%)合成代谢和分解代谢不是简单的逆反应,举一例论述糖酵解和糖异生,其中合成代谢糖酵解途径中有三个步骤是不可逆的,所以在其相对应的分解代谢糖异生途径之中,必须绕过这3个途径.a PEP生成丙酮酸b果糖-1,6-二磷酸生成果糖-6-磷酸c葡糖糖-6-磷酸生成葡萄糖.这三部反应不可逆,合成和分解途径分别由不同的酶催化并且有着不同的反应机理,a步骤通过羧化和脱羧化实现底物的活化,与分解途径完全相异,而bc途径则使用与原途径完全不同的酶来实现反应.因此,合成与分解代谢不是简单的逆反应,其中的步骤都存在变化.5>phaseMet13:A%&T%&G%&C%=100,what do you tell about Met136>试写出下列酶的其中三个共同点:DNA polymaerase,RNA polymerase,reverse transcriptase,RNA replicatase答:a 催化的反应都需要核苷酸或脱氧核苷酸做为底物 b 都有若干亚基构成 c 催化反应均需要模板 d 催化的合成都是由5端到3端.7>Ecoli中,怎么区别启动子AUG和其它AUG答:在mRNA中AUG上游大约10个碱基处,有一段富含嘌呤碱基的SD 序列可与核糖体的嘧啶碱基互补识别,以帮助AUG 处开始翻译,SD序列上发生增强碱基配对的突变可以加强翻译.以此机制区别启动子AUG和其它部位的AUG.8>无糖饮食中,为什么奇数C脂肪酸比偶数C好?答:无糖饮食时,机体对糖的需要比较大,而奇数脂肪酸进行β-氧化丙酰CoA,而后经3部反应,转化为琥珀酸CoA从而进入三羧酸循环,转化成其他物质,从而弥补无糖饮食时机体对糖及其相关代谢产物的需要9>one gene-one enzyme 这种说法正确否?为什么?答:不正确.在原核生物中,某一基因片断转录的mRNA可能有多个核糖体结合位点,因此可以产生多种遗传密码使得不同的蛋白可以得到翻译,是多用基因.因此并非一个基因对应一种酶.与此同时,酶亦可以对应若干个基因,因为同一氨基酸可以有多个遗传密码子,从而有多种基因与之对应.因此也并非一种酶对应一种基因10>英文题:为什么DNA保守性比RNA要好?试从生物角度推断产生这种情况的可能性.答:首先考虑到绝大多数生物以DNA作为生命的遗传物质,因此客观上需要DNA具有比较高度的保守性,严格遵守复制的规则,确保遗传特性的稳定传递,以保持物种遗传的稳定性,相比之下,以RNA作为遗传物质的生物相对少了很多,而且大都出现在较为低等的生物体内,并且这些生物所处环境要求他们本身具有较大的可变异性,因此RNA的保守性较DNA 较差,这也是生物对环境的一种适应.从结构上看,前者具有双螺旋结构,依靠碱基配对原则复制,并且具有一系列的差误检验和校正机制,从自身结构上保证了自我复制的高保守性.后者为单链结构,且校正修复机制不如前者完善,保守性自然不及前者.试题一、填空题(每题1分,共30 分)1.转氨酶的辅酶是。
生物化学问答题

⽣物化学问答题第⼀章蛋⽩质1、为何蛋⽩质的含氮量能表⽰蛋⽩质相对量?实验中⼜是如何依此原理计算蛋⽩质含量的?(第⼀章 P8)答:尽管蛋⽩质的种类很多,结构各异,但是各种蛋⽩质的含氮量很接近,平均为16%,因此测定⽣物样品的含氮量就可以推算出蛋⽩质的⼤致含量。
常⽤公式为:每克样品含氮克数×6.25×100=100g样品中的蛋⽩质含量(g%)2、蛋⽩质的基本组成单位是什么?其结构特征是什么?(第⼀章 P8)答:蛋⽩质的基本组成单位是氨基酸,组成⼈体蛋⽩质的氨基酸仅有20种,均为L-α-氨基酸,即在α-碳原⼦上连有⼀个氨基、⼀个羧基、⼀个氢原⼦和⼀个侧链(R)。
每个氨基酸的侧链各不相同,是其表现不同性质的结构特征。
3、何谓肽键和肽链及蛋⽩质的⼀级结构?(第⼀章 P11 P13)答:⼀个氨基酸的α-羧基和另⼀个氨基酸的α-氨基,进⾏脱⽔缩合反应,⽣成的酰胺键称为肽键。
肽键具有双键性质。
由许多氨基酸通过肽键相连⽽形成长链,称为肽链。
肽链有两端,游离α-氨基的⼀端称为N-末端,游离α-羧基的⼀端称为C-末端。
肽链中的氨基酸分⼦因脱⽔缩合⽽基团不全,被称为氨基酸残基。
蛋⽩质⼀级结构是指多肽链中氨基酸的排列顺序,即从N-端⾄C-端的氨基酸排列的顺序,其主要化学键为肽键。
此外,蛋⽩质分⼦中的⼆硫键也属于⼀级结构范围。
4、什么是蛋⽩质的⼆级结构?它主要有哪⼏种?各有何结构特征?(第⼀章 P14~18)答:蛋⽩质⼆级结构是指蛋⽩质分⼦中某⼀段肽链的局部空间结构,也就是该段多肽链主链⾻架原⼦的相对空间位置,并不包括氨基酸残基侧链的构象。
它主要有α-螺旋、β-折叠、β-转⾓和⽆规卷曲四种。
①在α-螺旋结构中,多肽链主链围绕中⼼轴以右⼿螺旋(顺时针)⽅式旋转上升,每隔3.6个氨基酸残基上升⼀圈,螺距为0.54nm。
氨基酸残基的侧链伸向螺旋外侧。
每个肽键的亚氨基氢与第四个肽键的羰基氧形成氢键,氢键的⽅向与螺旋长轴基本平衡,以维持α-螺旋稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学解答题(一档在手万考不愁)整理:机密下载有淀粉酶制剂1g,用水溶解成1000ml酶液,测定其蛋白质含量和粉酶活力。
结果表明,该酶液的蛋白质浓度为ml;其1ml的酶液每5min分解0.25g淀粉,计算该酶制剂所含的淀粉酶总活力单位数和比酶活(淀粉酶活力单位规定为:在最适条件下,每小时分解1克淀粉的酶量为一个活力单位)。
答案要点:①1ml的酶液的活力单位是60/5×1=3(2分)酶总活力单位数是3×1000=3000U(1分)②总蛋白是×1000=100 mg(1分),比活力是3000/100=30(1分)。
请列举细胞内乙酰CoA的代谢去向。
(5分)答案要点:三羧酸循环;乙醛酸循环;从头合成脂肪酸;酮体代谢;合成胆固醇等。
(各1分)酿酒业是我国传统轻工业的重要产业之一,其生化机制是在酿酒酵母等微生物的作用下从葡萄糖代谢为乙醇的过程。
请写出在细胞内葡萄糖转化为乙醇的代谢途径。
答案要点:在某些酵母和某些微生物中,丙酮酸可以由丙酮酸脱羧酶催化脱羧变成乙醛,该酶需要硫胺素焦磷酸为辅酶。
乙醛继而在乙醇脱氢酶的催化下被NADH还原形成乙醇。
葡萄糖+2Pi+2ADP+2H+ 生成2乙醇+2CO2+2ATP+2H2O(6分)脱氢反应的酶: 3-磷酸甘油醛脱氢酶(NAD+),醇脱氢酶(NADH+H+)(2分)底物水平磷酸化反应的酶:磷酸甘油酸激酶,丙酮酸激酶(Mg2+或K+)(2分)试述mRNA、tRNA和rRNA在蛋白质合成中的作用。
答案要点:①mRNA是遗传信息的传递者,是蛋白质生物合成过程中直接指令氨基酸掺入的模板。
(3分)②.tRNA在蛋白质合成中不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。
(4分) ③. rRNA与蛋白质结合组成的核糖体是蛋白质生物合成的场所(3分)。
物合成过程中直接指令氨基酸掺入的模板。
(3分)②.tRNA在蛋白质合成中不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。
(4分) ③. rRNA与蛋白质结合组成的核糖体是蛋白质生物合成的场所(3分)。
为什么说三羧酸循环是糖、脂、蛋白质三大物质代谢的共同通路?哪些化合物可以被认为是联系糖、脂、蛋白质和核酸代谢的重要环节?为什么?答案要点:①三羧酸循环是糖、脂、蛋白质三大物质代谢的共同氧化分解途径(2分);三羧酸循环为糖、脂、蛋白质三大物质合成代谢提供原料(1分),要举例(2分)。
②列举出糖、脂、蛋白质、核酸代谢相互转化的一些化合物(3分),糖、脂、蛋白质、核酸代谢相互转化相互转化途径(2分)写出天冬氨酸在体内彻底氧化成CO2和H20的反应历程,注明其中催化脱氢反应的酶及其辅助因子,并计算1mol天冬氨酸彻底氧化分解所净生成的ATP的摩尔数。
答案及要点:天冬氨酸+α酮戊二酸--→(谷草转氨酶)草酰乙酸+谷氨酸谷氨酸+NAD+H2O→(L谷氨酸脱氢酶)α酮戊二酸+NH3+NADH 草酰乙酸+GTP→(Mg、PEP羧激酶)PEP+GDP+CO2 PEP+ADP→(丙酮酸激酶)丙酮酸+ATP 丙酮酸+NAD+COASH→(丙酮酸脱氢酶系)乙酰COA+NADH+H+CO2 乙酰COA+3NAD+FAD+GDP+Pi+2H2O→(TCA循环)2CO2+COASH+3NADH+3H+FADH2+GTP ①耗1ATP 生2ATP 5NADH+1FADH2+1GTP=1ATP净生成1+2+×5+×1=15ATP②耗1ATP生成2ATP+3NADH+1FADH+1NADPH净生成1+2+×4+1•5×1= 脱氢反应的酶:L-谷氨酸脱氢酶(NAD+),丙酮酸脱氢酶系(CoA,TPP,硫辛酸,FAD,Mg2+),异柠檬酸脱氢酶(NAD+,Mg2+),a-酮戊二酸脱氢酶系(CoA,TPP,硫辛酸,NAD+,Mg2+),琥珀酸脱氢酶(FAD,Fe3+),苹果酸脱氢酶(NAD+)。
(3分)共消耗1ATP,生成2ATP、5NADH和1FADH,则净生成:-1+2+3×5+2×1=18ATPDNA双螺旋结构有什么基本特点?这些特点能解释哪些最重要的生命现象?答案要点:a. 两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成,螺旋表面有一条大沟和一条小沟。
(2分)b. 磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按A-T配对,之间形成2个氢键,G-C配对,之间形成3个氢键(碱基配对原则,Chargaff定律)。
(2分)c. 螺旋直径2nm,相邻碱基平面垂直距离,螺旋结构每隔10个碱基对重复一次,间隔为。
(2分)该模型揭示了DNA作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这是DNA复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础。
该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石。
为什么说三羧酸循环是糖、脂、蛋白质三大物质代谢的共同通路?哪些化合物可以被认为是联系糖、脂、蛋白质和核酸代谢的重要环节?为什么?答案要点:①三羧酸循环是糖、脂、蛋白质三大物质代谢的共同氧化分解途径(2分);三羧酸循环为糖、脂、蛋白质三大物质合成代谢提供原料(1分),要举例(2分)。
②列举出糖、脂、蛋白质、核酸代谢相互转化的一些化合物(3分),糖、脂、蛋白质、核酸代谢相互转化相互转化途径(2分)。
乙酰CoA可进入哪些代谢途径?请列出。
(5分)糖的有氧氧化】葡萄糖→丙酮酸→乙酰辅酶A→CO2+H2O。
【糖的无氧氧化】葡萄糖→丙酮酸→乳酸。
【糖的磷酸戊糖途径】葡萄糖→5-磷酸核糖、NADPH。
【糖原合成】葡萄糖→肝糖原、肌糖原。
【糖转化为脂肪】葡萄糖→乙酰辅酶A→脂肪酸→脂肪。
DNA复制的高度准确性是通过什么来实现的?答:a.严格遵守碱基的配对规律。
B.在复制时对碱基的正确选择。
c.对复制过程中出现的错误及时校正分别写出谷氨酸在体内①氧化分解生成CO2和H2O ②生成糖③生成甘油三酯的主要历程,•注明催化反应的酶,并计算分解时所产生的ATP数目。
6.写出丙氨酸在体内彻底氧化分解成CO2和H2O 的反应历程,注明其中催化脱氢反应的酶及其辅助因子。
丙氨酸在体内经过联合脱氨基作用变成丙酮酸和谷氨酸,谷氨酸经过谷氨酸脱氢酶作用生成1molNADH。
丙酮酸被丙酮酸脱氢酶复合物作用生成乙酰辅酶A,产生1molNADH,乙酰辅酶A进入三羧酸循环,产生3molNADH,1molFADH2和1molATP每molNADH可转化生成,每molFADH2可转化生成。
因此共产生15molATP。
什么是蛋白质的空间结构?试举一例阐述蛋白质的空间结构与其生物学功能的关系。
答:RNASE是一种水解RNA的酶,由124个氨基酸残基组成的单肽链蛋白质,其中含有4个链内二硫键。
整个分子折叠成球形的天然构象。
高浓度脲会破坏肽链中的次级键。
巯基乙醇可还原二硫键。
因此用脲和巯基乙醇处理RNaSe;蛋白质三维构象破坏,肽链去折叠成松散肽链,活性丧失。
淡一级结构并未变化。
除去脲和巯基乙醇,并经氧化形成二硫键。
RNaSe重新折叠,活性逐渐恢复。
由此看来,在一级结构未改变的状况下,其生物功能仍旧发生变化,说明是蛋白质的高级结构决定了蛋白质的功能。
从分子水平说明生物遗传信息储存的主要方式,又是如何准确的向后代传递遗传信息的。
答:生物遗传信息主要通过DNA的方式储存。
DNA的双螺旋结构及复制时的碱基互补配对原则,使用RNA作为引物,3’-5’外切酶活性,沿3’-5’方向识别和切除。
错配的碱基,通过DNA的修复系统校正。
为什么说蛋白质是生命活动最重要的物质基础?蛋白质元素组成有何特点?构成50%细胞和生物体的重要物质催化,运输,血红蛋白;调节,胰岛素;免疫。
蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。
各种蛋白质含氮量很接近,平均16%试比较较Gly、Pro与其它常见氨基酸结构的异同,它们对多肽链二级结构的形成有何影响?都含一个氨基羧基H与侧链基团,PRO侧链基团与a氨基酸形成环化结构,亚氨基酸,Gly 不含手性碳原子蛋白质水溶液为什么是一种稳定的亲水胶体?蛋白质的分子量很大,容易在水中形成胶体颗粒,具有胶体性质。
在水溶液中,蛋白质形成亲水胶体,就是在胶体颗粒之外包含有一层水膜。
水膜可以把各个颗粒相互隔开,所以颗粒不会凝聚成块而下沉。
为什么说蛋白质天然构象的信息存在于氨基酸顺序中。
蛋白质的结构与生物功能之间有什么关系?以细胞色素C为例简述蛋白质的一级结构与其生物进化的关系。
蛋白质的高级结构的形成是依靠氨基酸分子的侧链集团之间的非共价键维持而成.如氢键,范德华力等,此外半胱氨酸中的硫可形成共价键维持空间结构,此外二级结构的A螺与B折叠都是临近氨基酸侧链之间亲合或者静电维持的,所以说,一级结构决定了蛋白的高级结构.1)一级结构的变异与分子病蛋白质中的氨基酸序列与生物功能密切相关,一级结构的变化往往导致蛋白质生物功能的变化。
如镰刀型细胞贫血症,其病因是血红蛋白基因中的一个核苷酸的突变导致该蛋白分子中β-链第6位谷氨酸被缬氨酸取代。
这个一级结构上的细微差别使患者的血红蛋白分子容易发生凝聚,导致红细胞变成镰刀状,容易破裂引起贫血,即血红蛋白的功能发生了变化。
(2)一级结构与生物进化同源蛋白质中有许多位置的氨基酸是相同的,而其它氨基酸差异较大。
如比较不同生物的细胞色素C的一级结构,发现与人类亲缘关系接近,其氨基酸组成的差异越小,亲缘关系越远差异越大。
DNA和RNA的结构和功能在化学组成、分子结构、细胞内分布和生理功能上的主要区别是什么?化学组成:含有D-2脱氧核酶,含ATGC ;含D-核糖含AUGC 分子结构:a-双螺旋大多数为单链生理功能:DNA核苷酸序列决定生物体遗传特征;在DNA复制转录翻译一定中调控作用,与细胞内或细胞间的一些物质运输核定为有关。
比较tRNA、rRNA和mRNA的结构和功能。
结构,t二级结构三叶草形,三级结构倒L形 R 复杂的多环多臂结构 M分子的长度差异很大功能:将氨基酸运转到MRNA复合物的相应位置,用于蛋白质的合成。
与其他蛋白质组成核糖体,完成蛋白质合成。
进入细胞质指导蛋白质的合成真核mRNA和原核mRNA各有什么特点?原核生物中,mRNA的转录和翻译发生在同一个细胞空间,这两个过程几乎是同步进行。
真核细胞中,真核细胞mRNA的合成和功能表达在不同的空间和时间范畴内。
原核生物mRNA的特征半衰期短,许多原核生物MRNA以多顺反子的形式存在。
原核生物mRNA的5端无帽子结构,3端没有或只有较短的多聚A结构。