RF电路板分区设计的5个要点详细概述

合集下载

RF和混合信号PCB的一般布局指南

RF和混合信号PCB的一般布局指南

RF和混合信号PCB的一般布局指南2016-01-12RFLab射频实验室引言本文提供关于射频(RF)印刷电路板(PCB)设计和布局的指导及建议,包括关于混合信号应用的一些讨论,例如相同PCB上的数字、模拟和射频元件。

内容按主题进行组织,提供“最佳实践”指南,应结合所有其它设计和制造指南加以应用,这些指南可能适用于特定的元件、PCB制造商以及材料。

射频传输线许多射频元件要求阻抗受控的传输线,将射频功率传输至PCB上的IC引脚(或从其传输功率)。

这些传输线可在外层(顶层或底层)实现或埋在内层。

关于这些传输线的指南包括讨论微带线、带状线、共面波导(地)以及特征阻抗。

也介绍传输线弯角补偿,以及传输线的换层。

微带线这种类型的传输线包括固定宽度金属走线(导体)以及(相邻层)正下方的接地区域。

例如,第1层(顶部金属)上的走线要求在第2层上有实心接地区域(图1)。

走线的宽度、电介质层的厚度以及电介质的类型决定特征阻抗(通常为50Ω或75Ω)。

图1. 微带线示例(立体图)带状线这种线包括内层固定宽度的走线,和上方和下方的接地区域。

导体可位于接地区域中间(图2)或具有一定偏移(图3)。

这种方法适合内层的射频走线。

图2. 带状线(端视图)。

图3. 偏移带状线。

带状线的一种变体,适用于层厚度不相同的PCB(端视图)共面波导(接地)共面波导提供邻近射频线之间以及其它信号线之间较好的隔离(端视图)。

这种介质包括中间导体以及两侧和下方的接地区域(图4)。

图4. 共面波导提供邻近射频线以及其它信号线之间较好的隔离建议在共面波导的两侧安装过孔“栅栏”,如图5所示。

该顶视图提供了在中间导体每侧的顶部金属接地区域安装一排接地过孔的示例。

顶层上引起的回路电流被短路至下方的接地层。

图5. 建议在共面波导的两侧安装过孔栅栏特征阻抗有多种计算工具可用于正确设置信号导体线宽,以实现目标阻抗。

然而,在输入电路板层的介电常数时应小心。

典型PCB外基板层包含的玻璃纤维成分小于内层,所以介电常数较低。

射频(RF)电路板设计

射频(RF)电路板设计

射频(RF)电路板设计(RF)板设计胜利的RF设计必需认真注重囫囵设计过程中每个步骤及每个详情,这意味着必需在设计开头阶段就要举行彻底的、认真的规划,并对每个设计步骤的发展举行全面持续的评估。

而这种细致的设计技巧正是国内大多数企业文化所欠缺的。

近几年来,因为设备、无线局域网络(WLAN)设备,和移动电话的需求与成长,促使业者越来越关注RF电路设计的技巧。

从过去到现在,RF电路板设计犹如电磁干扰(EMI)问题一样,向来是工程师们最难掌控的部份,甚至是梦魇。

若想要一次就设计胜利,必需事先认真规划和注意详情才干奏效。

射频(RF)电路板设计因为在理论上还有无数不确定性,因此常被形容为一种「黑色艺术」(black art) 。

但这只是一种以偏盖全的观点,RF 电路板设计还是有许多可以遵循的法则。

不过,在实际设计时,真正有用的技巧是当这些法则因各种限制而无法实施时,如何对它们举行折衷处理。

重要的RF设计课题包括:阻抗和阻抗匹配、绝缘层材料和层叠板、波长和睦波...等,本文将集中探讨与RF电路板分区设计有关的各种问题。

微过孔的种类电路板上不同性质的电路必需分隔,但是又要在不产生电磁干扰的最佳状况下衔接,这就需要用到微过孔(microvia)。

通常微过孔直径为0.05mm至0.20mm,这些过孔普通分为三类,即盲孔(blind via)、埋孔(bury via)和通孔(through via)。

盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的衔接,孔的深度通常不超过一定的比率(孔径)。

埋孔是指位于印刷线路板内层的衔接孔,它不会延长到线路板的表面。

上述两类孔都位于线路板的内层,层压前利用通孔成型制程完成,在过孔形成过程中可能还会重叠做好几个内层。

第三种称为通孔,这种孔穿过囫囵线路板,可用于第1页共5页。

RF pcb design 基本规则

RF pcb design 基本规则

RF pcb design 基本规则
RF pcb design 基本规则(sirf reference)
1.sirf reference典型的四,六层板,标准FR4材质
2.所有的元件尽可能的表贴
3.连接器的放置时,应尽量避免将噪音引入RF电路,尽量使用小的连接器,适当的接地
4.所有的RF器件应放置紧密,使连线最短和交叉最小(关键)
5.所有的pin有应严格按照reference schematic.所有IC电源脚应当有0.01uf的退藕电容,尽可能的离管脚近,而且必须要经过孔到地和电源层
6.预留屏蔽罩空间给RF电路和基带部分,屏蔽罩应当连续的在板子上连接,而且应每隔100mil(最小)过孔到地层
7.RF部分电路与数字部分应在板子上分开
8.RF的地应直接的接到地层,用专门的过孔和和最短的线
9.TCXO晶振和晶振相关电路应与高slew-rate数字信号严格的隔离
10.开发板要加适当的测试点
11.使用相同的器件,针对开发过程中的版本
12.使RTC部分同数字,RF电路部分隔离,RTC电路要尽可能放在地层之上走线。

RF原理及电路解析

RF原理及电路解析

RF原理及电路解析RF(Radio Frequency)通常被翻译为射频或者无线电频率,是指在300 kHz到300 GHz之间的电磁波频率范围。

RF原理:在RF技术中,电流通过导线或者电子器件(例如晶体管、二极管等)来产生高频的振荡信号,并通过天线辐射出去。

接收端则通过天线接收到这些波,然后解调恢复原始信号。

RF频率的特点是在电磁波频谱中处于高频段,具有较大的传播能力和穿透力。

相比之下,低频信号在传播过程中会受到电缆损耗和其他干扰的影响较大。

RF电路解析:RF电路设计需要考虑到信号的特点和要求,因此与普通电路设计存在一些不同之处,主要有以下几点:1.选择合适的元器件:在RF电路中,选择合适的元器件是非常重要的。

元器件的参数如导通电阻、电容、电感等应满足高频特性要求。

例如高频电容需要具有低阻抗和低失真特性,而高频电感则需要具有较低的等效串联电阻和互感。

2.高频电路布局:在RF电路中,电路板的布局对信号的传输和抗干扰能力有很大影响。

为了避免干扰,需要保持良好的地线和电源线分布,以减小信号回路间的互联电感和互联电容。

此外还需要避免天线和其他高频元器件之间的相互干扰。

3.高频仿真与调试:在设计RF电路时,需要进行高频仿真以验证电路的参数和性能是否满足要求。

常用的电磁仿真软件如ADS、HFSS等可以帮助设计者进行电路的仿真与优化。

同时,通过观察功率谱、频谱分析、S参数等指标,可以进行电路的调试和优化。

4.阻抗匹配:RF电路中,为了提高功率传输效率,需要进行阻抗匹配。

通过使用阻抗变换器、匹配线和滤波器等元器件,将信号源、负载和传输线的阻抗调整为匹配的阻抗,从而实现最大功率传输。

总结起来,RF原理涉及到电磁波的传播和信号处理,而RF电路设计则需要关注元器件选型和参数、高频布局、仿真与调试以及阻抗匹配等因素。

对于RF设备的性能和应用来说,合理的RF电路设计是非常重要的。

射频_RF_电路PCB设计

射频_RF_电路PCB设计

RF电路PCB设计一、 概述本文探讨在终端产品的PCB设计过程中,在遵守统一PCB布线规范的基础上,适用于RF电路的附加性一般原则。

二、层别设置RF电路部分往往元件、走线密度不高,为了减小信号传输损耗并使设计简明,应尽量使高频传输线位于表层(顶层或底层)。

我们一般采用的RF电路为单端对地放大形式,在PCB上实现尽可能理想的等电位地,是保证设计意图得以实现的必然要求。

所以若无其他限制,应尽可能将高频信号线邻层安排为完整的地板(如:顶层为高频信号线层,第二层宜安排为完整地板),而且其他各层在布线完成后,使用地网络铺设铜箔。

三、元件放置天线开关、功放、LNA为减小传输线损耗带来的接收灵敏度损失与发射功率损失,天线开关、功放、LNA 应尽量靠近天线或天线接口。

不同电平级的隔离当几个级联放大器对于某频率的信号的总增益大于40dB时,就可能出现放大器自激现象,这时由于高电平点的信号通过空中耦合、地耦合、供电线耦合等方式,反馈至低电平点所造成。

自激将使放大器工作状态由自激信号决定而使设计失效,为致命性问题,必须事前尽力避免。

这要求在原理图设计合理的基础上,在PCB设计时做到:电平相差悬殊(一般40dB以上)的两点a.在空间上尽可能远b.处于屏蔽盒内外或分处不同的屏蔽盒c.最好能够分处PCB的两面。

热量分散中高功率放大器、LDO等热量耗散较大的器件,在放置时应较为平均地分布在PCB上,防止PCB工作时局部过热,降低可靠性并使电路的增益、噪声系数等参数随温度发生较大变化。

退耦电容的放置退耦电容的放置原则是尽量靠近被退耦的元件脚(某些特别指明该退耦电容同时参与匹配的情况除外,如RDA400M功放)。

当退耦元件为几只不同容值的电容并联时,排列原则是容值小的更近,如图一所示:典型单元电路内元件放置如图2所示,这是一个放大器的单元电路,C650、C631、R615、L606作为该放大器的供电部分应紧靠U611放置,如图3所示。

电路板设计中的规范与要点

电路板设计中的规范与要点

电路板设计中的规范与要点电路板(PCB)是现代电子设备中不可或缺的组成部分,它承载着电子器件及其连接的电路。

一个好的电路板设计不仅能提升电子设备的性能,还能提高生产效率和可靠性。

本文将详细介绍电路板设计中的规范与要点。

一、电路板设计规范1.尺寸规范:- 根据电子设备的实际需求确定电路板的尺寸。

- 考虑电子设备的安装空间和限制,确保电路板能够与其他组件和外壳完美契合。

2.层次规范:- 根据电路板的功能和复杂程度确定板层数。

- 单面板只有顶层为铜质层,双面板有顶层和底层,多层板则有更多内层。

- 多层板设计能提供更好的电气性能和信号完整性。

3.走线规范:- 根据电路板功能,划分信号线、电源线和地线,并设定规范的走线规则。

- 信号线和电源线应尽量分开,减少干扰。

- 地线应宽且密集,用于提供电路的参考电压,减小传输噪音。

4.元件布局规范:- 将元件分组,并按照功能和信号流向进行布局。

- 避免元件相互干扰,尽量减小距离和交叉点。

- 确保足够的通风空间,避免元件过热。

5.丝印规范:- 在电路板上标注元件的引脚标号、元件名称和极性。

- 丝印应与焊盘有一定的间隔,避免干扰焊接。

二、电路板设计要点1.规划电源线和地线:- 电源线应足够宽,以确保电路中元件能够获取稳定的供电电压。

- 地线应在整个电路板上提供良好的连接,减少噪声干扰。

2.阻抗匹配:- 考虑信号传输的速度、频率和距离,根据规格书中的指导要求,合理设计走线和控制阻抗。

- 使用电气规则检查工具,确保设计中的阻抗匹配问题最小化。

3.信号完整性:- 使用差分信号来减少传输线上的干扰。

- 使用适当的信号层和接地层相结合,减小信号返回路径。

4.高频和高速信号处理:- 使用走线规则,减少信号线长度和干扰。

- 适当使用电容、电感和阻尼器来衰减高频信号和抑制回波。

5.元件布局:- 确保元件之间的间距和方向,以便于焊接和维护。

- 避免元器件之间的干扰,尽量减少噪声。

6.热管理:- 为高功耗元件设计适当的散热器和散热路径。

射频电路板设计浅谈

射频电路板设计浅谈

射频电路板设计浅谈射频电路(RF)由于不确定的因素很多,被称作黑色艺术(black art),然而,通过经过实践摸索,我们会发现其也是有章可循,以下将就自己多年工作实践及前人经验,围绕这些方面对射频电路的电路板设计展开讨论:布局、阻抗、叠层、设计注意事项、包边、电源处理,表面处理。

1 关于布局RF电路布局的原则是RF信号尽量短,且输入远离输出,RF线路最好呈一字排布,其次可以L型排布,也可呈大于90度的钝角(如135度角)排布,还有U型布局,主要取决空间和走线需要,U型布局是条件实在受限时使用,并控制两条平行线间距离至少要2mm。

滤波器等高敏感器件需要加金属屏蔽罩,微带线进出屏蔽罩的地方要开槽。

RF区域和其他区域(如稳压块区域,数控区域)要分开布局;高功率放大器、低噪音放大器、频率综合器等都需要分开布局,且要用挡墙将它们隔离开来。

2 关于阻抗与阻抗相关的因素有线宽,介质板厚度,介质板介电常数,铜皮厚度等。

射频中经常是用50欧姆作为阻抗匹配的标准,射频介质板选材通常用罗杰斯系列板材,如罗杰斯4350材质的板材,假设我们选择0.254mm厚度的,那么根据仿真,线宽0.55mm,铜皮厚度选择0.5OZ,此时可以控制阻抗为50欧姆。

对于其他型号,其他厚度的板材可根据其介电常数及厚度进行仿真,推荐大家使用Polar SI8000阻抗计算工具进行计算,简单便捷。

3 关于层叠结构RF板顶层一般摆放器件和走微带线,第二层要大面积铺地网络铜皮,底层也要是完整地平面铺铜直接接触腔体平面,中间层走信号线,如果线路复杂,中间需要多层信号线层,那么相邻的信号线层间应添加地平面,且两个信号线层应该垂直走线,即一层线路以横向为主,另外一层以纵向为主,射频电路板由于不能使用非地网络通孔,所以除了地孔外其他网络要使用盲孔设计,如果八层板,为了有效利用叠层,第七层最好为信号线层,这样就会出现大量1到7盲孔,在实际加工中,这样的盲孔设计会造成电路板严重翘曲,解决的办法是使用背钻,即将盲孔按照通孔制作,然后从底部向上控深掏掉此金属化孔的孔铜至第七八层之间,不要掏到第七层,为了性能更加稳定,排除不确定性,可将掏空部分用树脂填塞4 关于电路板设计中注意事项1)双工器、混频器和中频放大器总是有多个RF、IF信号相互干扰,因此必须将干扰减到最小。

射频电路设计要点

射频电路设计要点
【1】射频电路中元器件封装的注意事项
成功的 RF 设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着 必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展 进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所 欠缺的。
近几年来,由于蓝牙设备、无线局域网络(WLAN)设备,和移动电话的需求与成 长,促使业者越来越关注 RF 电路设计的技巧。从过去到现在,RF 电路板设计 如同电磁干扰(EMI)问题一样,一直是工程师们最难掌控的部份,甚至是梦魇。 若想要一次就设计成功,必须事先仔细规划和注重细节才能奏效。
(11)不同电源层在空间上要避免重叠。主要是为了减少不同电源之间的干 扰,特别是一些电压相差很大的电源之间,电源平面的重叠问题一定要设法避 免,难以避免时可考虑中间隔地层。
(12)PCB 板层分配便于简化后续的布线处理,对于一个四层 PCB 板(WLAN 中常用的电路板),在大多数应用中用电路板的顶层放置元器件和 RF 引线,第 二层作为系统地,电源部分放置在第三层,任何信号线都可以分布在第四层。 第二层采用连续的地平面布局对于建立阻抗受控的 RF 信号通路非常必要,它 还便于获得尽可能短的地环路,为第一层和第三层提供高度的电气隔离,使得
使用星型拓扑 Vcc 引线时,还有必要采取适当的电源去耦,而去耦电容存在一 定的寄生电感。事实上,电容等效为一个串联的 RLC 电路,电容在低频段起主 导作用,但在自激振荡频率(SRF):
之后,电容的阻抗将呈现出电感性。由此可见,电容器只是在频率接近或低于 其 SRF 时才具有去耦作用,在这些频点电容表现为低阻。
给出了不同容值下的典型 S11 参数,从这些曲线可以清楚地看到 SRF,还可以 看出电容越大,在较低频率处所提供的去耦性能越好(所呈现的阻抗越低)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RF电路板分区设计的5个要点详细概述
射频(RF)电路板设计虽然在理论上还有很多不确定性,但RF电路板设计还是有许多可以遵循的法则。

不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理,本文将集中探讨与RF电路板分区设计有关的各种问题。

01
微过孔的种类
电路板上不同性质的电路必须分隔,但是又要在不产生电磁干扰的最佳情况下连接,这就需要用到微过孔(microvia)。

通常微过孔直径为0.05mm~0.20mm,这些过孔一般分为三类,即盲孔(blind via)、埋孔(bury via)和通孔(through via)。

盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。

埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。

上述两类孔都位于线路板的内层,层压前利用通孔成型制程完成,在过孔形成过程中可能还会重叠做好几个内层。

第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为组件的黏着定位孔。

02
采用分区技巧
在设计RF电路板时,应尽可能把高功率RF放大器(HPA)和低噪音放大器(LNA)隔离开来,简单的说,就是让高功率RF发射电路远离低噪音接收电路。

如果PCB板上有很多空间,那么可以很容易地做到这一点。

但通常零组件很多时,PCB制造空间就会变的很小,因此这是很难达到的。

可以把它们放在PCB板的两面,或者让它们交替工作,而不是同时工作。

高功率电路有时还可包括RF缓冲器(buffer)和压控振荡器(VCO)。

设计分区可以分成实体分区(physical partitioning)和电气分区(Electrical partitioning)。

实体分区主要涉及零组件布局、方位和屏蔽等问题;电气分区可以继续分成电源分配、RF 走线、敏感电路和信号、接地等分区。

相关文档
最新文档