苏科版-数学-八年级上册-上教案:一次函数的图象(1)
苏科版数学八年级上册6.3《一次函数的图象》(第1课时)教学设计

苏科版数学八年级上册6.3《一次函数的图象》(第1课时)教学设计一. 教材分析《一次函数的图象》是苏科版数学八年级上册6.3节的内容,本节内容是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行学习的。
本节主要让学生了解一次函数的图象特征,学会如何绘制一次函数的图象,并能够通过图象判断一次函数的性质。
二. 学情分析学生在学习本节内容之前,已经掌握了函数的概念和一次函数的定义,但对于一次函数的图象可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作来感受一次函数的图象特征,并学会如何绘制一次函数的图象。
三. 教学目标1.让学生了解一次函数的图象特征,学会如何绘制一次函数的图象。
2.培养学生通过图象判断一次函数的性质的能力。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.一次函数的图象特征。
2.如何绘制一次函数的图象。
3.通过图象判断一次函数的性质。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过实际操作来感受一次函数的图象特征,并学会如何绘制一次函数的图象。
在教学过程中,注重让学生观察、思考、交流、总结,提高学生的动手能力和思维能力。
六. 教学准备1.准备一次函数的图象示例。
2.准备绘图工具,如直尺、圆规、画图软件等。
七. 教学过程1.导入(5分钟)通过展示一次函数的图象示例,让学生初步感受一次函数的图象特征。
引导学生思考:一次函数的图象是什么样的?有哪些特点?2.呈现(10分钟)讲解一次函数的图象特征,让学生明白一次函数的图象是一条直线。
引导学生思考:一次函数的图象是如何得到的?如何绘制一次函数的图象?3.操练(10分钟)让学生分组进行实际操作,尝试绘制一次函数的图象。
教师巡回指导,解答学生遇到的问题。
4.巩固(5分钟)让学生展示自己的绘制成果,互相评价,教师点评。
引导学生总结一次函数图象的特征和绘制方法。
5.拓展(5分钟)让学生思考:如何通过一次函数的图象判断其性质?引导学生观察图象,总结一次函数的性质。
苏科版数学八年级上册 6.3 一次函数的图像 教案.docx

课题:6.3一次函数的图像(1)教学目标:1、知道画函数的图像的基本方法。
2、知道一次函数的图像是一条直线。
3、会选取两个适当的点画一次函数的图像。
重难点:1、会选取适当的点画一次函数的图像.2、在理解函数的图像基础上,初步体会数形结合的思想方法。
一、引入弹簧挂上物体后会伸长,已知一弹簧的长度与所挂物体的重量之间的关系如下表:(1)上表反映了哪些变量之间的关系?哪个是自变量,哪个是因变量?(2)当物体的重量为2kg时,弹簧的长度怎样变化?(3)当物体的重量逐渐增加时,弹簧的长度怎样变化?(4)如果物体的重量为xkg,弹簧的长度为ycm,根据上表写出y与x的关系式;(5)当物体的重量为2.5kg时,根据关系式,求弹簧的长度。
二、画一次函数的图像1、什么是函数的图像?在平面直角坐标系中,以函数的自变量的值为横坐标,对应的函数值为纵坐标的点所组成的图形就这个函数的图像。
2、画一次函数的图像按步骤,在平面直角坐标系中,画出一次函数y=2x+1的图像。
(1)列表:恰当地选取自变量x的几个值,计算函数y对应的值;(2)描点:以表中各对x、y的值为点的坐标,在平面直角坐标系中描出相应的点;(3)连线:顺次连接描出的各点。
总结画函数图像的步骤:列表、描点、连线三、交流、展示、讨论 1、讨论:(1)一次函数的图像是什么?(2)在所作的图像上任取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足函数关系式y=2x+1.(3)是否可以简化画一次函数的图像的过程? 2、结论:(1)一次函数的图像是一条直线 (2)用“两点法”画一次函数的图像,所取的两点分别是图像与x 轴和与y轴的交点。
四、例题1、在平面直角坐标系中,画一次函数y=-3x+3的图像。
(1)、试判断:在点A (2,5)、B (-1,6)、 C (-2,3)中,哪些点在此函数的图像上?(2)、若点()在函数y=-3x+3的图像上,则m=2、在平面直角坐标系中,画一次函数y=2x 的图像。
初中数学苏科版八年级上册6.3 一次函数的图像

1、一次函数y=x-1的图象是( C )
y 1
-1 0 x
y
-1 0
x
-1
A y
0 1x -1
C
B y
1
01
x
D
2.下列各点中,哪些点在函数y=4x+1的图象上? 哪些点不在函数y=4x+1的图象上?为什么?
(2,9) (5,1) (-1,-3) (-0.5,-1)
3.若函数y=2x-3 的图象经过点(1,a) ,(b, 2)
一次函数图象的画法
在直角坐标系中画一
次函数y=2x+1的图象.
⑴列表
y
x y=2x+1
… -1 … -1
⑵描点. ⑶连线.
-0.5 0
0 0.5 1 … 3
12 3 …
•
2•
1•
-3 -2 -1 •0 1 2 3 x • -1
-2
y=2x+1
-3
画一次函数图象的一般步骤:
⑴列表; ⑵描点; ⑶连线.
结论:
一次函数y=kx+b(k≠0)的图象是一条直线; 一次函数y=kx+b(k≠0)的图象也称为直线 y=kx+b(k≠0).
小试牛刀: 仿照刚才方法画一次函
数y=-x+2的图象;
y
x … -1 0 1 2 …
y=-x+1 … 3 2 1 0 … •
• 1•
x
0 1•
y=-x+2
思考、提高:
画一次函数y=-x+2的图象有没有简捷的 方法呢?
初中数学八年级上册 (苏科版)
6.3 一次函数的图象(1)
学习目标
6.3.1一次函数的图像(第一课时)教案

6.3.1一次函数的图像(第一课时)教案《6.3.1一次函数的图像(第一课时)教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容课题:6.3.1一次函数的图像(第一课时)教材:苏教版初中数学八年级(上册)【教学内容解析】“一次函数的图象”本节内容安排了两个课时,本节课主要内容是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。
培养学生主动学习、主动探索、合作学习的能力。
本节课内容为探索下节课一次函数图像的性质作准备。
【教学目标分析】基于教材分析,确立本节课的教学目标如下:知识与技能目标:1.了解一次函数的图象是一条直线,能作出一次函数的图象。
2.学生能求出直线y=kx+b与坐标轴的交点。
过程与方法目标:1.经历函数图象的作图过程,初步了解作函数图象的一般步骤;2.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力;情感、态度与价值观目标:1.经历作图过程,归纳总结作函数图像的一般步骤,发展学生的总结概括能力;2.在探究活动中发展学生的合作意识和探究能力。
【学生学情分析】八年级学生已在七年级学了“变量之间的关系”,对利用图像表示变量之间的关系已有所认识。
由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合“两点确定一条直线”,学生能画出一次函数图象,需要教师在教学中引导学生重点突破是函数与图像的对应关系。
根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响有难度。
所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。
抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
苏科版数学八年级上册 6.3一次函数的图像(1) 教案

6.3 一次函数的图像(1)一、学习目标:1.知道一次函数的图象是一条直线;2.会选取两个适当的点画一次函数的图象.二、学习重点:会选取两个适当的点画一次函数的图象.学习难点:会用待定系数法求一次函数的解析式.三、预习体验:观察课本第148页的图片,你能得到哪些信息?请将观察的结果填入下表:点燃时间(分) 05101520香的长度( cm)1.如果设香的长度为y(cm),点燃时间为x(分钟),你能写出y与x的关系式吗?它是一次函数吗?2.请你以x轴表示点燃时间,以y轴表示香的长度,建立直角坐标系,根据上表中的五对数据描出点.3.这些点在一条直线上吗?四、问题探究:活动二:画一次函数y=2x+1的图象解:(1)列表(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应x …-1 -0.5 0 0.5 1 …y=2x+1 ……值作为点的纵坐标,便可画出一个点.也就是由表中给出的有序实数对,在直角坐标系中描出相应的点.(3)连线:按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象,它是一条直线.练习:仿照刚才方法画一次函数y=-x+2的图象;方法归纳:⑴作一次函数图象的步骤:(1)列表;(2)描点;(3)连线.⑵一次函数y=kx+b 的图象是一条直线,因此一次函数的图象也称为直线y=kx+b .⑶一次函数的图象是一条直线,因此在作图时,只要确定两点即点(0, ), 点( ,0)就可以了.活动三:若直线y=kx+b 经过点(1,2)、(2,-4),求这条直线的解析式.活动四:在同一坐标系中,画一次函数y=2x+1、y=2x -1的图象,图中这两条直线的位置有什么关系?说说你的发现.五、总结反思:六、达标检测:1.要画一次函数y=-2x+1的图象,只要过点(0, ),点( ,0)画直线就可以了.2.已知:一次函数y=kx+b(k ≠0) 的图象如图所示①求k,b 的值;②已知点A(a,-4)在该图象上,你能求出a 的值吗?y=-x+2 … (x)y 2 0 4。
苏科版数学八年级上册6.3《一次函数的图象》说课稿1

苏科版数学八年级上册6.3《一次函数的图象》说课稿1一. 教材分析《一次函数的图象》是苏科版数学八年级上册第六章第三节的内容。
本节内容是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行学习的。
通过本节内容的学习,使学生能够掌握一次函数的图象特征,能够运用一次函数的图象解决一些实际问题。
二. 学情分析学生在学习本节内容时,已经具备了初步的函数知识,对于一次函数的概念和性质有一定的了解。
但是,对于一次函数的图象特征和如何运用一次函数的图象解决实际问题,可能还存在一些困难。
因此,在教学过程中,需要注重引导学生通过观察、操作、思考、交流等活动,自主探索一次函数的图象特征,提高学生解决问题的能力。
三. 说教学目标1.知识与技能目标:使学生掌握一次函数的图象特征,能够识别一次函数的图象,能够运用一次函数的图象解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生自主探索、合作交流的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学思维能力。
四. 说教学重难点1.教学重点:一次函数的图象特征。
2.教学难点:如何运用一次函数的图象解决实际问题。
五. 说教学方法与手段1.教学方法:采用观察、操作、思考、交流等教学方法,引导学生自主探索一次函数的图象特征。
2.教学手段:利用多媒体课件,展示一次函数的图象,帮助学生直观地理解一次函数的图象特征。
六. 说教学过程1.导入新课:通过复习一次函数的定义和性质,引出本节课的内容——一次函数的图象。
2.自主探索:让学生自主探究一次函数的图象特征,引导学生通过观察、操作、思考、交流等活动,总结一次函数的图象特征。
3.合作交流:让学生分组讨论,分享各自探索的成果,互相学习,互相启发。
4.讲解演示:教师根据学生的探索结果,进行讲解和演示,使学生更直观地理解一次函数的图象特征。
5.练习应用:布置一些练习题,让学生运用所学的知识解决实际问题,巩固所学内容。
【苏科版八年级数学上册教案】6.3一次函数的图像(1)

6.3 一次函数的图像( 1)教课目标【知识与能力】经过生活中的实例感觉一次函数的图像,知道一次函数的图像是一条直线.【过程与方法】经历一次函数图像的作图过程,初步认识作函数图像的一般步骤,并会采用适合的两个点画一次函数的图像【感情态度价值观】经过画函数图像,提升画图技术,观察、比较、抽象与概括的能力,以及用“数形结合”的思想方法解决数学问题的能力教课重难点【教课要点】能熟练的做出一次函数的图像;概括作函数图像的一般步骤;图像的对应关系【教课难点】理解一次函数的代数表达式与图像的对应关系课前准备无教课过程一、复习1. 回忆:理解一次函数的函数表达式与叫做这个函数的图象。
那么一次函数的图象是如何的?(导入新课)2.点燃一支香,感觉它的长度跟着时间的变化而变化若每 5 分钟燃烧 4cm,填写下表点燃时间 /min 05101520香的长度 /cm设香的长度为y(cm) ,燃烧时间x(min) ,你能写出y 与 x 之间的函数关系式吗?以x 轴表示香的燃烧时间,以y 轴表示香的长度,建立直角坐标系,并分别描出上表供给的点,5 个点在一条直线上吗?二、创建情境点燃一支香,感觉它的长度随时间的变化而变化.观察上边的图片,说一说获取哪些信息?要求:经过生活中的情形引入新课,提升学生的学习兴趣.研究活动11.将你的观察结果填在书中的表格内.2.假如用y ( cm)表示香的长度、x( min )表示香燃烧的时间,你能写出y 与x 之间的函数表达式吗?3.挨次连接图片中香的顶端,你有什么发现?4.你能用平面直角坐标系,揭穿图片中的信息吗?点燃时间 / 分05101520香的长度 /cm1612840要求:学生在观察、思虑的基础上填表,并与同学交流各时辰香的状态.由图片知,点燃后香的长度愈来愈短,均匀每分钟缩短 0.8cm,直至燃尽.所以y与x之间的函数表达式为 y=16-0.8 x(0≤ x≤20).挨次连接图片的顶端,发此刻一条直线上.要求:经过连接图片中香的顶端,联系平面直角坐标系中的描点,指引学生初步思虑一次函数的图像是不是一条直线,指引学生的研究意识,同时为学习图像的画法作必需的铺垫.研究活动21.以 x 轴表示点燃时间,以y 轴表示香的长度,建立直角坐标系,并分别描点(0,16)、(5 , 12)、( 10 , 8)、( 15 , 4)、( 20, 0).2.这 5 个点的坐标都满足y=16- 0.8x 吗?3.一次函数的图像是什么?要求:学生在教案上描点画图.学生谈论交流.将生活中的实质问题用数学的眼光,慎重的态度解析解决,指引学生利用适合的工具科学、合理地抓住其数学实质研究活动3作出一次函数y= 2x+ 1 的图像.观察图像:它是一条直线.总结作一次函数图像的步骤:( 1)列表;( 2)描点;( 3)连线.要求:指引学生经历作图的过程,思虑每个步骤之间的联系,掌握利用描点法画出函数图像,关注此中的细节.试一试在平面直角坐标系中,画一次函数y=- x+ 2 的图像.思虑:1.画一次函数图像的一般步骤是什么?2.一次函数的图像是什么样的图形?要求:学生模拟上例,自己试试画图,并与小组内的同学交流,比较,总结方法.学生经历画图的过程,感觉画图的方法.想想1.画一次函数图像的一般步骤;2.画一次函数的图像有没有简捷的方法呢?3.平时采用哪两点比较方便?要求:学生结合自己的观察和着手实践的经验回答.依据基本领实,“两点确立一条直线”,画一次函数图像时,只要先确立这个图像上两个点的地址,再过这两点画直线就可以了.在牢固画图过程的基础上,指引学生思虑如何简化作图的过程,培育学生好学好思的优异习惯.三、例题解析例在直角坐标系中,画一次函数y=-3x+ 3 的图像.试判断:在点 A( 2, 5)、 B (- 1, 6)、 C(3, 12)、D(- 2, 3)、 E( 5,- 12)中,哪些点在此函数的图像上?要求:学生利用总结的方法,画图实践.经过带入函数表达式结合观察图像做出判断.牢固画一次函数图像的技术.领悟“数形结合”的思想方法.四、课堂练习1.以下两点在函数 y=- 2x+3 图像上的是().A.原点和点( 1, 1);B.点(1, 1)和点( 2, 3);C.点( 0,3)和点( 1, 1); D.点(0, 3)和点( 2, 3)..要求:学生解答,相互交流方法.2.在同一坐标系中,画一次函数y= 2x+ 2、 y=2x- 1、 y= 2x - 2 的图像.观察这 3 个函数的图像,你有什么发现?要求:学生采用适合的点,做出函数图像.观察可得:相互相互平行.3.画出函数 y=- 3x+ 2 的图像,并指出图像所经过的象限;①试判断点 P( 2, 5)能否在此函数的图像上,并说明原由.②求出此直线与坐标轴交点的坐标;③求此直线与坐标轴所围成的三角形面积.要求:学生分组合作,交流完成.经过画函数图像,提升画图技术,观察、比较、抽象与概括的能力,以及用“数形结合”的思想方法解决数学问题的能力.五、小结思虑请同学说一说自己在本节课中的收获和疑惑.1.作一次函数的步骤.2.明确一次函数的图像是一条直线,所以在作图时,只要确立两点就可以了.。
6.3一次函数的图像-苏科版八年级数学上册教案

6.3 一次函数的图像-苏科版八年级数学上册教案一、教学目标1.了解一次函数的定义和特点,能够用地面图、函数表、解析式表示一次函数。
2.掌握一次函数的图像特征,能够将一次函数的图像在平面直角坐标系中准确地画出来。
3.熟练掌握讨论一次函数图像的方法,根据函数的解析式完成函数图像的绘制。
4.能够掌握修改函数关系式的方法,进一步完善对一次函数图像的理解和掌握。
二、教学重点和难点1. 教学重点1.了解一次函数图像的特征,掌握分析一次函数图像的方法。
2.能够正确用地面图画出一次函数的图像。
3.能够准确地用函数表和解析式表示一次函数,并画出函数图像。
2. 教学难点1.学生初步接触抽象的函数图像,需要较大的思维转换。
2.学生需要掌握一次函数图像的特征和绘制技巧,对数学直观有较高的要求。
3.部分学生缺乏对一次函数解析式的理解,需要在教学中引导其学习和掌握。
三、教学内容1. 一次函数的定义和特点1.一次函数的定义:若函数f(x)可表示为f(x)=kx+b,其中k和b是常数,则称f(x)为一次函数。
2.特点:一次函数的解析式为f(x)=kx+b,其中k表示斜率,b表示截距。
一次函数图像为直线,斜率为k>0时,直线向右上方倾斜,k<0时,直线向右下方倾斜。
3.用地面图表示一次函数的例子。
2. 一次函数的图像1.一次函数的图像特征:一次函数的图像为一条直线,斜率为k,截距为b。
2.一次函数的图像的绘制:求出一次函数的两个点,连接这两个点即可画出一次函数图像。
3.根据一次函数f(x)=kx+b,可以得出该函数图像经过的两个点为(0,b)和(1,k+b)。
3. 一次函数图像的讨论1.斜率的正负和绝对值大小可以确定直线的倾斜方向和倾斜程度。
2.截距可以确定直线在纵轴上的截距位置。
3.一次函数的图像和非一次函数的图像有何不同。
4. 修改函数关系式的方法1.修改函数解析式中的常数k,斜率的变化将引起直线倾斜程度的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
1、知道一次函数的图象是一条直线,会选取适当的点画一次函数的图象。
2、经历作图过程,初步了解作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
4、能较熟练作出一次函数的图象。
教学重点
1、能熟练地作出一次函数的图象。
2、归纳作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
教学过程
1、情境创设
点燃一支香,感受它的长度随着时间的变化而变化,帮助学生理解课本图片提供的信息,探索一次函数的图象。
(1)图中共有几支香?
(2)图片是怎样表示时间变化的?
(3)这支香点燃5分钟后缩短了多少?点燃10分钟后呢?
(4)用y(cm)表示香的长度,x(min)表示香燃烧的时间,你能写出y与x之间的函数关系式吗?
(5)依次连接图片中香的顶端,你有什么发现?
(6)你能利用平面直角坐标系,将图片揭示的信息以及你的发现告诉大家吗?
2、作一次函数的图象
例1:作出一次函数y=2x+1的图象
解:1、列表(写出自变量x与函数值的对应表)先确定x的若干个值,
x …-2 -1 0 1 2 …
y=2x+1 …-3 -1 1 3 5 …
对应的y值作为点的纵坐标,便可画出一个点。
也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。
3、连线:按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象,它是一条直线。
小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:
(1)列表;(2)描点;(3)连线。
做一做
(1)作出一次函数y=-2x+5的图象,
3、议一议
一次函数的图象是什么?是否可以简化作一次函数的图象的过程?
小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以
了,一次函数y=kx+b的图象也称为直线y-kx+b。
4、课堂练习
在同一直角坐标系中画出下列函数式的图象:
(1)y=-3x;(2)y=-3x+2; (3)y=-3x-3
总结:
1、作一次函数的步骤。
2、明确一次函数的图象是一条直线,因此在作图时,不需要列表,只要确定两点就可以了。
补充练习:
1、书P194 1,2
2、请同学们在同一平面直角坐标系中画出下列函数的图象.
(1)y=-x、y=-x+1与y=-x-2;
(2)y=2x、y=2x+1与y=2x-2.
3、画出直线y=-2x+3,借助图象找出:
(1)直线上横坐标是2的点;
(2)直线上纵坐标是-3的点;
(3)直线上到y轴距离等于1的点。