红外传感技术之无损检测

合集下载

使用无损检测技术进行红外热像测试的操作步骤与技巧

使用无损检测技术进行红外热像测试的操作步骤与技巧

使用无损检测技术进行红外热像测试的操作步骤与技巧红外热像测试是一种常用于检测材料和设备表面温度分布的无损检测技术。

它通过测量物体发出的红外辐射,根据辐射强度的分布图像来分析和判断物体的状况和问题。

本文将介绍使用无损检测技术进行红外热像测试的操作步骤与技巧。

一、准备工作在进行红外热像测试之前,需要准备以下设备和材料:1. 红外热像仪:负责拍摄和记录物体发出的红外辐射图像;2. 被测物体:需要测试的目标物体;3. 稳定的电源:为红外热像仪提供稳定的电力;4. 补充热源:在需要设定温度差的情况下,使用辅助加温设备。

二、操作步骤1. 红外热像测试前,确保红外热像仪已经设置为正确的参数。

根据测试需求选择适当的色标、调整测量范围和图像模式等。

根据被测物体的特性,考虑是否需要调整设置参数,以获得最佳的测试效果。

2. 连接红外热像仪的电源,并确保电源的稳定性以避免影响测试结果。

3. 打开红外热像仪的电源开关,并根据仪器的操作指南进行初始化。

在这个过程中,确保仪器的稳定和对焦功能的调整。

4. 对焦是重要的一步,正确的对焦可以保证测试结果的准确性。

通过调整红外热像仪的对焦环,将被测物体的图像清晰地显示出来。

5. 在进行红外热像测试之前,确认被测物体处于稳定状态。

如果需要加热被测物体以产生温度差,可以通过加热器等补充热源进行加热。

确保加热器与被测物体之间的安全距离,以避免对测试结果的干扰。

6. 使用红外热像仪对被测物体进行拍摄。

在拍摄过程中,保持红外热像仪的稳定性和准确性。

避免过快或过慢地移动红外热像仪,以获得清晰、准确的测试图像。

7. 完成红外热像测试后,根据需要保存测试结果。

一般可以将测试结果保存为图像文件或视频文件,方便后续分析和比对。

三、技巧与注意事项1. 在测试之前,了解被测物体的性质和结构对测试结果的影响是很重要的。

不同的物体在发射和吸收红外辐射方面具有不同的特性,对于不同的测试需求,需要采取不同的措施来确保测试结果的准确性。

基于红外热像技术的过程设备无损检测

基于红外热像技术的过程设备无损检测

抗击新冠肺炎疫情特约文章基于红外热像技术的过程设备无损检测肖学文1王亚淑2刘康林2(1.荆门宏图特种飞行器制造有限公司;2•福州大学石油化工学院)摘要红外热像检测技术具有检测范围大、直观、快速等优势,在过程设备的泄漏和绝热结构完整性检测、焊接缺陷检测等领域得到广泛应用#为取得良好的检测效果,探讨了热激励源的选择、表面冷冲击、表面涂层及热像图拍摄等方面应注意的事项和改进措施。

为弥补红外热像法在埋藏缺陷检测方面存在的不足,提出了基于电脉冲热激励作用下的红外热像检测方法,通过对板状和管状试件裂纹性埋藏缺陷的测试试验,表明该方法测得的缺陷轮廓清晰、直观,红外热像图的视觉效果好$关键词无损检测过程设备红外热成像脉冲电流缺陷中图分类号TQ050.7文献标识码0文章编号0254-6094(2020)06-0742-05过程设备是能源、化工、制药及轻工等国民经济支柱领域不可或缺的关键设备"由于过程设备加工处理的气体、液体和粉体往往具有易燃、易爆,或有毒、冻害的危害,一旦发生破坏事故,可导致环境的污染、资源的浪费,甚至酿成火灾、爆炸或中毒事故。

因此,如何通过无损检测的方法及早发现缺陷或泄漏的存在,对避免事故或减少事故损失有着极其重要的作用"过程设备的无损检测有超声、射线、声发射、磁粉及红外热像检测等众多方法巴其中,红外热像法可有效、简便地测取物体表面温度场,并以红外图像的方式将表面温度信息“固化、储存”起来,具有直观性、全场性及在线性等优点,越来越受到工程界的青睐和重视"然而,该方法的检测灵敏度和对缺陷的检出率与设备表面状态、拍摄角度及热激励方法等诸多因素有关,如何提高红外热像无损检测技术的精度和可靠性,扩大其检测功能和范围,是该领域长期的热门课题[2]"为此,笔者根据红外热波的形成和传播原理,探讨提高红外热像无损检测精度的方法。

1红外热像无损检测及影响因素分析由热力学原理可知,一切温度高于绝对零度的物体都在不断地以电磁波的形式向外辐射能量⑶,其中,波长在0.76~1000|!m之间的红外光波具有很强的温度效应,其辐射强度遵循斯蒂芬-波尔兹曼定律。

红外线无损检测及应用

红外线无损检测及应用

红外线无损检测及应用红外线无损检测(Infrared Non-Destructive Testing,简称IR NDT)是一种利用红外线辐射进行材料和结构缺陷检测的方法。

它基于红外线辐射能量与物体表面的热力学性质之间的关系,通过对红外辐射图像的分析来评估材料和结构的健康状况。

红外线无损检测在很多领域都得到了广泛的应用。

下面是几个常见的应用领域:1. 建筑工程领域:红外线无损检测可以用于检测建筑物的热桥、墙体渗漏、大楼热量损失等问题。

通过对建筑物表面温度的检测和分析,可以找出问题所在,及时采取措施避免能量浪费和损失。

2. 电力设备检测:红外线无损检测可以用于电力设备的故障分析和预防维护。

例如,变压器、发电机、电缆等设备中存在的过热和电器故障问题可以通过红外线无损检测来发现,并及时采取修复或更换措施,以避免设备故障和停机损失。

3. 化工、石油和石化行业:红外线无损检测可以应用于储罐、管道和设备等化工、石油和石化行业的检测。

通过对设备表面温度变化的监测,可以发现设备中的泄漏、堵塞或其他异常情况,以避免事故和经济损失。

4. 汽车制造行业:红外线无损检测在汽车制造行业也得到了广泛应用。

例如,利用红外线无损检测可以检测汽车发动机和传动系统的温度分布情况,以发现潜在的故障和问题。

此外,红外线无损检测还可以应用于汽车制造中的焊缝检测、涂层质量检测等方面。

红外线无损检测的优点在于其非接触性和无损伤性。

传统的无损测试方法往往需要直接接触和干涉被测物体,可能会对其造成损伤,而红外线无损检测则可以通过远程扫描来获取被测物体的表面温度图像,无需与被测物体直接接触,不会对其造成任何损伤。

同时,红外线无损检测还可以提供实时的、非破坏性的检测结果,对于一些对时间和成本要求较高的应用场景,具有很大的优势。

红外线无损检测的局限性在于其受限于环境因素和设备精度等问题。

首先,红外线的传播和测量结果容易受到环境温度、湿度和气流等因素的影响,因此在实际应用中需要对这些因素进行准确的控制和校准。

基于红外成像的无损检测技术研究

基于红外成像的无损检测技术研究

基于红外成像的无损检测技术研究红外成像技术是一种通过探测目标物体发出的红外辐射来获取其信息的高新技术,广泛应用于医疗、环保、军事、航空航天等领域。

随着科技的不断发展,基于红外成像的无损检测技术在工业领域也越来越受到重视。

工业生产中,各种设备和机器在运行过程中可能会出现磨损、老化、破损等情况,这种情况一旦不及时发现和处理,可能会引发严重的事故和损失。

因此,开发一种能够实时、快速、准确检测设备状态的技术至关重要。

基于红外成像的无损检测技术正是在这样的背景下应运而生的。

通过使用红外热像仪等设备,可以实时获取设备表面的温度信息,从而判断设备是否存在异常状况。

这种技术具有非接触、高效率、高灵敏度等优点,被广泛应用于机械设备、电力设备、管道等领域的无损检测中。

红外成像技术的原理是基于热辐射的,物体温度越高,其发射的红外辐射越强。

通过测量目标物体表面的热辐射强度,可以得到其温度分布情况,进而推断出物体的内部结构和性能。

这种无损检测方法可以在不破坏物体的情况下,对其进行全面、深入的检测。

在工业生产中,一些常见的缺陷如裂纹、气泡、疲劳等问题,往往难以通过肉眼或传统检测方法及时发现。

而基于红外成像的无损检测技术可以轻松应对这些问题,提高生产效率和产品质量。

另外,基于红外成像的无损检测技术在环境监测中也有着广泛的应用。

例如,在空气质量监测中,可以通过红外成像技术实时监测空气中的有害气体排放情况,及时采取措施减少环境污染。

值得一提的是,随着人工智能和大数据技术的快速发展,基于红外成像的无损检测技术也在不断创新和完善。

人工智能可以通过对大量数据的学习和分析,提高检测的准确度和速度;大数据技术可以对检测结果进行深度挖掘和分析,为工程师提供更加准确的故障诊断和预测。

梳理一下本文的重点,我们可以发现,基于红外成像的无损检测技术是一种非常有潜力的技术,可以广泛应用于各个领域,提高生产效率、降低成本、保障安全。

相信随着技术的不断进步和完善,这种技术将会发挥更大的作用,为人类社会带来更多福祉。

红外传感技术指标-概述说明以及解释

红外传感技术指标-概述说明以及解释

红外传感技术指标-概述说明以及解释1.引言1.1 概述红外传感技术是一种利用物体自身发出或反射的红外辐射来实现目标检测与跟踪的技术。

它利用红外光的特性,能够穿透烟雾、雾气等环境干扰,从而在低可见度的情况下进行准确的探测和识别。

红外传感技术的应用领域广泛,如军事侦察、火力控制、导航与制导以及安防监控等。

其在军事领域的应用可实现远程目标侦察与跟踪,提供强大的战术支持;而在民用领域,红外传感技术能够实现防盗报警、人脸识别、无人机导航等功能,为社会带来了许多便利与安全。

然而,在红外传感技术中,存在许多重要指标需要考虑。

比如,探测距离是指红外传感器能够探测到目标的最大距离;探测角度是指红外传感器能够覆盖到的水平和垂直角度范围;分辨率是指传感器能够分辨出目标细节的能力;灵敏度是指传感器能够探测到的最小红外辐射强度等。

这些指标的好坏将直接关系到红外传感技术的性能和应用效果。

本文将重点介绍红外传感技术的应用领域和关键指标,以期能够帮助读者更好地了解和应用红外传感技术。

同时,还将展望红外传感技术的未来发展趋势,以期为科学研究和工程应用提供参考和启示。

通过对红外传感技术的深入研究和了解,相信它将在更多领域展现出巨大的潜力和应用前景。

1.2 文章结构:本文主要介绍了红外传感技术的重要指标。

文章分为以下几个部分:1. 引言:概述了本文的主题和目的。

介绍了红外传感技术的概念和应用范围,并说明了为什么红外传感技术的重要指标值得研究和关注。

2. 正文:2.1 红外传感技术介绍:详细介绍了红外传感技术的原理、工作方式以及相关的设备和设施。

包括红外辐射的特点、红外探测器的种类以及红外传感器的应用场景等。

2.2 红外传感技术的应用领域:列举了红外传感技术在不同领域的应用案例,如军事、安防、医疗、环境监测等。

重点阐述了红外传感技术在各个领域中的作用和意义。

2.3 红外传感技术的重要指标:详细介绍了红外传感技术中的重要指标,包括灵敏度、分辨率、响应时间、视场角和工作波长等。

基于红外光谱的无损检测技术研究

基于红外光谱的无损检测技术研究

基于红外光谱的无损检测技术研究无损检测技术是工业制造中广泛采用的技术,可以在不破坏被检测物的情况下对其进行检测,避免了可能出现的二次损伤。

而基于红外光谱的无损检测技术,是一种利用物质的红外吸收光谱特征进行检测的新兴技术。

本文将介绍基于红外光谱的无损检测技术的原理、应用和发展前景。

一、基于红外光谱的无损检测技术原理什么是红外光谱?红外辐射波长(波长大于0.75μm)与物质分子相互作用引起分子振动和转动,使得辐射中能量被吸收,产生红外吸收光谱。

不同的分子会在不同的频率范围内吸收红外光,从而形成独特的红外吸收光谱特征。

基于红外光谱的无损检测技术,就是利用物质的红外吸收光谱特征进行检测。

将待测物放在光路中心,通过外部光源将红外光照射在样品表面,检测样品在不同频率下吸收光的强度,从而得知不同物质的化学成分和结构信息。

二、基于红外光谱的无损检测技术应用1.食品安全检测食品安全问题一直备受关注,尤其是农药残留问题。

传统的农药检测方法都需要破坏样品,而基于红外光谱的无损检测技术可以直接对农产品表面进行测试,避免了二次污染和对样品的破坏。

2.原料鉴别越来越多的制药和化妆品企业开始重视原料的质量检测,基于红外光谱的无损检测技术可以对原料进行非破坏性检测和鉴别,节省了时间和成本。

3.材料检测材料在工业制造中的重要性不言而喻。

基于红外光谱的无损检测技术可以检测材料的结构、成分、缺陷等信息,并能够对不同的材料进行鉴别和分类。

三、基于红外光谱的无损检测技术发展前景基于红外光谱的无损检测技术在人类生产和生活中具有广泛的应用前景。

随着科技的不断发展,基于红外光谱的无损检测技术也在不断完善和创新。

未来,这项技术将会在以下几个方面得到更好的应用:1.精准检测随着技术和算法的不断更新,基于红外光谱的无损检测技术可以达到更高的精度和准确度,大大提高工业生产的效率和成品率。

2.与机器人技术结合机器人技术被广泛应用于工业自动化领域,与基于红外光谱的无损检测技术结合,可以实现对生产线上的物品进行快速检测。

红外检测的原理

红外检测的原理红外检测是一种常见的无损检测技术,它利用物体在红外波段的辐射特性来实现对物体的检测和识别。

红外辐射是指物体在温度高于绝对零度时产生的电磁辐射,其波长范围在0.78μm至1000μm之间。

根据物体的温度不同,其辐射的波长和强度也会有所不同,因此可以利用这一特性来进行检测和识别。

红外检测的原理主要包括辐射原理、传感器原理和信号处理原理。

首先,辐射原理是红外检测的基础。

根据普朗克辐射定律和斯特藩-玻尔兹曼定律,物体的辐射能力与其温度成正比,即温度越高,辐射能力越强。

因此,红外检测利用物体在不同温度下的辐射特性来实现对物体的检测和识别。

其次,传感器原理是红外检测的关键。

红外传感器是一种能够感应红外辐射的传感器,它可以将物体发出的红外辐射转化为电信号,从而实现对物体的检测和识别。

红外传感器通常包括红外发射器和红外接收器两部分,红外发射器发射红外光束,而红外接收器则接收物体反射或发出的红外光束,通过测量红外光束的强度和波长来实现对物体的检测和识别。

最后,信号处理原理是红外检测的关键环节。

红外传感器将感应到的红外辐射转化为电信号后,需要经过一系列的信号处理来实现对物体的检测和识别。

信号处理包括信号放大、滤波、模数转换等过程,最终将处理后的信号传递给控制系统进行分析和判断。

总的来说,红外检测的原理是基于物体在红外波段的辐射特性来实现对物体的检测和识别。

通过辐射原理、传感器原理和信号处理原理的相互作用,可以实现对物体的高效、准确的检测和识别。

红外检测技术在工业生产、安防监控、医疗诊断等领域有着广泛的应用前景,对于提高生产效率、保障安全和健康具有重要意义。

红外检测原理

红外检测原理红外检测是一种常见的无损检测技术,它利用物体辐射的红外辐射能量来获取目标的信息。

红外辐射是指在电磁波谱中波长较长于可见光的电磁波,其波长范围通常为0.75μm-1000μm。

红外检测技术在工业、军事、医疗、安防等领域有着广泛的应用,其原理和特点备受关注。

红外检测的原理主要基于物体的热辐射特性。

根据普朗克辐射定律和斯特藩-玻尔兹曼定律,物体的温度越高,其辐射能量越大。

因此,当物体温度不同于其周围环境温度时,就会产生红外辐射。

红外检测器通过接收物体辐射出的红外能量,转换成电信号,再经过信号处理和图像处理,最终形成可视化的图像或数据。

红外检测技术有着许多优点。

首先,它能够实现非接触式检测,无需物理接触目标,避免了对被测物体的损伤。

其次,红外检测技术对目标的材质、颜色、表面状态等要求较低,适用范围广。

再者,红外检测技术在夜间或恶劣环境下也能正常工作,具有适应性强的特点。

另外,红外检测技术还具有高灵敏度、快速响应的特点,能够实现实时监测和快速诊断。

红外检测技术的应用领域非常广泛。

在工业领域,红外检测技术常用于热工艺过程监测、设备故障诊断、热成像检测等方面。

在军事领域,红外检测技术被广泛应用于目标探测、导弹制导、夜视设备等方面。

在医疗领域,红外检测技术被用于体温测量、医学影像诊断等方面。

在安防领域,红外检测技术被用于监控系统、入侵报警系统等方面。

总的来说,红外检测技术凭借其独特的原理和优势,在各个领域都有着重要的应用。

随着科技的不断发展,红外检测技术也在不断创新和完善,为人类的生产生活提供了更多的便利和保障。

希望在未来,红外检测技术能够得到更广泛的应用和推广,为人类社会的发展做出更大的贡献。

无损检测技术的新发展

无损检测技术的新发展随着科技的不断发展,各行各业的技术也在不断进步,在制造业中,无损检测技术越来越受到人们的关注和重视。

无损检测技术是一种用于检测和评估物品内部和表面缺陷、瑕疵以及材料属性的技术,其应用范围包括航空、航天、机械制造、汽车制造、电力、石油化工等领域。

近年来,随着新的材料的应用和生产工艺的改进,传统的无损检测技术已经难以满足现代工业的需求,新型无损检测技术也应运而生。

本文将从三方面介绍无损检测技术的新发展。

一、热红外无损检测技术热红外无损检测技术是一种利用被检测物体辐射出的红外辐射能量来分析其结构和性质的新型技术。

这种技术可以对金属、非金属、复合材料等各种材料进行无损检测,可用于表面缺陷、材料内部缺陷以及材料发热异常等问题的检测。

相比传统的无损检测技术,热红外无损检测技术具有以下优点:首先,热红外无损检测技术是一种非接触式的检测技术,可以在不破坏被检测物体的情况下进行检测,能够大大减少物体的损坏。

其次,热红外无损检测技术对整个被检测物体进行扫描,可以获得该物体全局的信息,而传统的无损检测技术只能获得部分信息。

第三,热红外无损检测技术可以在室内或恶劣环境下进行检测,对于大型物体,可以远程检测,效率高。

二、机器视觉无损检测技术机器视觉无损检测技术是一种采用计算机视觉和机器学习等技术,对被检测物体的视觉信息进行分析和处理,并通过算法和模型判断被检测物体是否存在缺陷的技术。

相较于传统的无损检测技术,机器视觉无损检测技术具有以下优点:首先,机器视觉无损检测技术可以将检测结果量化和可视化,能够准确地提供被检测物体的各种缺陷信息,并能够进行精准诊断。

其次,机器视觉无损检测技术可以减少人为操作,提高生产效率。

第三,机器视觉无损检测技术可以进行大量数据的收集和分析,从而不断完善算法和模型,提高无损检测的准确度。

三、纳米无损检测技术纳米无损检测技术是一种利用纳米材料对被检测物体进行检测的新型技术,在材料科学、物理学和化学等多个领域均有应用。

红外无损检测

红外辐射分为三个波段 (1)近红外波段 波长为0.75~3.0μm。 (2)中红外波段 波长为3.0~20μm (3)远红外波段 波长大于20μm。
能够顺利地透过大气的红外辐射主要有三个波长范 围:1~2.5μm、3~5μm和8~14μm。—般将这三个 波长范围叫做大气窗口
红外检测的检测原理
红外无损检测
关劲新 201101183
无损检测的概述
无损检测 NDT (Non-destructive testing), 就是利用声、光、磁和电等特性,在不损害或 不影响被检对象使用性能的前提下,检测被检 对象中是否存在缺陷或不均匀性,给出缺陷的 大小、位置、性质和数量等信息,进而判定被 检对象所处技术状态(如合格与否、剩余寿命 等)的所有技术手段的总称。
红外无损检测的理论依据
为了方便进行理论计算,常把试样简化为一维 热传导模型。 当给定热激励函数和边界条件时,对热传导方 程进行求解,可得到热波的传导函数。热传导 方程表述如下:
f(r,t)为热激励函数 ;T(r,t)是 r处 t时 的热 力学温度 ;K 为 热传导率;密度p ;材料的比热Cv
通过对热传导方程求解,可得
红外无损检测系统的构成
(2) 常用红外探测器 光电探测器 光电导型探测器 光伏型探测器
热电探测器
热敏电阻红外探测器
热释电探测器

红外无损检测在工程中的应用
红外无损检测是非接触式的,并且可以实现在 大范围、宽视野内的测量,单次检测面积大, 效率很高并且花费较少,因此非常适合高层建 筑外部装饰屋的质量检测。由于红外无损检测 是非接触式的,因此非常适合窑炉内衬耐火材 料缺陷的检测,此外,红外检测还可用在屋面、 墙面的漏水检测。
在铁路检测中的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外探测器
红外探测器是红外传感器的核心,是一 种辐射能转换器。根据能量转换方式可 分为: (1)热探测器(能量探测器):其原理 是辐射的热效应。 (2)光子探测器:其机理是光子与探测 器材料直接作用,产生内光电效应。
红外传感器系统的组成



待测系统 大气衰减 光电接收器 辐射调制器 红外探测器 探测器制冷器 信号处理系统 显示设备
红外辐射特点




红外线易于产生,容易接受。 采用红外二极管,结构简单,易于小型化,成 本低。 红外线调制简单,依靠调制信号可实现多路控 制。 红外线不能通过遮挡物,不会产生信号串扰等 误动作,抗干扰能力强。 功率消耗小,反应速度快。 对环境,对人、物无损害。
红外辐射基本定律

红外辐射的基本定理
红外传感技术原理及其应用
石海林
红外辐射特性



与可见光或电磁波一样具有反射、散射、折 射、干涉、吸收等特性。 红外线传播过程,由于介质的吸收、散射作 用,其能量会衰减,辐射距离一般为几米或 几十米。 大气对红外的衰减作用与波长有关,红外在 大气中有三个波段(近红外、中红外、远红 外)能基本通过。
谢谢大家!
红外传感器的典型应用



红外测温:通过测量物体所辐射出来的 全波段辐射能量来确定物体的温度。 红外成像:采用红外成像技术,将物体 内部的温度分布以图像形式直观的表示 出来。 红外无损检测:通过测量热流或热量来 鉴定金属或非金属材料质量、探测内部 缺陷。
红外测温仪
红外测温仪系统组成
红外测温仪
反应快,灵敏度好
范围广,准确度高
远距离和红外线热像仪
在医学上的运用 在工业上的运用
红外无损检测
焊接缺陷的无损检测
红外无损检测
疲劳裂纹探测:
在航空界疲劳裂纹的检测已经属于常规检测,长 期服役的飞机必须定期对整个机身结构进行探伤 检测。翼虎前转向节不排除存在疲劳裂纹的可能 性,但是由于该车型上市时间不长,所以出现裂 纹可能是材料缺陷或者设计缺陷导致的。
相关文档
最新文档