人教版八年级培优课堂讲义 第01讲 认识三角形(无答案)

合集下载

数学八年级上册培优第01讲 三角形

数学八年级上册培优第01讲  三角形

知识导图第一讲:三角形概述教学内容本讲内容涉及三角形角度计算的知识点,在人教版课本第十一章中学习,在本系列教材初二第1册第一节中已学习过.专题1 三角形角度转换基本图形的应用专题2 三角形角平分线基本模型专题3 三角形内、外角度转换专题4 角度转换基本模型与平面直角坐标系综合应用专题讲解专题1:角形角度转换基本图形的应用【例1】如图所示,已知∠C=54°,∠E=30°,∠BDF=130°,求∠A的度数.AECFB D(2012,江岸区期末)【解析】【归纳总结】①题型特征: ②方法与技巧:练1.1:如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点,PE ⊥AD 交直线BC 于点E . (1)若∠B =35°,∠ACB =85°,求∠E 的度数;(2)当P 点在线段AD 上运动时,猜想∠E 与∠B 、∠ACB 的数量关系,写出结论无需证明.BC AD P练1.2:如图,已知∠CGE =120°,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.αBCGEAFD练1.3:如图,求:∠A +∠B +∠C +∠D +∠E +∠F = 度.A CD EF B PI专题2:三角形角平分线的基本模型【例2】如图,△ABC 中,∠A =50°,点P 是∠ABC 与∠ACB 平分线的交点.AC B PAC BDEP AC B FP图1 图2 图3(1)求∠P 的度数;(2)猜想∠P 与∠A 有怎样的大小关系?(3)若点P 是∠CBD 与∠BCE 平分线的交点,∠P 与∠A 又有怎样的大小关系? (4)若点P 是∠ABC 与∠ACF 平分线的交点,∠P 与∠A 又有怎样的大小关系? 【解析】【归纳总结】①题型特征: ②方法与技巧:练2.1:如图,BE 是∠ABD 的角平分线,CF 是∠ACD 的角平分线,BE 与CF 交于点G ,∠BDC =140°,∠BGC =110°,求∠A 的度数.D BA CGEF练2.2:(1)如图1,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A =30°,则∠ABC +∠ACB = ,∠XBC +∠XCB = .B X ZYAC图1(2)如图2,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ 仍然分别经过B 、C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小.B X ZYAC图2练2.3:(1)如图1,求证:∠CDB =∠A +∠B +∠C .C ABD图1(2)如图2,∠ACD 的平分线与∠ABD 的平分线交于点E .试问∠A ,∠CEB 和∠CDB 有何数量关系?为什么?C ABD E图2(3)如图3,若∠ACE=13∠ACD,∠ABE=13∠ABD,猜想∠A,∠CEB和∠CDB之间的数量关系为.(写出结论,不必证明)E CD 图3【变式】已知△ABC中,∠BAC=100°.B AOBAO1O图1 图2 图3(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2,…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.(2014,光谷实验10月月考)专题3:三角形内、外角度的转换【例3】将△ABC沿EF折叠,使点C落在点C′处.(1)如图1,试问∠1,∠2与∠C之间有何关系?为什么?(2)若点C′在△ABC的外部,如图2所示,试问∠1,∠2与∠C之间又有何关系?为什么?21AC FBEC'21ACFBE C'图1 图2(2014,江汉区期末)【解析】【归纳总结】①题型特征: ②方法与技巧:练3.1:如图,△ABC 中,∠ABC =∠ACB ,D 为BC 边上一点,E 为直线AC 上一点,且∠ADE =∠AED ; (1)求证:∠BAD =2∠CDE ;BACDE(2)如图,若D 在BC 的反向延长线上,其他条件不变,则(1)中的结论是否仍然成立?证明你的结论.BACDE【例4】如图,BP 是∠ABC 的平分线,DP 是∠CDA 的平分线,BP 与DP 交于P ,右∠A =40°,∠C =76°,求∠P 的大小.ABDCP【解析】【归纳总结】①题型特征: ②方法与技巧:练3.2:如图,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N .在图中,(1)若∠D =40°,∠B =36°,试求∠P 的度数;(2)—般性结论:若∠D 的度数为x ,∠B 的度数为y ,则∠P 的度数为 .ABDCMP N【例5】如图,△ABC 中,∠B >∠C ,AD 是BC 边上的高,AE 是∠BAC 的平分线.求证:∠DAE =12(∠B -∠C ).BCAD E【解析】【归纳总结】①题型特征:②方法与技巧:练3.3:如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1)若∠C=80°,∠B=50°,求∠DAE的度数.(2)若∠C>∠B,试说明∠DAE=12(∠C-∠B).(3)如图(2)若将点A在AD上移动到A′处,A′E⊥BC于点E.此时∠DAE变成∠DA′E,(2)中的结论还正确吗?为什么?BACD E BACDA'E图1 图2专题4:角度的综合和实际应用【例6】上午8时,一条船从海岛A出发,以15海里每小时的速度向正北航行,10时到达海岛B处,从A,B望灯塔C,测得∠NAC=43°,∠NBC=86°,则海岛B与灯塔C相距海里.BCAN【解析】【归纳总结】①题型特征:②方法与技巧:练4.1:(1)如图,B处在A处的南偏西65°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB 的度数是( ).ACB北南A .80°B .75°C .85°D .70° (2)如图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向,从C 岛看A ,B 两岛的视角∠ACB 是多少度?【原题40°,个人认为改为80°更适合.】D ABC E北北(2014,光谷实验10月月考)【例7】如图,△ABC 中,AD 是高,AE ,BF 是角平分线,BF 交AE ,AD 于点G ,H ,∠C >∠ABC ,下列结论:①∠AGB =90°+12∠C ; ②∠C -∠ABC =2∠EAD ; ③∠BFC +∠AEC =180°;④∠AGB +∠BHD -∠EAD =180°, 其中正确的有( ). BACE D GHFA .1个B .2个C .3个D .4个 【解析】【归纳总结】①题型特征: ②方法与技巧:练4.2:如图,在Rt △ABC 中,∠ACB =90°,∠CAB =20°,∠ACB 的平分线与外角∠ABD 的平分线交于点E ,连接AE ,则∠AEC 的度数为( ).C DA EA.10°B.30°C.35°D.45°(青山,13-14期中考试)专题5:角度转换基本模型与平面直角坐标系综合应用【例8】如图1,△AOB与△COD是两个可以完全重合的直角三角形,其中A,B,C,D四点均在坐标轴上.(1)如果B(0,一3),S△COD=9,请写出点A,C,D的坐标;(2)如图2,∠ADC的平分线DE所在直线与∠OAB的平分线交于F,求∠F的度数;(3)如图3,M是线段AD上任意一点(不同于点A,D),作MN⊥x轴交AF于点N,作∠ADE与∠ANM 的平分线交于点P,在(2)的条件下,能否求出∠P的度数?说出你的理由,若能求出,请写出解答过程;若不能,请说明理由.图1 图2 图3(2013,江岸区期末)【解析】(1)∵△COD与△AOB完全重合,∴OB=OD,OC=OA;∵B(0,一3),∴OB=3,则OD=3,∴D(3,0);∵S△COD=9=12·OD·OC,∴OC=6,∴C(0,6),A(6,0).(2)∵DE平分∠ADC,AF平分∠OAB,∴设∠CDE=∠EDA=x,∠DAF=∠BAF=y;∵x=y+∠F,而∠OAB=∠OCD=2y,∴2x=2y+90°,∴x=y+45°,∴∠F=45°.(3)∵DP平分∠EDA,PN平分∠MNA,∴设∠EDP=∠PDA=x,∠MNP=∠PNA=y,则∠P=90°-x-y;而∠F+180°-2x+180°-2y+90°=360°,∴2x+2y=90°+45°=135°,∴x+y=67.5°,∴∠P=90°-67.5°=22.5°.【归纳总结】①题型特征:②方法与技巧:练5.1:如图1,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;图1(2)如图2,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;图2(3)如图3,若射线OP,CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠OPC的大小,并证明你的结论(用含n的式子表示).图3 (2013,江岸区期末)分级检测 A 级1.画△ABC 的BC 边上的高AD ,下列画法中正确的是( ).ACDA BC DD A BCABCDA B C D2.如果在△ABC 中,∠A =70°-∠B ,则∠C 等于( ). A .35° B .70° C .110° D .140°3.多边形内角和是1080°,则这个多边形的边数为( ). A .6 B .7 C .8 D .94.如图,△ABC 中,∠B =45°,∠C =75°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的值为( ).BD ACEA .15°B .30°C .45°D .25°5.如果一个三角形的两边长分别是2 cm 和7 cm ,且第三边边长为奇数,则三角形的周长是 cm . 6.(1)在△ABC 中,∠C =60°,∠A =3∠B ,则∠A = ,∠B ;(2)已知一个等腰三角形两内角的度数比为1∶7,则这个等腰三角形的顶角的度数为 ; (3)在△ABC 中,∠A ∶∠B ∶∠C =1∶3∶5,则∠A = ,∠B ,∠C .7.一个多边形的内角和与外角和之比是5∶2,则这个多边形的边数为 .8.如图,△ACD 的外角是∠ =∠ +∠ ,△ABD 的外角是∠ =∠ +∠ .AB CD9.如图,∠ABC =40°,∠ACB =60°,BO ,CO 平分∠ABC 和∠ACB ,DE 过O 点,且DE ∥BC ,则∠BOC = °.BACOD E10.如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.A BCD EF11.如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.A B EDF HCG IB 级1.(1)在图1中,猜想∠A +∠B +∠C +∠A 1+∠B 1+∠C 1= °; (2)试说明你猜想的理由.(3)如果把图1称为二环三角形,则它的内角和为∠A +∠B +∠C +∠A 1+∠B 1+∠C 1;把图2称为二环四边形,则它的内角和为∠A +∠B +∠C +∠D +∠A 1+∠B 1+∠C 1+∠D 1;把图3称为二环五边形,则它的内角和为∠A +∠B +∠C +∠D +∠E +∠A 1+∠B 1+∠C 1+∠D 1+∠E 1,请你猜一猜,二环n 边形的内角和为 .(只写结果)BCA 1B 1C 1A AB CDA 1B 1C 1D 1A B DE A 1B 1C 1D 1E 1图1 图2 图32.如图1,△ABC 中,∠ABC 的平分线与∠ACB 的外角∠ACD 的平分线交于A 1. (1)分别计算出当∠A 为70°,80°时∠A 1的度数;(2)根据(1)中的计算结果写出∠A 与∠A 1之间的数量关系: (不需证明); (3)∠A 1BC 的平分线与∠A 1CD 的平分线交于A 2,∠A 2BC 与∠A 2CD 的平分线交于A 3,如此继续下去可得A 4,…,A n ,请写出∠A 6与∠A 之间的数量关系: (不需证明); (4)如图2,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的平分线交于Q ,求∠Q +∠A 1的度数.BC AD A 1B C A DA 1EQ图1 图2课后反馈1.一个三角形的两个内角分别是55°和65°,不可能是这个三角形外角的是( ). A .115° B .120° C .125° D .130°2.如图,已知∠1=20°,∠2=25°,∠A =35°,则∠BDC 的度数为( ).21DAB A .50°B .80°C .70°D .60°3.下列语句中,正确的是( ). A .三角形的外角大于它的内角 B .三角形的一个外角等于它的两个内角 C .三角形的一个内角小于和它不相邻的外角 D .三角形的外角和为180°4.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2= .215.如图,∠1+∠2+∠3+∠4=( ).40°3421BC EAD A .100°B .200°C .280°D .300°6.如图,AC ,BD 相交于点O ,BP ,CP 分别平分∠ABD ,∠ACD ,且交于点P . (1)若∠A =70°,∠D =60°,求∠P 的度数; (2)试探索∠P 与∠A ,∠D 间的数量关系; (3)若∠A ∶∠D ∶∠P =2∶4∶x ,求x 的值.AD COPE F B7.如图1,已知在△ABC 中,AE 平分∠BAC ,∠C >∠B ,F 为AE 上一点.且FD ⊥BC 于D . (1)试推导∠EFD 与∠B ,∠C 的大小关系;DBCA E F图1(2)如图2,当点F 在AE 的延长线上时,图1的其余条件都不变,你在(1)中推导的结论是否仍然成立?BCAD FE图2下次课必背1.三角形内角和度数:三角形三个内角的和等于180°.外角性质:三角形的外角等于与它不相邻的两个内角之和. 2.基本图形的结论.3.两内角角平分线夹角与顶角的关系、一内角一外角平分线的夹角与顶角的关两外角平分线夹角与顶角的关系.4.三角形中共一个顶点的角平分线与高线夹角、另两个内角的关系. 5.多边形内角和:n 边形内角和=(n —2)×180°; 外角和:多边形外角和=360°. 6.从一个顶点引出的对角线条数为n -3,所有对角线条数为(3)2n n .。

人教版八年级上册数学讲义 第一章三角形的性质

人教版八年级上册数学讲义  第一章三角形的性质

第一讲 三角形与多边形的性质(基础)考试目标解读一、三角形三边的关系:两边之和大于第三边,两边只差小于第三边1:三边关系的依据是:两点之间线段是短2:判断三条线段能否构成三角形的方法:只要满足较小的两条线段之和大于第三条线段,便可构成三角形;若不满足,则不能构成三角形.3:三角形第三边的取值范围是: 两边之差<第三边<两边之和例题1:已知三角形的两边是5cm 与7cm ,第三边是x cm ,则x 的取值范围是 ;该三角形的周长为lcm ,则l 的取值范围是 ;例题2:已知等腰三角形的两边分别是3 cm 与7cm ,求该等腰三角形的周长;考题训练:1、下列三条线段首位顺次相接,能组成三角形的是( )A 、1 cm 、2cm 、3cmB 、6cm 、10cm 、3cmC 、3cm 、4cm 、5cm cm cm cmD 1,21,31、 2、已知三角形的两边是4cm 、6cm ,则第三边可以是( )A 、1cm ;B 、3cm ;C 、10cm ;D 、12cm3、已知三角形的两边是6、 9,则第三边x 的取值范围是 ;4、已知三角形的两边是3、5,则周长 l 的取值范围是 ;5、=--∆c b a c b a ABC ,试化简:、、的三边分别是若 ;6、=--∆2)(,试化简:、、的三边分别是若c b a c b a ABC ;二、三角形的三条重要线段:高线、中线与角平分线(阅读课本上的定义)例题1:在下图中,正确画出AC 边上高的是( ).A B C D例题2、如图,已知点D,E,F 分别为边BC,AD,CE 的中点, 且△ABC 的面积是8cm 2,则阴影部分的面积 是 cm 2三、三角形的内角1、三角形的内角和定理:三角形的内角和等于180°如图:△ABC 中:∠A+∠B+∠C=180º【证明三角形内角和定理的方法: 添加辅助线,构造平角】 三角形的内角考题(1)、在△ABC 中, ∠A=80°∠B=50 °,则∠C= °;(2)、在△ABC 中, ∠A:∠B : ∠C=1 :2 :3,则A= ,∠B= ,∠C= ;(3)、在△ABC 中,∠A-∠C=25°,∠B-∠A=10°,求三个角的度数?2、三角形的外角 (1)三角形的外角的定义:三角形一边与另一边的延长线组成的角,叫做三角形的外角.(如图) (2)三角形的外角与内角的关系: 定理:三角形的一个外角等于它不相邻的两个内角的和;如图:∠1= ∠A+ ∠B推论:三角形的一个外角大于任何一个与它不相邻的内角。

最新人教版八年级数学上册及下册培优辅导讲义资料(13章—18章)

最新人教版八年级数学上册及下册培优辅导讲义资料(13章—18章)

最新人教版八年级数学上册及下册部分辅导讲义第1讲等腰三角形性质及判定【学习目标】1. 掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形的判定定理.3. 熟练运用等腰三角形的判定定理与性质定理进行推理和计算.【要点梳理】要点一、等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).2.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.3.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.要点三、等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.【典型例题】类型一、等腰三角形中有关度数的计算题例1、如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数.举一反三:EACF 【变式】已知:如图,D 、E 分别为AB 、AC 上的点,AC =BC =BD ,AD =AE ,DE =CE ,求∠B 的度数.类型二、等腰三角形中的分类讨论例2、在等腰三角形中,有一个角为40°,求其余各角.例3、已知等腰三角形的周长为13,一边长为3,求其余各边.举一反三:【变式】已知等腰三角形的底边BC =8cm ,且|AC -BC|=2cm ,那么腰AC 的长为( ). A .10cm 或6cm B .10cm C .6cm D .8cm 或6cm类型三、等腰三角形性质和判定综合应用例4、已知:如图,△ABC 中,∠ACB =45°,AD⊥BC 于D ,CF 交AD 于点F ,连接BF并延长交AC 于点E ,∠BAD =∠FCD . 求证:(1)△ABD≌△CFD;(2)BE⊥AC.举一反三:【变式】如图所示,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AB =BC ,E 是AB 的中点,CE ⊥BD .(1)求证:BE =AD ;(2)求证:AC 是线段ED 的垂直平分线;(3)△DBC 是等腰三角形吗?并说明理由.【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A .16B .17C .16或17D .10或122. 若一个三角形的三个外角度数比为2:3:3,则这个三角形是( ) A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是( ) A. 4个 B. 3个 C. 2个 D. 1个4. 如图,在△ABC 中,∠ABC 、∠ACB 的平分线相交于F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E ,那么下列结论正确的有( )①△BDF ,△CEF 都是等腰三角形; ②DE =DB +CE ;③AD +DE +AE =AB +AC ; ④BF =CF. A .1个 B .2个 C .3个 D .4个 5. 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠度数是( ) A .60° B.70° C.80° D.不确定6. 如图,ΔABC 中,AB =AC ,∠BAC =108°,若AD 、AE 三等分∠BAC ,则图中等腰三角形有 ( ) A .4个 B .5个 C .6个 D .7个二.填空题7.如图,△ABC 中,D 为AC 边上一点,AD =BD =BC ,若∠A =40°,则∠CBD =_____°.8. 等腰三角形的顶角比其中一个底角大30°,则顶角的度数为 .9. 如图,△ABC 是等腰直角三角形,∠C =90°,BD 平分∠CBA交AC 于点D ,DE ⊥AB 于E .若△ADE 的周长为8cm ,则AB =_________cm . 10. 等腰三角形的一个角是70°,则它的顶角的度数是 .11. 如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______cm.12. 如图,四边形ABCD中,AB=AD,∠B=∠D,若CD=1.8cm,则BC=______.三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14. 已知:如图,AD是∠BAC的平分线,∠B=∠EAC,EF⊥AD于F.求证:EF平分∠AEB.15. 如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.最新人教版八年级数学上册及下册部分辅导讲义21N MFE D B CA EP QDCA B第2讲 等边三角形考点 方法 破译1.等边三角形及其性质:三边都相等的三角形叫做等边三角形,等边三角形的三个内角都相等,并且每一个角都等于60.等边三角形是轴对称图形,对称轴是顶角平分线或底边上的高、中线所在直线;2.等边三角形的判定:三边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角为60°的等腰三角形是等边三角形;3.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,反之也成立.经典 考题 赏析【例1】如图,△DAC 和△EBC 均是等边三角形,A 、C 、B 三点在一条直线上.AE 、BD 分别与CD 、CE 交于点M 、N .(1)求证:△ACE ≌△DCB ; (2)求∠AFD 的度数; (3)判断△CMN 的形状。

第一讲 认识三角形

第一讲 认识三角形

八年级(上)数学提高班讲义第一讲认识三角形知识点分析1.三角形是由不在同一条直线上的三条线段首尾顺次相接而成的图形,是最简单、最基本的几何图形,是学习其他几何图形的基础。

2.三角形的边的性质有:任意两边之和大于第三边,任意两边之差小于第三边,这一性质可用“两点之间-<<+.线段最短”来说明,若三角形的两边长分别为a和b,那么第三边长c的取值范围是a b c a b 3.三角形的角的性质有:三个内角的和为180°,三个外角的和为360°,每个外角等于它不相邻的两个内角之和。

4.认识三角形的角平分线、中线以及高线。

例题分析例1、(1)已知三角形两边长分别为4和6,则第三边的长不可能是()A.4 B.6 C.8 D.10(2)有六条线段,长度分别为1 cm,2 cm,3 cm,2019 cm,2020 cm,2021 cm,选其中组成三角形,试问可以组成多少三角形?(3)已知a、b、c是△ABC的三边长,化简:|a+b﹣c|﹣|b﹣a﹣c|=______________。

例2、(1)如图,在△ABC中,E为AC边上一点,若∠1=20°,∠C=60°,则∠AEB等于()A.90°B.80°C.60°D.50°(2)在△ABC中,∠A:∠B:∠C=1:2:3,则∠A等于()A.100°B.90°C.60°D.30°(3)已知△ABC中,∠A+∠B=∠C,则∠C=。

例3、(1)如图,AD、BE、CF是△ABC的3条中线,若AF=a cm,则AB=________cm;若BC=b cm,则BD=________cm;若△ABC的周长为c cm,则AE+CD+BF=________cm。

(2)如图所示,在△ABC中,AD是角平分线,已知∠B=66°,∠C=38°,那么∠CAD=____________,∠ADC=____________。

初中数学人教版八年级上册:第1讲 三角形(一)预习讲义

初中数学人教版八年级上册:第1讲 三角形(一)预习讲义
⑵长为 10,7,5,3 的四根木条,选其中三根组成三角形,有几种选法? ⑶已知△ABC 的两条边长分别为 2 和 5,则第三边 c 的取值范围是__________.
【例 3】⑴三角形的一边是 8,另一边是 2,第三边如果是奇数,则第三边是
,这个三角形的周
长等于

⑵一个等腰三角形的一边长为 6cm,周长为 20cm,求其他两边的长.
1
三角形按角分类:
直角三角形:三角形中有一个内角是直角
三角形
锐角三角形:三角形中三个内角都是锐角
斜三角形
钝角三角形:三角形中有一个内角是钝角
锐角三角形
直角三角形
钝角三角形
三角形按边分类:
不等边三角形:三边都不相等的三角形
三角形
底边和腰不相等的等腰三角形
等腰三角形
等边三角形
不等边三角形
等腰三角形



【例 6】如图,AD 是△ABC 的角平分线.DE∥AC,DE 交 AB 于点 E,DF∥AB,DF 交 AC 于点 F.图 中∠1 与∠2 有什么数量关系?为什么?
5
【练 1】图中有______个三角形,它们分别是________________________________.
【练 2】如图,木工师傅做门框时,常用木条 EF 固定长方形门框 ABCD,使其不变形,这样做的依据是
【例 5】⑴如图,在△ABC 中,AB=2,BC=4,△ABC 的高 AD 与 CE 的比是______; ⑵如图,在△ABC 中,D,E 分别是 BC、AD 的中点,且 S△ACE=2,则 S△ABC=________; ⑶如图,在△ABC 中,AD,AE 分别是边 BC 上的中线和高,AE=2,S△ABD=1.5.则 BC=______, DC=______.

初二数学培优讲义第1章+三角形的边+第1关+尖子

初二数学培优讲义第1章+三角形的边+第1关+尖子

第一章三角形的边本章进步目标★★★★★☆Level 5通过对本节课的学习,你能够:1.对三角形的三边关系应用达到【高级运用】级别;2.对三角形的面积计算问题达到【高级运用】级别。

VISIBLE PROGRESS SYSTEM进步可视化教学体系1VISIBLE PROGRESS SYSTEM一天,小优带着几个伙伴在路边竖一根电视天线杆。

天线杆竖起来以后,总是晃来晃去,他们急得团团转。

恰巧小能路过这里,看见了,赶忙过来说:“这又直又高的电视天线杆光这样竖着不稳定,有倒斜的危险。

”“请问,你有什么好办法吗?”小优诚恳地问。

小能说:“用三根绳子从杆子的上方向三个方向拉下来,拉紧以后把绳头固定在地面上,固定在地面上的三点组成一个三角形,天线杆就不会晃了。

”“好!”小优他们很快动手,把绳子拉好。

果然,天线杆不晃动了。

“真行!”“这个办法真灵!”大家一起高兴地围着小能询问这是为什么。

小能笑着说:“因为三角形有一个性质,叫做三角形的稳定性。

你看,木制的房顶、自行车的三角架,还有高压电线架都是三角形的,就是利用这个特性。

”“你真是个能干的设计师。

”小优称赞道。

小能不好意思地说:“不,我们各有所长,要相互学习。

”“哈哈,各有所长,各有所长……”大伙会心地笑了。

2 VISIBLE PROGRESS SYSTEM第一关三角形的三边关系★★★★★☆Level 5本关进步目标★★★☆☆☆你会利用两边长确定第三边的长或周长的取值范围,并根据三角形的三边关系化简代数式;★★★★★☆你会证明线段间的不等关系。

3VISIBLE PROGRESS SYSTEM4VISIBLE PROGRESS SYSTEM学习重点:掌握三角形三边关系定理及推论的应用.1.三角形两条边长分别是3 cm 和10 cm ,周长C 的取值范围是________20<C<26_________cm .2.三角形的三条边长分别是3a -,1a -,2a +,则a 的取值范围是_________a>6________.3.已知a ,b ,c 分别是△ABC 的三边之长,化简:a b c a b c b a c c b a +-+------+-=________2b -2c _________.三角形的三边关系定理及推论【高级理解】熟记三边关系定理及推论的内容理解不等式的性质关卡1-1三角形的三边关系定理及推论过关指南Tips笔记★★★☆☆☆ 高级理解例题5VISIBLE PROGRESS SYSTEM若一个三角形的两边长分别为5和7,则周长C 的取值范围是_____12>C>2____________;若x 为该三角形最长的边,则x 的取值范围是_________12>x >7________.( D ) A. a ,b ,a b + (0,0)a b >> B. a ,4a +,6a +(0a >) C. a ,3a -,3(3a >) D. 1a +,1a +,2a ()0a >已知a ,b ,c 分别是△ABC 的三边之长,化简:a cbc a b b c a ----+--+=______c -b -a ___________.过关练习错题记录Exercise 2错题记录Exercise 1错题记录Exercise 36VISIBLE PROGRESS SYSTEM学习重点:掌握 “8字”模型和“飞镖”模型中不等关系的证明和对结论的熟练应用.1.如图,四边形ABCD 是任意四边形,AC 与BD 交于点O ,求证:()12AC BD AB BC CD DA +>+++.∵三角形两边之和大于第三边 ∴在△ABO 中,AO+BO>AB 在△BOC 中,BO+CO>BC 在△COD 中,CO+DO>CD 在△AOD 中,AO+DO>AD2(AO +CO+BO +DO)>AB+BC+CD+DA 2(AC+BD)> AB+BC+CD+DA AC+BD> 1/2(AB+BC+CD+DA )三角形三边不等关系的证明【高级运用】“8字”模型不等关系的证明“飞镖”模型不等关系的证明不等式的性质关卡1-2三角形的三边不等关系的证明过关指南Tips笔记★★★★★☆ 高级运用例题P ABC ∆PBC ∆ABC ∆8VISIBLE PROGRESS SYSTEM如图所示,AD ,BC 相交于点O ,求证:AB+CD<AD+BC .AO+BO>AB,CO+DO>CDAO+BO+CO+DO=AD+BC>AB+CD如图所示,已知点P 是ABC ∆内一点,试说明()12PA PB PC AB BC AC ++>++.如图所示,已知点P 是ABC ∆内一点,求证:PA PB PC AB AC BC ++<++.延长BP 交AC 于点D过关练习错题记录Exercise 2错题记录Exercise 1错题记录Exercise 39VISIBLE PROGRESS SYSTEMAB+AD>BP+PD,DC+PD>PC 相加得AB+AC>PB+PC 同理AC+BC>PA+PB AB+BC>PA+PC相加得2(AB+AC+BC )>2(PA+PB+PC) PA+PB+PC<AB+AC+BC 如图所示,在四边形ABCD 中,对角线AC ,BD 相交于点O ,点E 在ABC ∆的内部,连接EB ,EC ,证明:(1)AB CD AC BD +<+;(2)AB AC EB EC +>+.(1) AB<AO+BO,CD<CO+DOAB+CD<AO+BO+CO+DO=AC+BD(2)延长BE 交AC 于点FBE+EF<AB+AF,EC<EF+FC相加得AB+AF+FC>EB+EC 即AB+AC>EB+EC错题记录Exercise 4。

人教版八年级上册数学培优精编讲义

人教版八年级上册数学培优精编讲义

三角形面积(讲义)一、知识点睛1.三角形相关概念:(1)在三角形中,连接一个顶点与它对边中点的________,叫做这个三角形的中线,三角形的三条中线_____________交于一点,这点称为三角形的____________.(2)在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的________叫做三角形的角平分线,三角形的三条角平分线________________交于一点,这点称为三角形的_________.(3)从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的________叫做三角形的高线(简称三角形的高),三角形的三条高________________交于一点,这点称为三角形的________;锐角三角形三条高线及垂心都在其________,直角三角形的垂心是________,钝角三角形的垂心和两条高线在其________.在△ABC 中,作出AC边上的高线.________即为所求.(4)三角形的相关定理:180⎧⎪︒⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩边:三角形的两边之和大于第三边,两边之差小于第三边;三角形的内角和是;角直角三角形两锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.2.面积问题:(1)处理面积问题的思路:①_____________________________;②_____________________________;③_____________________________.(2)处理面积问题方法举例:①利用平行转移面积:如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上.②利用等分点转移面积:两个三角形底相等时,面积比等于_____之比,高相等时,面积比等于_____之比.二、精讲精练1.现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A .1个B .2个C .3个D .4个2.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是()A .5B .6C .7D .103.△ABC 的三边分别为4,9,x .(1)求x 的取值范围;(2)求△ABC 的周长的取值范围;(3)当x 为偶数时,求x ;(4)当△ABC 的周长为偶数时,求x ;(5)若△ABC 为等腰三角形,求x .第2题图4.如图,△ABC的角平分线AD,中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABC的中线.其中()A.①,②都正确B.①,②都不正确C.①正确,②不正确D.①不正确,②正确5.如图所示,在△ABC中,BC边上的高是_______,AB边上的高是_______;在△BCE中,BE边上的高是________,EC边上的高是_________;在△ACD 中,AC边上的高是________,CD边上的高是________.6.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能7.如图,在正方形ABCD中,BC=2,∠DCE是正方形ABCD的外角,P是∠DCE 的角平分线CF上任意一点,则△PBD的面积等于_________.第7题图第8题图8.如图,在梯形ABCD中,AB∥CD,延长DC到E,使CE=AB,连接BD,BE,若梯形ABCD的面积为25cm2,则△BDE的面积是__________.9.正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK 上,正方形BEFG的边长为4,则△DEK的面积为____________.第9题图10.已知在正方形网格中,每个小方格都是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,点C 也在小方格的顶点上,且以A ,B ,C 为顶点的三角形面积为1,则点C 的个数是_______个.第10题图第11题图11.在如图的方格纸中,每个小方格都是边长为1的正方形,点A ,B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是_______个.12.如图,AD 是△ABC 的边BC 上的中线,点E 在AD 上,AE =2DE ,若△ABE 的面积是4,则△ABC 的面积是_______.第12题图第13题图13.如图,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且S △ABC =16,则S △DEF =_____________.14.如图,在△ABC 中,E 是BC 边上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF S △BEF =()A .1B .2C .3D .415.如图所示,S △ABC =6,若S △BDE =S △DEC =S △ACE ,则S △ADE =_______.第14题图第15题图16.如图,设E,F分别是△ABC的边AC,AB上的点,线段BE,CF交于点D.若△BDF,△BCD,△CDE的面积分别是3,7,7,则△EDF的面积是_______,△AEF的面积是______.第16题图第17题图17.如图,梯形ABCD被对角线分为4个小三角形,已知△AOB和△BOC的面积分别为25cm2和35cm2,那么梯形的面积是_____________.18.如图,在长方形ABCD中,△ABP的面积为20cm2,△CDQ的面积为35cm2,则阴影四边形EPFQ的面积是_________.19.如图,若梯形ABCD面积为6,E,F为AB的三等分点,M,N为DC的三等分点,则四边形EFNM的面积是_________.三、回顾与思考_______________________________________________________________________________ _______________________________________________________________________________ __________________________________【参考答案】【知识点睛】1.(1)线段,在三角形内部,重心;(2)线段,在三角形内部,内心;(3)线段,所在直线,垂心,内部,直角顶点,外部;作图略2.(1)①公式法;②割补法;③转移法;(2)②对应高,对应底【精讲精练】1.B2.C3.(1)5<x<13(2)18<x<26(3)6,8,10,12(4)7,9,11(5)9 4.C5.AF,CE,CE,BE,DC,AC6.C7.28.25cm29.1610.6 11.512.1213.214.B15.1 16.3,1517.144cm218.55cm219.2三角形面积(作业)1.现有2cm,4cm,6cm,8cm长的四根木棒,任意选取三根组成一个三角形,那么可以组成三角形的个数为()A.1个B.2个C.3个D.4个2.如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是()A.20米B.15米C.10米D.5米第2题图第3题图3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.AC是△ABC的高B.DE是△BCD的高C.DE是△ABE的高D.AD是△ACD的高4.在直角三角形,钝角三角形和锐角三角形中,有两条高在三角形外部的是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能5.在如图的方格纸中,每个小方格都是边长为1的正方形,点A,B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是_______个.6.如图,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD的面积为16,则△ACE的面积为.第6题图第7题图7.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,那么阴影部分的面积是.8.已知:如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BGD=8,S△AGE=3,那么△ABC的面积是.第8题图第9题图9.两条对角线把梯形分割成四个三角形,若S△EDC=6,S△BEC=18,则△AEB的面积是,△AED的面积是.10.如图所示,在□ABCD中,点E是AD的中点,点F在边CD上,CF=2DF,若□ABCD的面积为12,则△EDF的面积是_______.第10题图第11题图11.四边形ABCD与AEFG均为正方形,△ABH的面积为6cm2,图中阴影部分的面积是______________.12.多项式4x2+4加上一个单项式后,能使它成为一个整式的平方,则可以加上的单项式共有________个,分别是______________________________.13.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥DG.【参考答案】1.A2.D3.C4.B5.56.87.1cm28.309.6;210.111.6cm212.5;-4,-4x2,x4,-8x,8x13.证明略三角形面积(随堂测试)1.现有2cm,3cm,4cm,5cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个2.如图,一个面积为50cm2的正方形与另一个小正方形并排放在一起,则△ABC的面积是________________.第2题图第3题图3.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为2,则点C的个数是_______个.(在图中标出点C的位置)4.如图,在□ABCD中,点E,F分别是是AB,BC的中点,连接EF,若□ABCD的面积是8cm2,则△BEF的面积是________.【参考答案】1.C2.25cm23.104.1cm2三角形综合应用(讲义)一、知识点睛在三角形背景下处理问题的思考方向:1.三角形中的隐含条件是:_____________________________________________________;_____________________________________________________;_____________________________________________________.2.角平分线出现时采用______________解决问题.3.高线出现时考虑__________或__________.4.中线、周长一起出现时,考虑________和________的关系.二、精讲精练1.下列五种说法中:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不少于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余,正确的有___________________________________.2.如图,在三角形纸片ABC中,∠A=60°,∠B=55°.将纸片一角折叠使点C落在△ABC内,则∠1+∠2的度数为______.第2题图第3题图3.如图,一个五角星的五个角的和是________.4.如图,∠A+∠B+∠C+∠D+∠E+∠F=________.5.如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=40°,∠ABC=30°,则∠AEC=________;如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α,∠ABC=β,则∠AEC=_________________.图①图②6.探究:(1)如图①,在△ABC中,BP平分∠ABC,CP平分∠ACB,猜想∠P和∠A有何数量关系?(2)如图②,在△ABC中,BP平分∠ABC,CP平分外角∠ACE,猜想 P和∠A有何数量关系?(3)如图③,BP平分∠CBF,CP平分∠BCE,猜想∠P和∠A有何数量关系?图①图②图③7.如图,在△ABC中,三个内角的角平分线交于点O,OE⊥BC于点E.(1)∠ABO+∠BCO+∠CAO的度数为____________;(2)∠BOD和∠COE的数量关系是________________.第7题图8.在锐角△ABC中,BD和CE是两条高,相交于点M,BF和CG是两条角平分线,相交于点N,如果∠BMC=100°,求∠BNC的度数.9.等腰三角形的周长为17cm,其中一边长为5cm,则该等腰三角形的底边长为__________.10.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为________.11.等腰三角形的周长是25cm,一腰上的中线将周长分为3:2的两部分,则此三角形的底边长为________________.12.已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是________________.13.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4cm,则△ABD的周长是____________.14.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC.(1)若AB=6,AC=8,BC=10,则AD=____________;(2)若AB=2,BC=3,则AC:AD=____________.第14题图第15题图15.如图所示,在△ABC中,若AB=2cm,AC=3cm,BC=4cm,AD,BF,CE为△ABC的三条高,则这三条高的比AD:BF:CE=____________________.16.如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E .(1)若AB =8,△ABC 的面积为14,则PD +PE 的值是多少?(2)过点B 作BF ⊥AC ,求证:PD +PE =BF .三、回顾与思考_____________________________________________________________________________________________________________________________________________________________________【参考答案】【知识点睛】1.三角形中的隐含条件:1.三角形内角和是180°;2.三角形的一个外角等于和它不相邻的两个内角的和;3.三角形两边之和大于第三边,两边只差小于第三边.2.设元3.互余,面积4.边长,周长【精讲精练】1.①③⑤2.130°3.180°4.360°5.35°;12(α+β)6.(1)∠P =90°+12∠A(2)∠P =12∠A(3)∠P=90° 12∠A7.(1)90°(2)∠BOD=∠COE8.130°9.5cm或7cm10.3cm11.5cm或353cm12.213.22cm14.(1)245(2)3:215.3:4:616.(1)72(2)略三角形综合应用随堂测试题姓名________5.如图,∠A+∠B+∠C+∠D+∠E=.6.如图,E和D分别在△ABC的边BA和CA的延长线上,CF,EF分别平分∠ACB和∠AED,若∠B=65°,∠D=45°,则∠F的大小是________.第1题图第2题图7.等腰三角形周长为14cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为5cm,则此等腰三角形的底边长为___________.8.如图,在△ABC中,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,其中∠A=40°,∠B=72°,求∠FDE.【参考答案】1.180°2.55°3.434.16°三角形综合应用(作业)1.满足下列条件的△ABC 中,不是直角三角形的是()A .∠B +∠A =∠CB .∠A :∠B :∠C =2:3:5C .∠A =2∠B =3∠CD .一个外角等于和它相邻的一个内角2.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=______________.3.如图,∠A +∠B +∠C +∠D +∠E +∠F =__________.第3题图第4题图4.如图,在Rt △ABC 中,∠C =90°,若∠CAB 与∠CBA 的平分线相交于点O ,则∠AOB =__________.5.如图,在△ABC 中,∠ABC 的平分线BD 与外角平分线CE 的反向延长线相交于点D ,若∠A =30°,则∠D =________.第5题图第6题图6.如图,在△ABC 中,AD 平分∠BAC ,点F 在DA 的延长线上,FE ⊥BC ,∠B =40°,∠C =70°,则∠DFE =__________.7.等腰三角形的周长为21cm ,其中一边长为6cm ,则该等腰三角形的底边长为__________.第2题图8.等腰三角形周长为17cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为4cm,则此等腰三角形的底边长为__________.9.如图,在△ABC中,若AB=2cm,BC=4cm,则△ABC的高AD与CE的比是__________.10.如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠BAC=50°,∠C=60°,求∠DAC及∠BOA的度数.11.如图,在△ABC 中,AD为∠BAC的角平分线,G为AD的中点,延长BG交AC于E.CF⊥AD于H,交AB于F.下列说法中正确的有_____________________.①AD是△ABE的角平分线;②BE是△ABD的中线;③CH为△ACD边AD上的高;④AH是△ACF边CF上的高;⑤BG是△ABD的中线.12.已知:如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的数量关系,并说明理由.【参考答案】1.C2.270°3.360°4.135°5.15°6.15°7.6cm或9cm 8.3cm或253cm9.12 10.30°;120°第12题图第9题图第10题图第11题图11.③④⑤12.∠AED=∠C,证明略平行线与三角形内角和的综合应用(讲义)一、知识点睛1.如果两个角的和是____,那么称这两个角互为余角;如果两个角的和是____,那么称这两个角互为补角;①_____或_____的余角相等,②_____或_____的补角相等.2.对顶角:____________________________________________;③对顶角____.3.④三角形的内角和为_____,⑤直角三角形两锐角_____.已知:如图,△ABC.求证:∠BAC+∠B+∠C=180°.证明:_____,______________________________,∵MN∥BC∴∠B=∠1,∠C=∠2()∵∠1+∠2+∠3=180°()∴∠BAC+∠B+∠C=180°()二、精讲精练1.如图,∠AOC和∠BOD都是直角,如果∠AOD=50°,则∠BOC的度数是______.第1题图第2题图2.如图,∠COD为平角,AO⊥OE,∠AOC=2∠DOE,则有∠AOC=_______.3.已知:如图,OA⊥OB,直线CD经过顶点O,若∠BOD:∠AOC=5:2,则∠AOC=_____,∠BOD=_______.4.‘如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则∠A的余角是_______和________,∠ACD=∠_______,∠BCD=∠______.5.如图,△ABC中,∠B=∠C,E是AC上一点,ED⊥BC,DF⊥AB,垂足分别为D,F,若∠AED=140°,则∠C=,∠BDF=,∠A=.第5题图第6题图AE BD,∠1=110o,∠2=30o,则∠C=______.6.已知:如图,//7.已知:如图,∠BAC与∠GCA互补,∠1=∠2,若∠E=46°,则∠F的度数是多少?8.已知:如图,AB⊥BC,BC⊥CD,∠1=∠2.求证:BE∥CF.证明:∵AB⊥BC,BC⊥CD()∴______=______=90°(垂直的性质)∵∠1=∠2()∴∠EBC=∠BCF()∴___∥___()9.已知:如图,∠1+∠2=180°,∠3=∠B.求证:∠AED=∠C.证明:∵∠1+∠2=180°()∠1+∠DFE=180°()∴_____=______()∴∥()∴∠3=∠ADE()∵∠3=∠B()∴∠ADE=∠B()∴___∥___()∴∠AED=∠C()10.已知:如图,∠1=∠2,∠C=∠D.求证:∠F=∠A.证明:∵∠1=∠2()∠1=∠DGF()∴∠2=∠DGF()∴____∥_____()∴∠D=∠FEC()∵∠C=∠D()∴∠FEC=∠C()∴DF∥AC()∴∠F=∠A.()三、回顾与思考___________________________________________________________________ ___________________________________________________________________ _____________________________________【参考答案】一、知识点睛1.90°;180°;同角;等角;同角;等角.2.具有公共顶点且角的两边互为反向延长线;相等.3.180°;互余;如图,过点A作BC的平行线MN;两直线平行,内错角相等;1平角=180°;等量代换.二、精讲精练第9题图第10题图1.50°2.60°3.60°;150°4.∠ACD,∠B;∠B;∠A5.50°;40°;80°6.40°;7.46°;8.已知;∠ABC,∠BCD;已知;等角的余角相等;BE,CF;内错角相等,两直线平行;9.已知;1平角=180°;∠2,∠DFE,同角的补角相等;AB,EF;内错角相等,两直线平行;两直线平行,内错角相等;已知;等量代换;DE,BC;同位角相等,两直线平行;两直线平行,同位角相等.10.已知;对顶角相等;等量代换;CE,BD;同位角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.平行线与内角和的综合应用(随堂测试)1.已知:如图,AD与AB,CD交于A,D两点,EC,BF 与AB,CD交于E,F,且∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2()∠CGD=∠1()∴______=______(等量代换)∴CE//BF()∴_____=∠3()又∵∠B=∠C()∴∠3=______()∴____//_____()∴______=______()第1题图2.已知:如图,EF⊥BC,DE⊥AB,∠B=∠ADE.求证:AD∥EF.证明:∵EF⊥BC,DE⊥AB()∴∠EFB=∠AED=90°(垂直的性质)∴∠BEF+∠B=90°(直角三角形两锐角互余)∠BAD+∠ADE=90°()第2题图∵∠B=∠ADE()∴∠BEF=∠BAD()∴______∥______()【参考答案】1.已知;对顶角相等;∠CGD,∠2;同位角相等,两直线平行;∠C;两直线平行,同位角相等;已知;∠B;等量代换;AB,CD;内错角相等,两直线平行;∠A,∠D,两直线平行,内错角相等.2.已知,直角三角形两锐角互余;已知;等角的余角相等;同位角相等,两直线平行.平行线与三角形内角和的综合应用(作业)1.如图,三条直线AB ,CD ,EF 相交于点O ,∠AOF =3∠FOB ,∠AOC =90°,则∠EOC =.第1题图第2题图2.如图,在△ABC 中,DE ∥BC ,∠ADE =55°,∠1=25°,则∠DBE =________.3.如图,∠1+∠2=180°,∠3=90°,则∠4=______.4.如图,D 是△ABC 边BC 上的一点,∠1=∠B ,若∠ADC =60°,则∠BAC =_______.解:∵∠B +∠C +∠BAC =180°()∠1+∠C +∠ADC =180°()∵∠1=∠B ()∴∠BAC =∠ADC (等式的性质)∵∠ADC =60°()∴∠BAC =________()第4题图5.已知:如图,△ABC .求证:∠A +∠B +∠ACB =180°.证明:作BC 的延长线CE ,过点C 作CD ∥AB ,∵CD ∥AB ∴∠A =∠1()∠B =∠2()∵∠1+∠2+∠3=180°()∴∠A +∠B +∠ACB =180°()6.已知:如图,AB ∥CD ,∠BAE =∠DCE =45°.求证:∠E =90°.证明:∵AB ∥CD ()∴______+______=180°()∵∠BAE =∠DCE =45°()∴∠1+45°+∠2+45°=______即∠1+∠2=_______()∴∠E =180°-(∠1+∠2)=180°-90°=90°()7.已知:如图,∠1=∠ACB ,∠2=∠3.求证:CD ∥HF .证明:∵∠1=∠ACB ()∴____∥____()∴∠2=____()∵∠2=∠3()∴∠3=____()∴____∥____()第6题图第5题图第7题图【参考答案】1.45°;2.30°;3.90°;4.60°,三角形三个内角的和是180°三角形三个内角的和是180°;已知;已知;60°;等量代换.5.两直线平行,内错角相等;两直线平行,同位角相等;1平角=180°;等量代换.6.已知;∠BAC,∠ACD,两直线平行,同旁内角互补;已知;180°,90°,等式的性质;三角形三个内错的和等于180°;7.已知;DE,BC;同位角相等,两直线平行;∠DCB,两直线平行,内错角相等;已知;∠DCB,等量代换;CD,HF,同位角相等,两直线平行.三角形的外角(讲义)一、知识点睛1._________________________组成的角,叫做三角形的外角.2.三角形外角定理:三角形的一个外角等于____________________________________.已知:如图,∠2是△ABC的一个外角.求证:∠2=∠A+∠B证明:如图,∵∠A+∠B+∠1=180°()∠1+∠2=180°()∴∠2=∠A+∠B()二、精讲精练11.已知:如图,AC∥ED,∠C=25°,∠B=35°,则∠E的度数是()A.60°B.85°C.70°D.50°第1题图第2题图12.已知:如图,在△ABE中,D是边BE上一点,C是AE延长线上一点,连接CD,若∠BDC=140°,∠B=35°,∠C=25°,则∠A=.13.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则α=________.14.如图,D 是AB 上一点,E 是AC 上一点,BE ,CD 相交于点F ,∠A =60°,∠ACD =35°,∠ABE =20°,则∠BDC =_____,∠BEC =_____.第4题图第5题图15.已知:如图,在△ABC 中,DE ∥BC ,F 是AB 上一点,FE 的延长线交BC 的延长线于点G ,∠A =45°,∠ADE =60°,∠CEG =40°,则∠EGH =______.16.如图,在△ABC 中,AD ⊥BC ,垂足为D ,AE 平分∠BAC ,BF 平分∠ABC ,它们相交于点O ,∠BAC =50°,∠C =70°,则∠DAC =____,∠AED =_____,∠BOE =______.17.已知:如图,在△ABC 中,∠B =∠C ,AD 平分外角∠EAC .求证:AD ∥BC .第6题图第7题图18.已知:如图,BE是∠ABC的平分线,AB∥CE,∠A=50°,∠E=30°,求∠ACD 的度数.解:∵AB∥CE()∴∠ABE=_______()∵∠E=30°()∴∠ABE=_______()∵BE是∠ABC的平分线()∴∠ABC=2∠ABE=2×30°=60°(角平分线的定义)∵∠ACD是△ABC的一个外角(外角的定义)∠A=50°()∴∠ACD=______+______=______+______=_______()19.已知:如图,在△ABC中,BD平分∠ABC,且∠ADE=∠C,求证:∠AED=2∠EDB证明:∵∠ADE=∠C()∴_____∥_____()∴∠EDB=∠DBC()∵BD平分∠ABC()∴∠EBD=∠DBC(角平分线的定义)∴∠EDB=∠EBD()∵∠AED是△BDE的一个外角()∴∠AED=_____+_____=2∠EDB()20.已知:如图,在△ABC中,CD平分∠ACB交AB于点D,∠ADE=∠B,DE交AC于点F,连接CE.求证:∠EFC=2∠FDC.第8题图第9题图第10题图【参考答案】一、知识点睛1.三角形的一边与另一边的延长线;2.和它不相邻的两个内角的和;三角形三个内角的和为180°;1平角=180°;等式性质.二、精讲精练1.A2.80°;3.75°;4.95°,80°;5.145°;6.20°,85°,55°;7.证明:如图,∵AD平分∠EAC(已知)∴∠EAC=2∠EAD(角平分线定义)∵∠EAC为△ABC的一个外角(外角的定义)∠B=∠C(已知)∴∠EAC=∠B+∠C=2∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠EAD=∠B(等式性质)∴AD∥BC(同位角相等,两直线平行)8.已知;∠E,两直线平行,内错角相等;已知;30°,等量代换;已知;已知;∠A,∠ABC,50°,60°,110°,三角形的一个外角等于和它不相邻的两个内角的和;9.已知;DE,BC,同位角相等,两直线平行;两直线平行,内错角相等;已知;等量代换;外角的定义;∠EBD,∠EDB,三角形的一个外角等于和它不相邻的两个内角的和;10.证明:如图,∵∠B=∠ADE(已知)∴DE∥BC(同位角相等,两直线平行)∴∠FDC=∠DCB(两直线平行,内错角相等)∵CD平分∠ACB(已知)∴∠DCB=∠FCD(角平分线的定义)∴∠FDC=∠FCD(等量代换)∵∠EFC是△DFC的一个外角(外角的定义)∴∠EFC=∠FDC+∠FCD=2∠FDC(三角形的一个外角等于和它不相邻的两个内角的和)几何证明每日一题(三角形的外角)1.已知:如图,直线AD与直线EB、FC分别相交于点G,H,若∠BEF+∠CFE=180°,求证:∠A+∠B+∠C+∠D=180°.2.已知:如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠A=50°,求∠BOC的度数.3.已知:如图,在△ABC中,D是AB上一点,E是AC上一点,DE的延长线交BC的延长线于点F.若∠ACB=50°,∠DFB=30°,∠ADF=80°,求∠A的度数.∠BAC且AD平分∠EDF,若∠CFD=75°,则∠BED的度数为多少?若∠D=∠A+∠B,∠BFE=75°,∠G=35°,求∠EFG的度数.【参考答案】1.证明:如图,∵∠BEF+∠CFE=180°(已知)∴BE∥CF(同旁内角互补,两直线平行)∴∠BGH+∠CHG=180°(两直线平行,同旁内角互补)∵∠BGH是△ABG的一个外角(外角的定义)∴∠BGH=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠CHG是△CHD的一个外角(外角的定义)∴∠CHG=∠C+∠D(三角形的一个外角等于和它不相邻的两个内角的和)∴∠A+∠B+∠C+∠D=∠BGH+∠CHG=180°(等式性质)2.证明:如图,∵BO平分∠ABC,CO平分∠ACB(已知)∴∠OBC=12∠ABC,∠OCB=12∠ACB(角平分线的定义)∵∠A=50°(已知)∴∠BOC=180°-∠OBC-∠OCB=180°-12∠ABC-12∠ACB=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A=115°(三角形的三个内角的和等于180°)3.解:如图,∵∠ADF是△BDF的一个外角(外角的定义)∴∠ADF=∠B+∠DFB(三角形的一个外角等于和它不相邻的两个内角的和)∵∠ADF=80°,∠DFB=30°(已知)∴∠B=50°(等式性质)∵∠ACB=50°(已知)∴∠A=180°-∠B-∠ACB=180°-50°-50°=80°(三角形的三个内角的和等于180°)4.证明:如图,∵AD平分∠BAC且AD平分∠EDF(已知)∴∠FAD=∠EAD,∠FDA=∠EDA(角平分线的定义)∴∠FAD+∠FDA=∠EAD+∠EDA(等式性质)∵∠CFD是△ADF的一个外角(外角的定义)∴∠CFD=∠F AD+∠FDA(三角形的一个外角等于和它不相邻的两个内角的和)∵∠BED是△ADE的一个外角(外角的定义)∴∠BED=∠EAD+∠EDA(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BED=∠CFD(等量代换)∵∠CFD=75°(已知)∴∠BED=75°(等量代换)5.证明:如图,∵∠ACF是△ABC的一个外角(外角的定义)∴∠ACF=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠D=∠A+∠B(已知)∴∠D=∠ACF(等量代换)∴BF∥DG(同位角相等,两直线平行)∴∠FEG=∠BFE(两直线平行,内错角相等)∵∠BFE=75°(已知)∴∠FEG=75°(等量代换)∵∠G=35°(已知)∴∠EFG=180°-∠FEG-∠G=180°-75°-35°=70°(三角形的三个内角的和等于180°)三角形的外角(随堂测试)1.如图,AB∥CD,EG与AB,CD分别交于F,G,∠A=30°,∠EGD=70°,求∠E 的度数.解:∵_____∥______()∴∠EFB=______()∵∠EGD=70°()∴∠EFB=_______()∵∠EFB是△AEF的一个外角()∴∠EFB=_______+_______()∵∠A=30°()∴∠E=______-________=______-________=_______()2.如图,BD是∠ABC的平分线,DE∥BC,交AB于点E,∠A=30°,∠BDC=60°,求∠BDE的度数.解:∵∠BDC是△ABD的一个外角()∴∠BDC=____+______()∵∠A=30°,∠BDC=60°()∴∠ABD=____-______=____-______=______()∵BD是∠ABC的平分线()∴∠DBC=∠ABD=_______()∵DE∥BC()∴∠BDE=______=_____()【参考答案】1.AB,CD,已知;∠EGD,两直线平行同位角相等;已知;70°,等量代换;外角的定义;∠A,∠E,三角形的一个外角等于和它不相邻的两个内角的和;已知;∠EFB,∠EAB,70°,30°,40°,等式性质.2.外角的定义;∠ABD,∠A,三角形的一个外角等于和它不相邻的两个内角的和;已知;∠BDC,∠A,60°,30°,30°,等式性质;已知;30°;角平分线的定义;已知;∠DBC,30°,两直线平行内错角相等.三角形的外角(作业)1.将一副直角三角板,按如图所示叠放在一起,则图中α的度数是()A.45°B.60°C.75°D.90°第1题图第2题图2.如图,在△ABC中,∠1是它的一个外角,E为AC上一点,延长BC到点D,连接DE.若∠1=115°,∠A=40°,∠2=35°,则∠3=_______.3.如图,AB∥CD,EG与AB,CD分别交于F,G,∠E=40°,∠CGE=110°,则∠A=_______.第3题图第4题图4.如图,在△ABC中,AD⊥BC,垂足为D,AE是∠BAC的平分线,若∠B=70°,∠C=30°,则∠BAD=_______,∠AED=_______.5.如图,在△ABC中,∠BAC=50°,∠C=60°,AD⊥BC,BE是∠ABC的平分线,AD,BE相交于点F,求∠AFB的度数.解:∵∠C=60°,∠BAC=50°()∴∠ABC=180°-_____-∠C=180°-50°-60°=70°()∵BE是∠ABC的平分线()∴∠EBD=12∠ABC=35°(角平分线的定义)∵AD⊥BC()∴∠ADB=90°(垂直的性质)∵∠AFB是△BDF的一个外角()∴∠AFB=______+_______=______+_______=________()6.填写下列解题过程中的推理根据:如图,在△ABC中,∠A=40°,BD平分∠ABC交AC于点D,∠BDC=70°,求∠C的度数.解:∵∠BDC是△ABD的一个外角()∴∠BDC=∠A+∠ABD()∵∠A=40°,∠BDC=70°()∴∠ABD=______()∵BD平分∠ABC()∴∠ABC=2∠ABD(角平分线的定义)∴∠ABC=60°()∴∠C=180°-∠A-∠ABC=180°-______-______=______()7.已知:E是AB,CD外一点,∠D=∠B+∠E,求证:AB∥CD.第6题图第5题图【参考答案】1.C;2.40°;3.30°;4.20°,70°;5.已知;∠BAC;三角形三个内角的和等于180°;已知;已知;外角的定义;∠FDB;∠FBD;90°;35°;125°;三角形的一个外角等于和它不相邻的两个内角的和;6.外角的定义;三角形的一个外角等于和它不相邻的两个内角的和;已知;30°;等式性质;已知;等式性质;40°;60°;80°;三角形三个内角的和等于180°;7.证明:如图,∵∠AFE是△FEB的一个外角(外角的定义)∴∠AFE=∠E+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠D=∠E+∠B(已知)∴∠AFE=∠D(等量代换)∴AB∥CD(同位角相等,两直线平行)全等三角形性质及判定(讲义)一、知识点睛1.由_____________________的三条线段_________________所组成的图形叫做三角形.三角形可用符号“__________”表示.2.三角形有关定理:三角形两边之和____________第三边,两边之差___________第三边.3._____________________的两个三角形叫做全等三角形,全等用符号“__________”表示.全等三角形的__________相等,____________相等.4.全等三角形的判定定理:______________________________.二、精讲精练1.作出下图三角形的高线.第1题图第2题图2.如图,△ABC≌△DEF,对应边AB=DE,____________,__________,对应角∠B=∠DEF,________,_________.3.如图,△ACO≌△BCO,对应边AC=BC,___________,__________,对应角∠1=∠2,__________,__________.第3题图第4题图4.如图,△ABC≌△DEC,对应边___________,___________,___________,对应角_______________,_______________,______________.5.如图,若AD=CB,AB=DC,则_________≌__________,理由是___________________;若∠B=∠D,∠BCA=∠DAC,则_________≌________,理由是___________.第5题图第6题图6.如图,AD,BC相交于点O,若AO=DO,BO=CO,则__________≌___________,理由是________________.7.如图,AO=BO,若加上一个条件_____________________,则△AOC≌△BOC,理由是_________________________.第7题图第8题图8.如图,∠1=∠2,若加上一个条件____________________,则△ABE≌△ACE,理由是_______________.9.如图,AD,BC相交于点O,∠A=∠C,若加上一个条件_______________,则△AOB≌△COD,理由是___________.10.如图,某同学把一块三角形的玻璃打碎成3块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D .①②③都带去第9题图11.如图,AB =AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是____________或____________或____________.第11题图第12题图12.如图,点B ,E ,C ,F 在一条直线上,在△ABC 与△DEF 中,AB =DE ,AC =DF ,如果∠__________=∠____________,则△ABC ≌△DEF ,所以BC =________,因此BE =________.13.如图,AE =BF ,AD ∥BC ,AD =BC ,则△ADF ≌_________,理由是__________,因此DF =__________.14.已知:如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C .求证:△ADC ≌△AEB .15.已知:如图,AB =CD ,AB //DC .试猜想AD 和BC 相等吗?并说明理由.第13题图第14题图第15题图16.已知:如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB于E.求证:CD DE.第16题图三、回顾与思考________________________________________________________________________________________________________________________________________________________________________________________________【参考答案】一、知识点睛1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.三角形可用符号“△”表示.2.三角形有关定理:三角形两边之和大于第三边,两边之差小于第三边.3.能够完全重合的两个三角形叫做全等三角形,全等用符号“≌”表示.全等三角形的对应边相等,对应角相等.4.全等三角形的判定定理:SSS,SAS,ASA,AAS.二、精讲精练1.略2.AC=DF,BC=EF,∠A=∠D,∠ACB=∠F3.AO=BO,CO=CO,∠A=∠B,∠ACO=∠BCO4.AB=DE,AC=DC,BC=EC,∠A=∠D,∠B=∠E,∠ACB=∠DCE5.△ADC,△CBA,SSS,△ADC,△CBA,AAS6.△AOB,△DOC,SAS7.AC=BC,SSS(其它答案合理也可以)8.BE=CE,SAS(其它答案合理也可以)9.AO=OC,ASA(其它答案合理也可以)10.C11.AC=AE,∠B=∠D,∠C=∠E12.∠A=∠D,EF,CF13.△BCE,SAS,CE14.证明:在△ADC和△AEB中A AAC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩(公共角)(已知)(已知)∴△ADC ≌△AEB (ASA )15.解:AD =BC ,理由如下:∵AB ∥DC ∴∠ABD =∠CDB 在△ABD 和△CDB 中=⎧⎪∠=∠⎨⎪=⎩AB CD ABD CDBBD DB (已知)(已证)(公共边)∴△ABD ≌△CDB (SAS )∴AD =CB (全等三角形对应边相等)16.解:∵AD 平分∠BAC∴∠CAD =∠EAD ∵DE ⊥AB ∴∠DEA =90°∵∠C =90°∴∠DEA =∠C 在△CAD 和△EAD 中C DEA CAD EADAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边)∴△CAD ≌△EAD (AAS )∴CD =ED (全等三角形对应边相等)全等三角形性质及判定(每日一题)姓名_________ 1.已知:如图,DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.2.已知:如图,在等边三角形ABC中,∠C=∠ABD=60°,AB=BC=AC,点D,E分别为BC,AC边上一点且AE=CD,连接AD,BE相交于点F.求证:△ABD≌△BCE.3.已知:如图,AB=CD,AC=BD.求证:12∠=∠.4.如图,在正方形ABCD,DEFG中,AD=CD,DE=DG,∠EDG=∠ADC=90°,连接CG交AD于点N,连接AE交CG于点M.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.考答案】1.证明:如图,∵DF =CE ∴DF -EF=CE -EF 即DE =CF在△AED 和△BFC 中AD BCD CDE CF (已知)(已知)(已证)=⎧⎪∠=∠⎨⎪=⎩∴△AED ≌△BFC (SAS )2.证明:如图,∵AC =BC AE =CD∴AC -AE =BC -CD 即CE =BD在△ABD 和△BCE 中AB BCABD CBD CE (已知)(已知)(已证)=⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△BCE (SAS )3.证明:如图,在△ABC 和△DCB 中AB CD AC BDBC BC (已知)(已知)(公共边)=⎧⎪=⎨⎪=⎩∴△ABC ≌△DCB (SSS )∴∠ABC =∠DCB ,∠ACB =∠DBC ∵∠1=∠ABC -∠DBC ∠2=∠DCB -∠ACB ∴∠1=∠24.证明:如图,(1)∵∠EDG =∠ADC∴∠EDG +∠ADG=∠ADC +∠ADG 即∠ADE =∠CDG 在△ADE 和△CDG 中AD CDADE CDGDE DG (已知)=(已证)(已知)=⎧⎪∠∠⎨⎪=⎩∴△ADE ≌△CDG (SAS )∴AE =CG (2)AE ⊥CG ∵∠ADC =90°∴∠GCD +∠CND =90°∵△ADE ≌△CDG ∴∠EAD =∠GCD ∵∠ANG =∠CND ∴∠EAD +∠ANG =90°∴∠AMC =90°即:AE ⊥CG全等三角形性质及判定(随堂测试)1.已知:如图,△ABC≌△DEF,对应边AB=DE,______________,_______________,对应角∠ABC=∠DEF,_______________,_______________.第1题图第2题图2.如图,∠BAD=∠CAE,AB=AD,若加上一个条件_______________,则△ABC≌△ADE,理由是_________.3.已知:如图,A,F,C,D在一直线上,AF=CD,AB∥DE,且AB=DE.求证:EC=BF.【参考答案】1.AC=DF BC=EF∠A=∠D∠C=∠F2.AE=AC SAS或者∠B=∠ADE ASA或者∠C=∠E AAS3.证明略全等三角形性质及判定(作业)1.作出下图三角形的高线.2.如图,△ABC≌△AEF,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确的个数是()A.1个B.2个C.3个D.4个第2题图第3题图3.如图,△ABC≌△DEF,对应边AB=DE,_____________,___________,对应角∠B=∠DEF,___________,__________.4.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=EF,若加上一个条件______________________,则△ABC≌△DEF,理由是_______________.。

人教版八年级培优课堂讲义 第01讲 认识三角形(无答案)

人教版八年级培优课堂讲义 第01讲  认识三角形(无答案)

第01讲认识三角形考点·方法·破译1.了解与三角形有关的线段(边、高、中线、角平分线),会画出任意三角形的高、中线、角平分线.2.知道三角形两边的和大于第三边,两边之差小于第三边.3.了解与三角形有关的角(内角、外角) .4.掌握三角形三内角和等于180°,三角形的一个外角等于与它不相邻的两个内角的和.5.会用方程的思想解与三角形基本要素相关的问题.6.会从复杂的图形中找到基本图形,从而寻求解决问题的方法.经典·考题·赏析【例1】若的三边分别为4,x,9,则x的取值范围是______________,周长l的取值范围是______________;当周长为奇数时,x=______________.【解法指导】运用三角形三边关系,即第三边小于两边之和而大于两边之差故5<x<13,18<l<26;周长为19时,x=6,周长为21时,x =8,周长为23时,x=10,周长为25时,x=12,【变式题组】01.若△ABC的三边分别为4,x,9,且9为最长边,则x的取值范围是______________,周长l的取值范围是______________.02.设△ABC三边为a,b,c的长度均为正整数,且a<b<c,a+b+c=13,则以a,b,c为边的三角形,共有______________个.03.用9根同样长的火柴棒在桌面上摆一个三角形(不许折断)并全部用完,能摆出不同形状的三角形个数是().A.1B.2C.3D.4【例2】已知等腰三角形的一边长为18cm,周长为58cm,试求三角形三边的长.【解法指导】对等腰三角形,题目没有交代底边和腰,要给予讨论.当18cm为腰时,底边为58-18×2=22,则三边为18,18,22. 当18cm为底边时,腰为58182=20,则三边为20,20,18.此两种情况都符合两边之和大于第三边.解:18cm,18cm,22cm或18cm,20,20cm.【变式题组】01.已知等腰三角形两边长分别为6cm,12cm,则这个三角形的周长是()A.24cm B.30cm C.24cm或30cm D.18cm02.已知三角形的两边长分别是4cm和9cm,则下列长度的四条线段中能作为第三条边的是()A.13cm B.6cm C.5cm D.4cm03.等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分,则此等腰三角形的腰长为______________.【例3】如图AD是△ABC的中线,DE是△ADC的中线,EF是△DEC的中线,FG是△EFC的中线,若S△GFC=1cm2,则S△ABC=______________.【解法指导】中线将原三角形面积一分为二,由FG为△EFC的中线,知S△EFC=2S△GFC=2.又由EF为△DEC中线,S△DEC=2S△EFC=4.同理S△ADC=8,S△ABC=16.【变式题组】01.如图,已知点D、E、F分别是BC、AD、BE的中点,S△ABC=4,则S△EFC=______________.02.如图,点D是等腰△ABC底边BC上任意一点,DE⊥AB于E,DF⊥AC于F,若一腰上的高为4cm,则DE+DF=______________.03.如图,已知四边形ABCD是矩形(AD>AB) ,点E在BC上,且AE=AD,DF⊥AE于F,则DF与AB的数量关系是______________.【例4】已知,如图,则∠A+∠B+∠C+∠D+∠E=______________.【解法指导】这是本章的一个基本图形,其基本方法为构造三角形或四边形内角和,结合八字形角的关系即,∠A+∠B=∠C+∠D.故连结BC有∠A+∠D=∠DBC+∠ACB,∴∠A+∠B+∠C+∠D+∠E=180°【变式题组】01.如图,则∠A+∠B+∠C+∠D+∠E=______________.02.如图,则∠A+∠B+∠C+∠D+∠E +∠F=______________.03.如图,则∠A+∠B+∠C+∠D+∠E +∠F=______________.【例5】如图,已知∠A=70°,BO、CO分别平分∠ABC、∠ACB.则∠BOC =______________.【解法指导】这是本章另一个基本图形,其结论为∠BOC=12∠A+90°.证法如下: ∠BOC=180°-∠OBC-∠OCBC D (第2题图)C=180°-12∠ABC -12∠ACB =180°-12(180°-∠A )= 90°+12∠A .所以∠BOC =125°. 【变式题组】01.如图,∠A =70°,∠B =40°,∠C =20°,则∠BOC =______________. °,点P 、O 分别是∠ABC 、∠ACB 的三等分线的交点,则∠OPC =______________.03.如图,∠O =140°,∠P =100°,BP 、CP 分别平分∠ABO 、∠ACO ,则∠A =______________.【例6】如图,已知∠B =35°,∠C =47°,AD ⊥BC ,AE 平分∠BAC ,则∠EAD =______________.【解法指导】∵∠EAD =90°-∠AED =90°-(∠B +∠BAE )= 90°-∠B -12(180°-∠B -∠C )= 90°-∠B -90°+12∠B + 12∠C =12(∠C -∠B ) ,故∠EAD =6°.【变式题组】01.如图,已知∠B =39°,∠C =61°,BD ⊥AC ,AE 平分∠BAC ,则∠BFE =__________.02.如图,在△ABC 中,∠ACB =40°,AD 平分∠BAC ,∠ACB 的外角平分线交AD 的延长线于点P ,点F 是BC 上一动点(F 、D 不重合) ,过点F 作EF ⊥BC 交于点E ,下列结论:①∠P +∠DEF 为定值,②∠P -∠DEF 为定值中,有且只有一个答案正确,请你作出判断,并说明理由.【例7】如图,在平面内将△ABC 绕点A 逆时针旋转至△AB ′C ′,使CC ′∥AB ,若∠BAC =70°,则旋转角α=______________.【解法指导】利用平移、旋转不改变图形的形状这条性质来解题.∵CC ′∥AB ,∴∠C ′CA =∠CAB =70°,又AC =AC ′,∴∠C ′AC =180°-2×70°=40°【变式题组】01如图,用等腰直角三角形板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的直角α=______________.02.如图,在平面内将△AOB 绕点O 顺时针旋转α角度得到△OA ′B ′,若点A ′在AB 上时,则旋转角α=______________.(∠AOB =90°,∠B =30°)3.如图,△ABE 和△ACD 是△ABC 沿着AB 边,AC 边翻折180°形成的,若∠BAC =130°,则∠α=______________.演练巩固·反馈提高01.如图,图中三角形的个数为( )(例6题图)E DA.5个B.6个C.7个D.8个02.如果三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不确定03.有4条线段,长度分别是4cm,8cm,10cm,12cm,选其中三条组成三角形,可以组成三角形的个数是()A.1个B.2个C.3个D.4个04.下列语句中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形的一个外角等于这个三角形的两个内角的和C.三角形的外角中,至少有两个钝角D.三角形的外角中,至少有一个钝角05.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定06.若一个三角形的一个外角大于与它相邻的内角,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定07.如果等腰三角形的一边长是5cm,另一边长是9cm,则这个三角形的周长是______________.08.三角形三条边长是三个连续的自然数,且三角形的周长不大于18,则这个三角形的三条边长分别是______________.09.如图,在△ABC中,△A=42°,△B与△C的三等分线,分别交于点D、E,则△BDC的度数是______________.10.如图,光线l照射到平面镜上,然后在平面镜△、△之间来回反射,已知△α=55,△γ=75°,△β=______________.11.如图,点D、E、F分别是BC、AD、BE的中点,且S△EFC=1,则S△ABC=______________.12.如图,已知: △1=△2,△3=△4,△BAC=63°,则△DAC=______________.13.如图,已知点D、E是BC上的点,且BE=AB,CD=CA,△DAE=13△BAC,求△BAC的度数培优升级·奥赛检测01.在△ABC中,2△A=3△B,且△C-30°=△A+△B,则△ABC是()(第13题图)D ECA.锐角三角形B.钝角三角形C.有一个角是30°的直角三角形D.等腰直角三角形B.C.02.已知三角形的三边a、b、c的长都是整数,且a≤b≤c,如果b=7,则这样的三角形共有() A.21个B.28个C.49个D.54个03.在△ABC中,△A=50°,高BE、CF交于O点,则△BOC=______________.04.在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为______________.=______________.06.周长为30,且各边长互不相等且都是整数的三角形有多少个?07.设△ABC三边a、b、c的长度均为自然数,且周长不大于30,并满足(a-b) 2+(a-c) 2+(b-c) 2=26,问满足条件的三角形有多少个?(注:全等三角形只算一个)08.在一次数学小组活动后,小明清理课桌上的三角形模型,经清点,共有11个钝角,15个直角,100个锐角,于是他把这些数据写在“数学园地”上征答:“共有多少个锐角三角形?”你能回答这个问题吗?09.现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1cm的整数,如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段?10.如图,在△BCD中,BE平分△DBC交CD于F,延长BC至G,CE平分△DCG,且EC、DB的延长线交于A点,若△A=30°,△DFE=75°.(1)求证: △DFE=△A+△D+△E;(2)求△E的度数;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第01讲认识三角形考点·方法·破译1.了解与三角形有关的线段(边、高、中线、角平分线),会画出任意三角形的高、中线、角平分线.2.知道三角形两边的和大于第三边,两边之差小于第三边.3.了解与三角形有关的角(内角、外角) .4.掌握三角形三内角和等于180°,三角形的一个外角等于与它不相邻的两个内角的和.5.会用方程的思想解与三角形基本要素相关的问题.6.会从复杂的图形中找到基本图形,从而寻求解决问题的方法.经典·考题·赏析【例1】若的三边分别为4,x,9,则x的取值范围是______________,周长l的取值范围是______________;当周长为奇数时,x=______________.【解法指导】运用三角形三边关系,即第三边小于两边之和而大于两边之差故5<x<13,18<l<26;周长为19时,x=6,周长为21时,x =8,周长为23时,x=10,周长为25时,x=12,【变式题组】01.若△ABC的三边分别为4,x,9,且9为最长边,则x的取值范围是______________,周长l的取值范围是______________.02.设△ABC三边为a,b,c的长度均为正整数,且a<b<c,a+b+c=13,则以a,b,c为边的三角形,共有______________个.03.用9根同样长的火柴棒在桌面上摆一个三角形(不许折断)并全部用完,能摆出不同形状的三角形个数是().A.1B.2C.3D.4【例2】已知等腰三角形的一边长为18cm,周长为58cm,试求三角形三边的长.【解法指导】对等腰三角形,题目没有交代底边和腰,要给予讨论.当18cm为腰时,底边为58-18×2=22,则三边为18,18,22. 当18cm为底边时,腰为58182=20,则三边为20,20,18.此两种情况都符合两边之和大于第三边.解:18cm,18cm,22cm或18cm,20,20cm.【变式题组】01.已知等腰三角形两边长分别为6cm,12cm,则这个三角形的周长是()A.24cm B.30cm C.24cm或30cm D.18cm02.已知三角形的两边长分别是4cm和9cm,则下列长度的四条线段中能作为第三条边的是()A.13cm B.6cm C.5cm D.4cm03.等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分,则此等腰三角形的腰长为______________.【例3】如图AD是△ABC的中线,DE是△ADC的中线,EF是△DEC的中线,FG是△EFC的中线,若S△GFC=1cm2,则S△ABC=______________.【解法指导】中线将原三角形面积一分为二,由FG为△EFC的中线,知S△EFC=2S△GFC=2.又由EF为△DEC中线,S△DEC=2S△EFC=4.同理S△ADC=8,S△ABC=16.【变式题组】01.如图,已知点D、E、F分别是BC、AD、BE的中点,S△ABC=4,则S△EFC=______________.02.如图,点D是等腰△ABC底边BC上任意一点,DE⊥AB于E,DF⊥AC于F,若一腰上的高为4cm,则DE+DF=______________.03.如图,已知四边形ABCD是矩形(AD>AB) ,点E在BC上,且AE=AD,DF⊥AE于F,则DF与AB的数量关系是______________.【例4】已知,如图,则∠A+∠B+∠C+∠D+∠E=______________.【解法指导】这是本章的一个基本图形,其基本方法为构造三角形或四边形内角和,结合八字形角的关系即,∠A+∠B=∠C+∠D.故连结BC有∠A+∠D=∠DBC+∠ACB,∴∠A+∠B+∠C+∠D+∠E=180°【变式题组】01.如图,则∠A+∠B+∠C+∠D+∠E=______________.02.如图,则∠A+∠B+∠C+∠D+∠E +∠F=______________.03.如图,则∠A+∠B+∠C+∠D+∠E +∠F=______________.【例5】如图,已知∠A=70°,BO、CO分别平分∠ABC、∠ACB.则∠BOC =______________.【解法指导】这是本章另一个基本图形,其结论为∠BOC=12∠A+90°.证法如下: ∠BOC=180°-∠OBC-∠OCBC D (第2题图)C=180°-12∠ABC -12∠ACB =180°-12(180°-∠A )= 90°+12∠A .所以∠BOC =125°. 【变式题组】01.如图,∠A =70°,∠B =40°,∠C =20°,则∠BOC =______________. °,点P 、O 分别是∠ABC 、∠ACB 的三等分线的交点,则∠OPC =______________.03.如图,∠O =140°,∠P =100°,BP 、CP 分别平分∠ABO 、∠ACO ,则∠A =______________.【例6】如图,已知∠B =35°,∠C =47°,AD ⊥BC ,AE 平分∠BAC ,则∠EAD =______________.【解法指导】∵∠EAD =90°-∠AED =90°-(∠B +∠BAE )= 90°-∠B -12(180°-∠B -∠C )= 90°-∠B -90°+12∠B + 12∠C =12(∠C -∠B ) ,故∠EAD =6°.【变式题组】01.如图,已知∠B =39°,∠C =61°,BD ⊥AC ,AE 平分∠BAC ,则∠BFE =__________.02.如图,在△ABC 中,∠ACB =40°,AD 平分∠BAC ,∠ACB 的外角平分线交AD 的延长线于点P ,点F 是BC 上一动点(F 、D 不重合) ,过点F 作EF ⊥BC 交于点E ,下列结论:①∠P +∠DEF 为定值,②∠P -∠DEF 为定值中,有且只有一个答案正确,请你作出判断,并说明理由.【例7】如图,在平面内将△ABC 绕点A 逆时针旋转至△AB ′C ′,使CC ′∥AB ,若∠BAC =70°,则旋转角α=______________.【解法指导】利用平移、旋转不改变图形的形状这条性质来解题.∵CC ′∥AB ,∴∠C ′CA =∠CAB =70°,又AC =AC ′,∴∠C ′AC =180°-2×70°=40°【变式题组】01如图,用等腰直角三角形板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的直角α=______________.02.如图,在平面内将△AOB 绕点O 顺时针旋转α角度得到△OA ′B ′,若点A ′在AB 上时,则旋转角α=______________.(∠AOB =90°,∠B =30°)3.如图,△ABE 和△ACD 是△ABC 沿着AB 边,AC 边翻折180°形成的,若∠BAC =130°,则∠α=______________.演练巩固·反馈提高01.如图,图中三角形的个数为( )A .5个B .6个C .7个D .8个(例6题图)E D02.如果三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不确定03.有4条线段,长度分别是4cm,8cm,10cm,12cm,选其中三条组成三角形,可以组成三角形的个数是()A.1个B.2个C.3个D.4个04.下列语句中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形的一个外角等于这个三角形的两个内角的和C.三角形的外角中,至少有两个钝角D.三角形的外角中,至少有一个钝角05.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定06.若一个三角形的一个外角大于与它相邻的内角,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定07.如果等腰三角形的一边长是5cm,另一边长是9cm,则这个三角形的周长是______________.08.三角形三条边长是三个连续的自然数,且三角形的周长不大于18,则这个三角形的三条边长分别是______________.09.如图,在△ABC中,△A=42°,△B与△C的三等分线,分别交于点D、E,则△BDC的度数是______________.10.如图,光线l照射到平面镜上,然后在平面镜△、△之间来回反射,已知△α=55,△γ=75°,△β=______________.11.如图,点D、E、F分别是BC、AD、BE的中点,且S△EFC=1,则S△ABC=______________.12.如图,已知: △1=△2,△3=△4,△BAC=63°,则△DAC=______________.13.如图,已知点D、E是BC上的点,且BE=AB,CD=CA,△DAE=13△BAC,求△BAC的度数培优升级·奥赛检测01.在△ABC中,2△A=3△B,且△C-30°=△A+△B,则△ABC是() A.锐角三角形B.钝角三角形(第13题图)D ECC.有一个角是30°的直角三角形D.等腰直角三角形B.C.02.已知三角形的三边a、b、c的长都是整数,且a≤b≤c,如果b=7,则这样的三角形共有() A.21个B.28个C.49个D.54个03.在△ABC中,△A=50°,高BE、CF交于O点,则△BOC=______________.04.在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为______________.=______________.06.周长为30,且各边长互不相等且都是整数的三角形有多少个?07.设△ABC三边a、b、c的长度均为自然数,且周长不大于30,并满足(a-b) 2+(a-c) 2+(b-c) 2=26,问满足条件的三角形有多少个?(注:全等三角形只算一个)08.在一次数学小组活动后,小明清理课桌上的三角形模型,经清点,共有11个钝角,15个直角,100个锐角,于是他把这些数据写在“数学园地”上征答:“共有多少个锐角三角形?”你能回答这个问题吗?09.现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1cm的整数,如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段?10.如图,在△BCD中,BE平分△DBC交CD于F,延长BC至G,CE平分△DCG,且EC、DB的延长线交于A点,若△A=30°,△DFE=75°.(1)求证: △DFE=△A+△D+△E;(2)求△E的度数;。

相关文档
最新文档