2019年重庆市江北区九年级上册期末模拟数学试题(有答案)-精选

合集下载

【5套打包】重庆市初三九年级数学上期末考试测试卷(含答案)

【5套打包】重庆市初三九年级数学上期末考试测试卷(含答案)

人教版数学九年级上册期末考试试题及答案一、选择题(每小题3分,共30分)1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠04.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S=4,△AOT 则此函数的表达式为()A.B.C.D.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3 7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.88.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y29.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(共6小题,每题4份,共24分)11.(4分)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.12.(4分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为.13.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】14.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP 长为厘米.15.(4分)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.16.(4分)在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN =时,△AMN与原三角形相似.三、解答题(本题共7小题,共66分)17.(12分)(1)计算:4cos30°﹣3tan60°+2sin45°•cos45°(2)解方程:x2+x﹣1=018.(7分)随着信息技术的迅猛发展,人民去商场购物的支付方式更加多样、便捷.除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.19.(7分)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.20.(9分)如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>的x的取值范围.21.(9分)如图,为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°,开通隧道后,汽车从A地到B地大约可以少走多少千米(结果精确到1千米)?(参考数据:≈1.4,≈1.7)22.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC 的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.23.(12分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y 轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.参考答案一、选择题1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,也是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.【分析】根据根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率即可求出答案.解:∵共有直行、左拐、右拐这3种选择,∴恰好直行的概率是,故选:B.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠0【分析】将原方程变形为一般式,根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于m的一元一次不等式是解题的关键.=4,4.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT 则此函数的表达式为()A.B.C.D.【分析】由图象上的点所构成的三角形面积为可知,该点的横纵坐标的乘积绝对值为2,又因为点M在第二象限内,所以可知反比例函数的系数.=8;解:由题意得: |k|=2S△AOT又因为点M在第二象限内,则k<0;所以反比例函数的系数k为﹣8.故选:D.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【分析】画图可得结论.解:画图如下:则A'(5,﹣1),故选:D.【点评】本题考查了旋转的性质,熟练掌握顺时针或逆时针旋转是解决问题的关键.6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3【分析】方程移项配方后,利用平方根定义开方即可求出解.解:方程整理得:x2﹣6x=6,配方得:x2﹣6x+9=15,即(x﹣3)2=15,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP =2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.8.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题. 解:∵点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,∴(﹣2,y 1),(﹣1,y 2)分布在第二象限,(3,y 3)在第四象限,每个象限内,y 随x 的增大而增大,∴y 3<y 1<y 2.故选:D .【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.9.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .C .D .【分析】根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案.解:如图:,由勾股定理,得AC =,AB =2,BC =,∴△ABC 为直角三角形,∴tan ∠B ==,【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.解:∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,【点评】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.二、填空题(共6小题,每题4份,共24分)11.(4分)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.【分析】利用底面周长=展开图的弧长可得.解:,解得r=.故答案为:.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.12.(4分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为(﹣2,﹣).【分析】把B的横纵坐标分别乘以﹣得到B′的坐标.解:由题意得:△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,又∵B(3,1)∴B′的坐标是[3×(﹣),1×(﹣)],即B′的坐标是(﹣2,﹣);故答案为:(﹣2,﹣).【点评】本题考查了位似变换:先确定点的坐标,及相似比,再分别把横纵坐标与相似比相乘即可,注意原图形与位似图形是同侧还是异侧,来确定所乘以的相似比的正负.13.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.2 米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.14.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP 长为(﹣1)厘米.【分析】根据黄金分割点的定义,知AP是较长线段,得出AP=AB,代入数据即可得出AP的长.解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=2×=(﹣1)厘米.故答案为(﹣1).【点评】本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍.15.(4分)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.【分析】首先由题意可证得:△ACB是等腰三角形,即可求得BC的长,然后由在Rt△CBD 中,CD=BC•sin60°,求得答案.解:过点C作CD⊥AB于点D,根据题意得:∠CAD=90°﹣60°=30°,∠CBD=90°﹣30°=60°,∴∠ACB=∠CBD﹣∠CAD=30°,∴∠CAB=∠ACB,∴BC=AB=2km,在Rt△CBD中,CD=BC•sin60°=2×=(km).故答案为:.【点评】此题考查了方向角问题.注意证得△ABC是等腰三角形是解此题的关键.16.(4分)在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN =2或4.5 时,△AMN与原三角形相似.【分析】分别从△AMN∽△ABC或△AMN∽△ACB去分析,根据相似三角形的对应边成比例,即可求得答案.解:由题意可知,AB=9,AC=6,AM=3,①若△AMN ∽△ABC ,则=,即=, 解得:AN =2;②若△AMN ∽△ACB ,则=,即=, 解得:AN =4.5;故AN =2或4.5.故答案为:2或4.5.【点评】此题考查了相似三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.三、解答题(本题共7小题,共66分)17.(12分)(1)计算:4cos30°﹣3tan60°+2sin45°•cos45°(2)解方程:x 2+x ﹣1=0【分析】(1)利用特殊角的三角函数值计算;(2)先计算判别式的值,然后利用求根公式解方程.解:(1)原式=4×﹣3×+2××=2﹣3+1 =1﹣; (2)△=12﹣4×(﹣1)=5,x == 所以x 1=,x 2=.【点评】本题考查了解一元二次方程﹣公式法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了特殊角的三角函数值.18.(7分)随着信息技术的迅猛发展,人民去商场购物的支付方式更加多样、便捷.除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.解:将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.【点评】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.19.(7分)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.【分析】由∠BAE=∠CAD知∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,再根据线段的长得出==,据此即可得证.解:∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∵AB=18,AC=48,AE=15,AD=40,∴==,∴△ABC∽△AED.【点评】本题主要考查相似三角形的判定,解题的关键是掌握两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.20.(9分)如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>的x的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数的解析式,把点A(4,1)与点B(﹣1,﹣4)代入一次函数y=kx+b,即可得到一次函数解析式为y=x﹣3;(2)根据三角形的面积公式即可得到结论;(3)由图象即可得kx+b>的x的取值范围.解:(1)∵点A(4,1)与点B(﹣1,a)在反比例函数y=(m≠0)图象上,∴m=4,即反比例函数的解析式为y=,当x=1时,y=﹣4,即B(﹣1,﹣4),∵点A(4,1)与点B(﹣1,﹣4)在一次函数y=kx+b(k≠0)图象上,∴,解得:,∴一次函数解析式为y=x﹣3;(2)对于y=x﹣3,当y=0时,x=3,∴C(3,0),∴S△AOB =S△AOC+S△BOC=×3×1+×3×4=;(3)由图象可得,当﹣1<x<0或x>4时,kx+b>.【点评】本题考查的是反比例函数与一次函数的交点问题及三角形的面积公式,熟知坐标轴上点的坐标特点是解答此题的关键.21.(9分)如图,为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°,开通隧道后,汽车从A地到B地大约可以少走多少千米(结果精确到1千米)?(参考数据:≈1.4,≈1.7)【分析】过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD的长度和AC的长度,在直角△CBD中,解直角三角形求出BD的长度,再求出AD的长度,进而求出汽车从A地到B地比原来少走多少路程.解:过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×=40(千米),AC==40≈56.4(千米),∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×=40(千米),∵tan45°=,CD=40(千米),∴AD=40(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2≈27(千米).答:汽车从A地到B地比原来少走的路程为27千米.【点评】本题考查了勾股定理的运用以及解一般三角形的知识,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC 的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;(3)连接AO,求出∠OAD=90°即可.【解答】(1)解:∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)证明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴=,∴AE2=EF×ED;(3)证明:连接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.【点评】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.23.(12分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y 轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.【分析】(1)根据抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),可以求得该抛物线的解析式;(2)根据题意和(1)中的抛物线解析式可以求得点C的坐标,从而可以得到直线BC的函数解析式,然后根据在直线BC上方的抛物线上有点P,使△PBC面积为1,即可求得点P 的坐标.解:(1)∵抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),∴,解得,,∴抛物线的解析式为y=﹣x2+x+1;(2)∵y=﹣x2+x+1,∴当x=0时,y=1,即点C的坐标为(0,1),∵B(3,0),C(0,1),∴直线BC的解析式为:y=x+1,设点P的坐标为(p,﹣p2+p+1),将x=p代入y=x+1的,y=p+1,∵△PBC面积为1,∴=1,解得,p1=1,p2=2,当p1=1时,点P的坐标为(1,),当p=2时,点P的坐标为(2,1),2即点P的坐标为(1,)或(2,1).【点评】本题考查抛物线与x轴的交点、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解答本题的关键是明确题意,利用二次函数的性质解答.最新人教版九年级数学上册期末考试试题及答案一、选择题(本大题10小题每小题3分,共30分)在每小题列出的四个选项中只有一个是正确的1.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x+1)2﹣2D.y=(x+1)2﹣23.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm4.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm5.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=11 6.点A(﹣3,2)与点B(﹣3,﹣2)的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.以上各项都不对7.如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A,B 为圆心,AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.16﹣2πB.16﹣πC.8﹣2πD.8﹣π8.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落9.若关于x的一元二次方程x2+x﹣m=0有实数根,则m的取值范围是()A.m≥B.m≥﹣C.m≤D.m≤﹣10.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①a<0;②b>0;③b2﹣4ac>0;④a+b+c<0;其中结论正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上11.方程(x﹣1)(x+2)=0的解是.12.在半径为6cm的圆中,120°的圆心角所对的弧长为cm.13.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为,则n=.15.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.16.如图,PA,PB分别与⊙O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE的周长为.三、解答题(一)(本大题3小题每小题6分,共18分)17.解方程:3x2﹣6x+1=2.18.(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2.(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).19.已知:抛物线y=ax2+bx+3经过点A(3,0)、B(﹣1,8),求抛物线的函数表达式,并通过配方写出抛物线的顶点坐标.四、解答题(二)(本大题3小题每小题7分,共21分)20.2015年底某市汽车拥有量为100万辆,而截止到2017年底,该市的汽车拥有量已达到144万辆.(1)求2015年底至2017年底该市汽车拥有量的年平均增长率;(2)若年增长率保持不变,预计2018年底该市汽车拥有量将达到多少万辆.21.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.22.如图,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆⊙O交于点D.(1)求证:DB=DC;(2)若∠CAB=30°,BC=4,求劣弧的长度.五、解答题(三)(本大题3小题,每小题9分,共27分)23.某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少?(2)在商品销售正常的情况下,每件商品的涨价为多少元时,商场日盈利最大?最大利润是多少?24.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.25.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.2018-2019学年广东省湛江市徐闻县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题每小题3分,共30分)在每小题列出的四个选项中只有一个是正确的1.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故选项错误;B、不是轴对称图形,是中心对称图形.故选项错误;C、是轴对称图形,也是中心对称图形.故选项正确;D、是轴对称图形,不是中心对称图形.故选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x+1)2﹣2D.y=(x+1)2﹣2【分析】抛物线y=﹣x2的顶点坐标为(0,0),向左平移1个单位,再向下平移2个单位后所得的抛物线的顶点坐标为(﹣1,﹣2),根据顶点式可确定所得抛物线解析式.【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,﹣2),所以所得抛物线解析式为:y=﹣(x+1)2﹣2.故选:B.【点评】本题考查了二次函数图象与几何变换,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.3.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.4.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm【分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【解答】解:∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则=60π,解得:r=40cm,故选:A.【点评】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.5.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=11【分析】把常数项移到右边,两边加上一次项系数一半的平方,把方程变化为左边是完全平方的形式.【解答】解:x2﹣8x+5=0,x2﹣8x=﹣5,x2﹣8x+16=﹣5+16,(x﹣4)2=11.故选:D.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.6.点A(﹣3,2)与点B(﹣3,﹣2)的关系是()A.关于x轴对称B.关于y轴对称。

∥3套精选试卷∥2019年重庆市九年级上学期数学期末经典试题

∥3套精选试卷∥2019年重庆市九年级上学期数学期末经典试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在同一直角坐标系中,函数-ayx=与y=ax+1(a≠0)的图象可能是()A.B.C.D.【答案】B【分析】本题可先由反比例函数-ayx=图象得到字母a的正负,再与一次函数y=ax+1的图象相比较看是否一致即可解决问题.【详解】解:A、由函数-ayx=的图象可知a>0,由y=ax+1(a≠0)的图象可知a<0故选项A错误.B、由函数-ayx=的图象可知a>0,由y=ax+1(a≠0)的图象可知a>0,且交于y轴于正半轴,故选项B正确.C、y=ax+1(a≠0)的图象应该交于y轴于正半轴,故选项C错误.D、由函数-ayx=的图象可知a<0,由y=ax+1(a≠0)的图象可知a>0,故选项D错误.故选:B.【点睛】本题考查反比例函数的图象、一次函数的图象等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.2.把函数y=﹣3x2的图象向右平移2个单位,所得到的新函数的表达式是()A.y=﹣3x2﹣2 B.y=﹣3(x﹣2)2C.y=﹣3x2+2 D.y=﹣3(x+2)2【答案】B【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】二次函数y=﹣3x1的图象向右平移1个单位,得:y=﹣3(x﹣1)1.故选:B.【点睛】本题考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.3.下列倡导节约的图案中,是轴对称图形的是( ) A .B .C .D .【答案】C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故此选项错误; B 、不是轴对称图形,故此选项错误; C 、是轴对称图形,故此选项正确; D 、不是轴对称图形,故此选项错误. 故选C . 【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 4.二次函数y=ax 2+bx+c(a ≠0)的图象如图,则反比例函数y=ax与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知: 开口向上,a >1;对称轴大于1,2ba>1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内; ∵一次函数y =bx ﹣c 中,b <1,﹣c <1, ∴一次函数图象经过第二、三、四象限.故选C . 【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.5.边长相等的正方形与正六边形按如图方式拼接在一起,则ABC ∠的度数为( )A .10︒B .15︒C .20︒D .30【答案】B【解析】利用多边形的内角和定理求出正方形与正六边形的内角和,进而求出每一个内角,根据等腰三角形性质,即可确定出所求角的度数.【详解】正方形的内角和为360°,每一个内角为90°; 正六边形的内角和为720°,每一个内角为120°, 则BAC ∠ =360°-120°-90°=150°, 因为AB=AC,所以ABC ∠=ACB ∠=15° 故选B 【点睛】此题考查了多边形内角和外角,等腰三角形性质,熟练掌握多边形的内角和定理是解本题的关键. 6.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( ) A .()1119802x x += B .()1119802x x -= C .()11980x x += D .()11980x x -=【答案】D【分析】根据题意得:每人要赠送(x-1)张贺卡,有x 个人,然后根据题意可列出方程:(x-1)x=1. 【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x 个人, ∴全班共送:(x-1)x=1, 故选:D . 【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x 个人是解决问题的关键.7.已知关于x 的方程x 2﹣3x+2k =0有两个不相等的实数根,则k 的取值范围是( )A.k>98B.k<98C.k<﹣98D.k<89【答案】B【分析】利用判别式的意义得到△=(﹣3)2﹣4•2k>0,然后解不等式即可.【详解】解:根据题意得△=(﹣3)2﹣4•2k>0,解得k<98.故选:B.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.8.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线21kyx+=-上,则下列关系式正确的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【答案】B【解析】分析:根据题意,可得这个反比例函数图象所在的象限及每个象限的增减性,比较三个点的纵横坐标,分析可得三点纵坐标的大小,即可得答案.详解:∵双曲线21kyx+=-中的-(k1+1)<0,∴这个反比例函数在二、四象限,且在每个象限都是增函数,且1<π, ∴y1>0,y1<y3<0;故有y1>y3>y1.故选B.点睛:考查了运用反比例函数图象的性质判断函数值的大小,解题关键牢记反比例函数kyx=(x≠0)的性质:当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大.9.如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(-4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为()A.(0,3)B.(0,2.5)C.(0,2) D.(0,1.5) 【答案】C【分析】如图连接BF交y轴于P ,由BC∥GF可得GPPC=GFPC,再根据线段的长即可求出GP,PC,即可得出P点坐标.【详解】连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴GPPC =GFPC=12,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.【点睛】此题主要考查位似图形的性质,解题的关键是根据位似图形的对应线段成比例.10.如图,在同一平面直角坐标系中,反比例函数kyx与一次函数y=kx−1(k为常数,且k≠0)的图象可能是()A.B.C.D.【答案】B【分析】分k >0和k <0两种情况,分别判断反比例函数()0ky k x=≠的图象所在象限及一次函数y=-kx-1的图象经过的象限.再对照四个选项即可得出结论. 【详解】当k >0时, -k <0, ∴反比例函数ky x=的图象在第一、三象限,一次函数y=kx-1的图象经过第一、三、四象限; 当k <0时, -k >0, ∴反比例函数ky x=的图象在第二、四象限,一次函数y=kx-1的图象经过第二、三、四象限. 故选:B . 【点睛】本题考查了反比例函数的图象与性质以及一次函数图象与性质,熟练掌握两种函数的性质并分情况讨论是解题的关键.11.将函数22y x =的图象向左平移1个单位,再向下平移3个单位,可得到的抛物线是:( ) A .22(1)3y x =-- B .2y 2(x 1)3=-+ C .22(1)3y x =+-D .2y 2(x 1)3=++【答案】C【分析】先根据“左加右减”的原则求出函数y=-1x 2的图象向左平移2个单位所得函数的解析式,再根据“上加下减”的原则求出所得函数图象向下平移1个单位的函数解析式.【详解】解:由“左加右减”的原则可知,将函数22y x =的图象向左平移1个单位所得抛物线的解析式为:y=2(x+1)2;由“上加下减”的原则可知,将函数y=2(x+1)2的图象向下平移1个单位所得抛物线的解析式为:y=2(x+1)2-1. 故选:C . 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键. 12.下列有关圆的一些结论①任意三点可以确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接四边形对角互补.其中正确的结论是( ) A .① B .②C .③D .④【答案】D【分析】根据确定圆的条件、圆心角、弧、弦的关系定理、垂径定理、圆内接四边形的性质进行判断即可得到正确结论.【详解】解:①不共线的三点确定一个圆,故①表述不正确; ②在同圆或等圆中,相等的圆心角所对的弧相等,故②表述不正确;③平分弦(不是直径)的直径垂直于弦,故③表述不正确;④圆内接四边形对角互补,故④表述正确.故选D.【点睛】本题考查了圆心角、弧、弦的关系定理,垂径定理的推论,半圆与弧的定义,圆内接四边形的性质,熟练掌握定义与性质是解题的关键.二、填空题(本题包括8个小题)13.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况如表,请你估计这400名同学的家庭一个月节约用水的总量大约是_____.【答案】110m1.【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】解:20名同学各自家庭一个月平均节约用水是:(0.2×2+0.25×4+0.1×6+0.4×7+0.5×1)÷20=0.125(m1),因此这400名同学的家庭一个月节约用水的总量大约是:400×0.125=110(m1),故答案为:110m1.【点睛】此题考查的是根据样本估计总体,掌握样本平均数的公式是解决此题的关键.14.九年级学生在毕业前夕,某班每名同学都为其他同学写一段毕业感言,全班共写了2256段毕业感言,如果该班有x名同学,根据题意列出方程为____.【答案】(x﹣1)x=2256【分析】根据题意得:每人要写(x-1)条毕业感言,有x个人,然后根据题意可列出方程.【详解】根据题意得:每人要写(x−1)条毕业感言,有x个人,∴全班共写:(x−1)x=2256,故答案为:(x−1)x=2256.【点睛】此题考查一元二次方程,解题关键在于结合实际列一元二次方程即可.15.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,1,5,9;乙:9,6,1,10,7,1.(1)请补充完整下面的成绩统计分析表:(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________. 【答案】(1)83,1.5,1;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由. 【详解】(1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,1,9,9,10 故甲组中位数:(1+9)÷2=1.5 乙组平均分:(9+6+1+10+7+1)÷6=1 填表如下:(2)两队的平均分相同,但乙组的方差小于甲组,所以乙组成绩更稳定.故答案为:83,1.5,1;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.16.如图,在△ABC 中,∠ABC =90°,AB =6,BC =4,P 是△ABC 的重心,连结BP ,CP ,则△BPC 的面积为_____.【答案】1【分析】△ABC的面积S=12AB×BC=1642⨯⨯=12,延长BP交AC于点E,则E是AC的中点,且BP=23BE,即可求解.【详解】解:△ABC的面积S=12AB×BC=1642⨯⨯=12,延长BP交AC于点E,则E是AC的中点,且BP=23BE,(证明见备注)△BEC的面积=12S=6,BP=23 BE,则△BPC的面积=23△BEC的面积=1,故答案为:1.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:△ABC,E、F是AB,AC的中点.EC、FB交于G.求证:EG=12CG 证明:过E作EH∥BF交AC于H.∵AE=BE,EH∥BF,∴AH=HF=12 AF,又∵AF=CF,∴HF=12 CF,∴HF:CF=12,∵EH∥BF,∴EG:CG=HF:CF=12,∴EG=12 CG.【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.17.如图:⊙A、⊙B、⊙C两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为.【答案】12π.【解析】试题分析:根据三角形的内角和是180°和扇形的面积公式进行计算.试题解析:∵∠A+∠B+∠C=180°,∴阴影部分的面积=2180113602ππ⨯=.考点:扇形面积的计算.18.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.【答案】2或52或75.【分析】由勾股定理求出AB,设AE=x,则EF=x,BF=1﹣2x;分三种情况讨论:①当BF=BC时,列出方程,解方程即可;②当BF=CF时,F在BC的垂直平分线上,得出AF=BF,列出方程,解方程即可;③当CF=BC时,作CG⊥AB于G,则BG=FG12=BF,由射影定理求出BG,再解方程即可.【详解】由翻折变换的性质得:AE=EF.∵∠ACB=90°,AC=8,BC=6,∴AB2286=+=1.设AE=x,则EF=x,BF=1﹣2x.分三种情况讨论:①当BF=BC时,1﹣2x=6,解得:x=2,∴AE=2;②当BF=CF时.∵BF=CF,∴∠B=∠FCB.∵∠A+∠B=90°,∠FCA+∠FCB=90°,∴∠A=∠FCA,∴AF= FC.∵BF=FC,∴AF=BF,∴x+x=1﹣2x,解得:x52 =,∴AE52 =;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FG12=BF.根据射影定理得:BC2=BG•AB,∴BG22618105 BCAB===,即12(1﹣2x)185=,解得:x75 =,∴AE75 =;综上所述:当△BCF为等腰三角形时,AE的长为:2或52或75.故答案为:2或52或75.【点睛】本题考查了翻折变换的性质、勾股定理、射影定理、等腰三角形的性质;本题有一定难度,需要进行分类讨论.三、解答题(本题包括8个小题)19.已知ABC 为直角三角形,∠ACB=90°,AC=BC ,点A 、C 在x 轴上,点B 坐标为(3,m)(m>0),线段AB 与y 轴相交于点D ,以P(1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示);(2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:FC(AC+EC)为定值.【答案】(1)(3﹣m ,0);(2)2(1)y x =-;(3)见解析【分析】(1)AO=AC−OC=m−3,用线段的长度表示点A 的坐标;(2)ABC 是等腰直角三角形,因此AOD △也是等腰直角三角形,即可得到OD=OA ,则D(0,m−3),又由P(1,0)为抛物线顶点,用待定系数法设顶点式,计算求解即可;(3)过点Q 作QM ⊥AC 与点M ,过点Q 作QN ⊥BC 与点N ,设点Q 的坐标为2(,(1))x x -,运用相似比求出FC ,EC 长的表达式,而AC=m ,代入即可.【详解】解:(1)由B (3,m)可知OC=3,BC=m ,∴AC=BC=m ,OA=m ﹣3,∴点A 的坐标为(3﹣m ,0)(2)∵∠ODA=∠OAD=45°∴OD=OA= m ﹣3,则点D 的坐标是(0,m ﹣3)又抛物线的顶点为P(1,0),且过B 、D 两点,所以可设抛物线的解析式为:2(1)y a x =-得:221(31)4(01)3a a m m a m =⎧-=⎧⎨⎨=-=-⎩⎩解得: ∴抛物线的解析式为:2(1)y x =-(3)证明:过点Q 作QM ⊥AC 与点M ,过点Q 作QN ⊥BC 与点N ,设点Q 的坐标为2(,(1))x x -,则2(1)3QM CN x MC QN x ==-==-,∵QM ∥CE∴△PQM ∽△PEC 则2(1)12(1)2QM PM x x EC x EC PC EC --===-即得 ∵QN ∥FC∴△BQN ∽△BFC 则234(1)441QN BN x x FC FC BC FC x ---===+即得 又∵AC=m=4 ∴[]44()42(1)2(1)811FC AC EC x x x x +=+-=⨯+=++ 即()FC AC EC +为定值8本题主要考查了点的坐标,待定系数法求二次函数解析式,相似三角形的判定与性质,合理做出辅助线,运用相似三角形的性质求出线段的长度是解题的关键.20.如图,已知双曲线1k y x =与直线2y ax b =+交于点()14A ,和点()1B m -, (1)求双曲线的解析式;(2)直接写出不等式k ax b x+<的解集【答案】(1)14y x=;(2)01x <<或4x <- 【分析】(1)将点A 坐标代入双曲线解析式即可得出k 的值,从而求出双曲线的解析式;(2)求出B 点坐标,利用图象即可得解.【详解】解:(1)∵双曲线1k y x =经过点(14)A ,,414k =⨯=. ∴双曲线的解析式为14y x= (2)由双曲线解析式可得出B(-4,-1),结合图象可得出,不等式k ax b x+<的解集是:01x <<或4x <-. 【点睛】本题考查的知识点是反比例函数与一次函数的交点问题,解题的关键是从图象中得出相关信息. 21.已知函数y =ax 2+bx +c (a≠0,a 、b 、c 为常数)的图像经过点A (-1,0)、B (0,2). (1)b = (用含有a 的代数式表示),c = ;(2)点O 是坐标原点,点C 是该函数图像的顶点,若△AOC 的面积为1,则a = ;(3)若x >1时,y <1.结合图像,直接写出a 的取值范围.【答案】(1)a+2;2;(2)-2或642±(3)8215a ≤--【分析】(1)将点B 的坐标代入解析式,求得c 的值;将点A 代入解析式,从而求得b ;;(2)由题意可得AO=1,设C 点坐标为(x,y ),然后利用三角形的面积求出点C 的纵坐标,然后代入顶点坐标公式求得a 的值;(3)结合图像,若x >1时,y <1,则顶点纵坐标大于等于1,根据顶点纵坐标公式列不等式求解即可.【详解】解:(1)将B (0,2)代入解析式得:c=2将A (-1,0)代入解析式得: a ×(-1)2+b ×(-1)+c=0∴b=a+2故答案为:a+2;2(2)由题意可知:AO=1设C 点坐标为(x,y ) 则1112y ⨯⨯= 解得:2y =±当y=2时,2424ac b a-= 由(1)可知,b=a+2;c=2 ∴242(2)24a a a⨯-+= 解得:a=-2当y=-2时,2424ac b a-=- 由(1)可知,b=a+2;c=2 ∴242(2)24a a a⨯-+=-解得:6a =±∴a 的值为-2或6±(3)若x >1时,y <1,又因为图像过点A (-1,0)、B (0,2)∴图像开口向下,即a <0则该图像顶点纵坐标大于等于1 ∴2454ac b a-≥ 即242(2)54a a a⨯-+≥解得:8a ≤--或8a ≥-+(舍去)∴a 的取值范围为8a ≤--【点睛】本题考查二次函数的性质,掌握顶点坐标公式及数形结合思想解题是本题的解题关键.22.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a = ,b = ,c = .(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.【答案】解:(1)a =135,b =134.5,c =1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【分析】(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据;(2)从不同角度评价,标准不同,会得到不同的结果.【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为1341352+=134.5; 根据方差公式:s 2=()()()()()2222211321351341355135135213613513713510⎡⎤-+-+-+-+-⎣⎦=1.6, ∴a =135,b =134.5,c =1.6;(2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S 2一<S 2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当.【点睛】此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力.23.有六张完全相同的卡片,分,A B 两组,每组三张,在A 组的卡片上分别画上“√,×,√”,B 组的卡片上分别画上“√,×,×”,如图①所示.(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率(请用“树形图法”或“列表法”求解).(2)若把,A B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图②所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.【答案】(1)29;(2)①23;②12【分析】(1)画出树状图计算即可;(2)①三张卡片上正面的标记有三种可能,分别为“√,×,√”,然后计算即可;②正面标记为“√”的卡片,其反面标记情况有两种可能,分别为“√”和“×”,计算即可;【详解】(1)解:根据题意,可画出如下树形图:从树形图可以看出,所有可能结果共9种,且每种结果出现的可能性相等,其中两张卡片上标记都是“√”的结果有2种,∴P(两张都是“√”)29(2)解:①∵三张卡片上正面的标记有三种可能,分别为“√,×,√”,∴随机揭开其中一个盖子,看到的标记是“√”的概率为23.②∵正面标记为“√”的卡片,其反面标记情况有两种可能,分别为“√”和“×”,∴猜对反面也是“√”的概率为12.【点睛】本题主要考查了概率的计算,准确理解题意是解题的关键.24.如图,某中学准备建一个面积为300m2的矩形花园,它的一边利用图书馆的后墙,另外三边所围的栅栏的总长度是50m,求垂直于墙的边AB的长度?(后墙MN最长可利用25米)【答案】垂直于墙的边AB 的长度为15米.【分析】花园总共有三条边组成,可设AB=x ,则BC=(50-2x ),根据题意有x(50-2x)=300,解得x=10或15,又因为BC 要不大于25m ,可知x=10要舍去,得AB=15m.【详解】解:设AB 为xm ,则BC 为(50﹣2x )m ,根据题意得方程:x (50﹣2x )=300,2x 2﹣50x+300=0,解得;x 1=10,x 2=15,∵50﹣2x≤25,解得:x≥12.5,答:垂直于墙的边AB 的长度为15米.【点睛】本题的考点是二次函数的应用.方法是根据题意列出一元二次方程,解出方程即可.易错点在于BC 边不能大于25,这是一个陷阱.25.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧),已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴与⊙C 有怎样的位置关系,并给出证明.【答案】(1)21234y x x =-+;(2)相交,证明见解析 【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A 点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l 的解析式及B 、C 的坐标,分别求出直线AB 、BD 、CE 的解析式,再求出CE 的长,与到抛物线的对称轴的距离相比较即可.【详解】解:(1)设抛物线为y =a (x ﹣4)2﹣1,∵抛物线经过点()0,3A ,∴3=a (0﹣4)2﹣1,a =14;∴抛物线的表达式为:21234y x x =-+; (2)相交. 证明:连接CE ,则CE ⊥BD ,14(x ﹣4)2﹣1=0时,x 1=2,x 2=1.()0,3A ,()2,0B ,()6,0C ,对称轴x =4,∴OB =2,AB =13,BC =4,∵AB ⊥BD ,∴∠OAB+∠OBA =90°,∠OBA+∠EBC =90°,∴△AOB ∽△BEC ,∴AB OB BC CE =,即132CE =,解得813CE =, ∵813>2, 故抛物线的对称轴l 与⊙C 相交.【点睛】本题考查待定系数法求二次函数解析式、相似三角形的判定与性质、直线与圆的位置关系等内容,掌握数形结合的思想是解题的关键.26.京剧脸谱是京剧艺术独特的表现形式,现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率(图案为“红脸”的两张卡片分别记为1A 、2A ,图案为“黑脸”的卡片记为B ).【答案】抽出的两张卡片上的图案都是“红脸”的概率是49.【分析】根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可.【详解】画树状图如图由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片都是“红脸”的结果有4种,所以P(两张都是“红脸”)4 9答:抽出的两张卡片上的图案都是“红脸”的概率是4 9 .【点睛】此题主要考查了概率的求法.用到的知识点为树状图和概率的求法,概率=所求情况数与总情况数之比,关键是根据题意画出树状图.27.某小区为改善生态环境,实行生活垃圾的分类处理,将生活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为, ,m n p,并且设置了相应的垃圾箱“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为,,A B C.(1)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共1200吨生活垃圾,数据统计如下图(单位:吨):A B Cm500150150n3024030p202060请根据以上信息,估计“厨房垃圾”投放正确的概率;(2)若将三类垃圾随机投入三类垃圾箱,请用画树状图或列表格的方法求出垃圾投放正确的概率.【答案】(1)58;(2)13.【分析】(1)利用频率估计概率,通过计算“厨房垃圾”投放正确的百分比估计“厨房垃圾”投放正确的概率.(2)先画树状图展示所有9种可能的结果数,再找出垃圾投放正确的结果数,然后根据概率公式计算;【详解】解:(1)∵5005 5001501508=++∴估计“厨房垃圾”投放正确的概率为58;()2画树状图如下∵共有9种等可能的结果数,其中垃圾投放正确的结果数为3,∴垃圾投放正确的概率为31 93 =故答案是:(1)58;(2)13【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件的结果数目m,求出概率.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某商店以每件60元的价格购进一批货物,零售价为每件80元时,可以卖出100件(按相关规定零售价不能超过80元).如果零售价在80元的基础上每降价1元,可以多卖出10件,当零售价在80元的基础上降价x 元时,能获得2160元的利润,根据题意,可列方程为( )A .x (100+10x )=2160B .(20﹣x )(100+10x )=2160C .(20+x )(100+10x )=2160D .(20﹣x )(100﹣10x )=2160【答案】B【分析】根据第一句已知条件可得该货物单件利润为806020-=元,根据第二句话的已知条件,降价几个1元,就可以多卖出几个10件,可得降价后利润为()20x -元,数量为()10010x +件,两者相乘得2160元,列方程即可.【详解】解:由题意得,当售价在80元基础上降价x 元时, ()()20100102160x x -+=.【点睛】本题主要考查的是一元二次方程应用题里的利润问题,理解掌握其中的数量关系列出方程是解答这类应用题的关键.2.硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是( )A .正面向上B .正面不向上C .正面或反面向上D .正面和反面都不向上 【答案】C【分析】根据概率公式分别求出各选项事件的概率, 即可判断.【详解】解: 若不考虑硬币竖起的情况,A . 正面向上概率为1÷2=12; B . 正面不向上的概率为1÷2=12; C . 正面或反面向上的概率为2÷2=1;D . 正面和反面都不向上的概率为0÷2=0∵1>12>0 ∴正面或反面向上的概率最大故选C .【点睛】此题考查的是比较几个事件发生的可能性的大小,掌握概率公式是解决此题的关键.3.我们知道,一元二次方程可以用配方法、因式分解法或求根公式进行求解.对于一元三次方程。

<合集试卷3套>2019年重庆市九年级上学期数学期末调研试题

<合集试卷3套>2019年重庆市九年级上学期数学期末调研试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下图中反比例函数kyx=与一次函数y kx k=-在同一直角坐标系中的大致图象是()A.B.C.D.【答案】B【分析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.【详解】(1)当k>0时,一次函数y=kx﹣k 经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:B.【点睛】本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.2.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是()A .①②③④B .④③②①C .④③①②D .②③④①【答案】C 【分析】太阳光线下的影子是平行投影,就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东,于是即可得到答案.【详解】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②, 故选C .【点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东”,是解题的关键.3.将抛物线22y x =-通过一次平移可得到抛物线2(3)2y x =--.对这一平移过程描述正确的是( )A .沿x 轴向右平移3个单位长度B .沿x 轴向左平移3个单位长度C .沿y 轴向上平移3个单位长度D .沿y 轴向下平移3个单位长度【答案】A 【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,确定平移方向即可得解.【详解】解:抛物线22y x =-的顶点坐标为(0,−2),抛物线2(3)2y x =--的顶点坐标为(3,-2),所以,向右平移3个单位,可以由抛物线22y x =-平移得到抛物线2(3)2y x =--. 故选:A .【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键. 4.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转90︒得到月牙②,则点A 的对应点A’的坐标为 ( )A .(2,2)B .(2,4)C .(4,2)D .(1,2)【答案】B【详解】解:连接A′B ,由月牙①顺时针旋转90°得月牙②,可知A′B ⊥AB ,且A′B=AB ,由A (-2,0)、B (2,0)得AB=4,于是可得A′的坐标为(2,4).故选B .5.抛物线y=﹣2(x ﹣1)2﹣3与y 轴交点的横坐标为( )A .﹣3B .﹣4C .﹣5D .0【答案】D【分析】把x=0代入抛物线y=﹣2(x ﹣1)2﹣3,即得抛物线y=﹣2(x ﹣1)2﹣3与y 轴的交点.【详解】当x=0时,抛物线y=﹣2(x ﹣1)2﹣3与y 轴相交,把x=0代入y=﹣2(x ﹣1)2﹣3,求得y=-5,∴抛物线y=﹣2(x ﹣1)2﹣3与y 轴的交点坐标为(0,-5).故选:D .【点睛】此题考查了二次函数的性质,二次函数与y 轴的交点坐标,解题关键在于掌握当x=0时,即可求得二次函数与y 轴的交点.6.某人沿倾斜角为β的斜坡前进100m ,则他上升的最大高度是( )m A .100sin βB .100?sin βC .100cos βD .100?cos β【答案】B 【分析】设他上升的最大高度是hm ,根据坡角及三角函数的定义即可求得结果.【详解】设他上升的最大高度是hm ,由题意得sin 100h β=,解得100sin h β= 故选:B.7.某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x ,下面所列方程正确的是( ) A .2(1+x )2=2.88 B .2x 2=2.88C .2(1+x%)2=2.88D .2(1+x )+2(1+x )2=2.88【答案】A【分析】设该市旅游收入的年平均增长率为x ,根据该市2018年旅游收入及2020年旅游预计收入,即可得出关于x 的一元二次方程,即可得出结论.【详解】设该市旅游收入的年平均增长率为x ,根据题意得:2(1+x )2=2.88故选A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 8.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD=30°,则∠BCD 等于( )A .75°B .95°C .100°D .105°【答案】D 【解析】试题解析:连接,AD,30,OA OD AOD =∠=()11803075.2OAD ∴∠=-= 18075105.BCD ∴∠=-=故选D.点睛:圆内接四边形的对角互补.9.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .()9121x -=B .()2911x -=C .()9121x +=D .()2911x += 【答案】B【分析】等量关系为:2016年贫困人口()212018⨯-=下降率年贫困人口,把相关数值代入计算即可.【详解】解:设这两年全省贫困人口的年平均下降率为x ,根据题意得:()2911x -=,故选B .【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键.10.如图,点A 的坐标是()40,,ABO ∆是等边角形,点B 在第一象限,若反比例函数 k y x =的图象经过点B ,则k 的值是( )A .1B .3C .23D .43【答案】D 【分析】首先过点B 作BC 垂直OA 于C,根据AO=4,△ABO 是等辺三角形,得出B 点坐标,迸而求出k 的值.【详解】解:过点B 作BC 垂直OA 于C ,∵点A 的坐标是(2,0) ,AO=4,∵△ABO 是等边三角形∴OC= 2,BC=3∴点B 的坐标是(2,23把(2,23代入k y x=,得: k=xy=3故选:D【点睛】 本题考查的是利用等边三角形的性质来确定反比例函数的k 值.11.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A .16B .13C .12D .56【答案】A【解析】直接得出2的个数,再利用概率公式求出答案.【解答】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴朝上一面的数字是2的概率为:1.6故选A.【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比. 12.如图,⊙O 的半径为2,△ABC 为⊙O 内接等边三角形,O 为圆心,OD ⊥AB ,垂足为D .OE ⊥AC ,垂足为E ,连接DE ,则DE 的长为( )A .1B 2C 3D .2【答案】C 【分析】过O 作OH BC ⊥于H ,得到12BH BC =,连接OB ,由ABC ∆为O 内接等边三角形,得到30OBC ∠=︒,求得223BC BH ==【详解】解:过O 作OH BC ⊥于H ,12BH BC ∴=, 连接OB ,ABC ∆为O 内接等边三角形,30OBC ∴∠=︒,2OB =,33BH ∴= 223BC BH ∴==OD AB ⊥,OE AC ⊥,AD BD ∴=,AE CE =,132DE BC ∴== 故选:C .【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了三角形中位线定理.二、填空题(本题包括8个小题)13.如图所示,Rt ABC ∆中,90C ∠=︒,M 是AB 中点,MH BC ⊥,垂足为点H ,CM 与AH 交于点O ,如果12AB =,那么CO =______.【答案】4【分析】根据直角三角形中线性质得CM=1112622AB =⨯=,根据相似三角形判定得△ABC ∽△MBH, △AOC ∽△HOM ,根据相似三角形性质可得.【详解】因为Rt ABC ∆中,90C ∠=︒,M 是AB 中点,所以CM=1112622AB =⨯= 又因为MH BC ⊥,所以AC MH所以△ABC ∽△MBH, △AOC ∽△HOM, 所以12MH MB MO AC AB CO=== 所以226433OC MC ==⨯= 故答案为:4【点睛】考核知识点:相似三角形.理解判定和性质是关键.14.如图,在ABC 中,D 、E 分别是AB 、AC 的中点,点F 在BC 上,ED 是AEF ∠的平分线,若80C ︒∠=,则EFB ∠的度数是________.【答案】100°【分析】利用三角形中位线定理可证明DE//BC,再根据两直线平行,同位角相等可求得∠AED,再根据角平分线的定义可求得∠DEF,最后根据两直线平行,同旁内角互补可求得∠EFB的度数.【详解】解:∵在△ABC中,D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠AED=∠C=80°,∠DEF+∠EFB=180°,又ED是∠AEF的角平分线,∴∠DEF=∠AED=80°,∴∠EFB=180°-∠DEF=100°.故答案为:100°.【点睛】本题考查三角形中位线定理,平行线的性质定理,角平分线的有关证明.能得出DE是ABC中位线,并根据三角形的中位线平行于第三边得出DE∥BC是解题关键.15.如图,已知等边△ABC的边长为4,P是AB边上的一个动点,连接CP,过点P作∠EPC=60°,交AC 于点E,以PE为边作等边△EPD,顶点D在线段PC上,O是△EPD的外心,当点P从点A运动到点B的过程中,点O也随之运动,则点O经过的路径长为_____.43【分析】根据等边三角形的外心性质,根据特殊角的三角函数即可求解.【详解】解:如图,作BG ⊥AC 、CF ⊥AB 于点G 、F ,交于点I ,则点I 是等边三角形ABC 的外心,∵等边三角形ABC 的边长为4,∴AF =BF =2∠IAF =30°∴AI =43 ∵点P 是AB 边上的一个动点,O 是等边三角形△EPD 的外心,∴当点P 从点A 运动到点B 的过程中,点O 也随之运动, 点O 的经过的路径长是AI 的长,∴点O 的经过的路径长是43. 故答案为:43. 【点睛】 本题考查等边三角形的外心性质,关键在于熟悉性质,结合图形计算.16.菱形ABCD 边长为4,60ABC ∠=︒,点E 为边AB 的中点,点F 为AD 上一动点,连接EF 、BF ,并将BEF ∆沿BF 翻折得BE F ∆',连接E C ',取E C '的中点为G ,连接DG ,则122DG E C +'的最小值为_____.97【分析】取BC 的中点为H ,在HC 上取一点I 使~HIG HGC ,相似比为12,由相似三角形的性质可得12222()2DG CE DG GI DG GI '+=+=+,即当点D 、G 、I 三点共线时,DG GI +最小,由点D 作BC 的垂线交BC 延长线于点P ,由锐角三角函数和勾股定理求得DI 的长度,即可根据122()222DH CE DG GI DI '+=+≥== 【详解】取BC 的中点为H ,在HC 上取一点I 使~HIG HGC ,相似比为12 ∵G 为CE '的中点 ∴12CG CE '= ∵~HIG HGC 且相似比为12 2CG GI ∴=,1122HI HG == 得122CE GI '= 12222()2DG CE DG GI DG GI '∴+=+=+ 当点D 、G 、I 三点共线时,DG GI +最小 1,22HI CH == 13222CI CH HI ∴=-=-= 由点D 作BC 的垂线交BC 延长线于点P60ABC ︒∠=60DCP ︒∴∠=即sin 604DP DC ︒=⋅==1cos60422CP DC ︒=⋅=⨯= 72PI PC CI ∴=+=由勾股定理得224997124DI DP PI =+=+= 19722()22972DH CE DG GI DI '∴+=+≥=⨯= 故答案为:97.【点睛】本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键.17.把二次函数241y x x =+-变形为2()y a x h k =++的形式为_________.【答案】2(2)5y x =+-【分析】利用配方法变形即可.【详解】解: 22241445(2)5y x x x x x =+-=++-=+- 故答案为:2(2)5y x =+-【点睛】本题考查了二次函数的的解析式,熟练掌握配方法是解题的关键.18.在一个不透明的盒子里装有5个黑色棋子和若干白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到白色棋子的概率是23,则白色棋子的个数为_____. 【答案】1.【分析】设白色棋子的个数为x 个,根据概率公式列出算式,求出x 的值即可得出答案.【详解】解:设白色棋子的个数为x 个,根据题意得: 5x x +=23, 解得:x =1,答:白色棋子的个数为1个;故答案为:1.【点睛】此题主要考查概率的应用,解题的关键是根据题意列出分式方程进行求解.三、解答题(本题包括8个小题)19.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,蓝球1个.若从中随机摸出一个球,摸到蓝球的概率是14.(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.【答案】(1)1;(2)见解析,1 3【分析】(1)设红球有x个,根据题意得:11214x=++;(2)列表,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种. 【详解】解:(1)设红球有x个,根据题意得:11 214x=++,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个(2)列表如下:红黄黄蓝红--- (黄,红)(黄,红)(蓝,红)黄(红,黄)--- (黄,黄)(蓝,黄)黄(红,黄)(黄,黄)--- (蓝,黄)蓝(红,蓝)(黄,蓝)(黄,蓝)---由上表可知,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种,则P=41 123=【点睛】考核知识点:用列举法求概率.列表是关键.20.如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ ;(2)当BQ= 43时,求QD 的长(结果保留 π);(3)若△APO 的外心在扇形COD 的内部,求OC 的取值范围.【答案】(1)详见解析;(2)143π;(3)4<OC<1. 【分析】(1) 连接OQ ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL 得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P 、O 、Q 三点共线,在Rt△BOQ 中,根据余弦定义可得cosB=QB OB, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD 度数,由弧长公式即可求得答案.(3)由直角三角形性质可得△APO 的外心是OA 的中点 ,结合题意可得OC 取值范围.【详解】(1)证明:连接OQ.∵AP、BQ 是⊙O 的切线,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90∘,在Rt△APO 和Rt△BQO 中,OP OQ OA OB =⎧⎨=⎩, ∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O 、Q 三点共线,∵在Rt△BOQ 中,cosB=433QB OB == ∴∠B=30∘,∠BOQ= 60° ,∴OQ=12OB=4, ∵∠COD=90°,∴∠QOD= 90°+ 60° = 150°,∴优弧QD 的长=2104141803ππ⋅⋅=, (3)解:设点M 为Rt △APO 的外心,则M 为OA 的中点,∵OA=1,∴OM=4,∴当△APO 的外心在扇形COD 的内部时,OM <OC ,∴OC 的取值范围为4<OC <1.【点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL 证出Rt △APO ≌Rt △BQO ;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.21.如图,在四边形ABCD 中,//AD BC ,B ACB ∠=∠,点,E F 分别在,AB BC 上,且EFB D ∠=∠.(1)求证:EFB ∆∽CDA ∆;(2)若20AB =,5AD =,4BF =,求EB 的长.【答案】 (1)证明见解析;(2)16.【解析】(1)根据相似三角形的判定即可求出答案.(2)根据△EFB ∽△CDA ,利用相似三角形的性质即可求出EB 的长度.【详解】(1)∵AB AC =,∴B ACB ∠=∠,∵//AD BC ,∴DAC ACB ∠=∠,∴B DAC ∠=∠,∵D EFB ∠=∠,∴EFB ∆∽CDA ∆;(2)∵EFB ∆∽CDA ∆,∴BE BF AC AD=, ∵20AB AC ==,5AD =,4BF =,∴16BE=.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定.22.如图所示,有一电路AB是由如图所示的开关控制,闭合a,b,c,d四个开关中的任意两个开关.(1)请用列表或画树状图的方法,列出所有可能的情况;(2)求出使电路形成通路(即灯泡亮)的概率.【答案】(1)列表见解析;(2)使电路形成通路(即灯泡亮)的概率是2 3【分析】(1)按题意列表即可,注意表格中对角线(2)由列表可知共有12种可能,其中有8种可形成通路,由此可得概率【详解】(1)列表法a b c da ab ac adb ba bc bdc ca cb cdd da db dc(2)使电路形成通路(即灯泡亮)的概率是P=82 123=23.在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【答案】1 4【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【详解】根据题意画出树状图如下:一共有4种情况,确保两局胜的有1种,所以,P=14.考点:列表法与树状图法.24.如图,点B、D、E在一条直线上,BE交AC于点F,AB ACAD AE=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BFC.【答案】(1)见解析;(2)见解析【分析】(1)由已知先证明∠BAC=∠DAE,继而根据两边对应成比例且夹角相等即可得结论;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【详解】证明:如图,(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中AB ACAD AE=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E,在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BFC.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.如图1,在矩形ABCD中AB=4, BC=8,点E、F是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形.(2)如果四边形AECF是菱形,求这个菱形的边长.(3)如图2,在(2)的条件下,取AB、CD的中点G、H,连接DG、BH, DG分别交AE、CF于点M、Q, BH分别交AE、CF于点N、P,求点P到BC的距离并直接写出四边形MNPQ的面积。

{3套试卷汇总}2019-2020重庆市九年级上学期期末(一模)数学试题

{3套试卷汇总}2019-2020重庆市九年级上学期期末(一模)数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°【答案】A【解析】试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.考点:平行线的性质.2.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=210【答案】B【解析】设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.3.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO 为α,则树OA的高度为( )A.30tan米B.30sinα米C.30tanα米D.30cosα米【答案】C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.4.若关于x 的一元二次方程x 2﹣2x+m=0有两个不相等的实数根,则m 的取值范围是( ) A .m <﹣1 B .m <1C .m >﹣1D .m >1【答案】B【解析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m >0,解之即可得出结论. 【详解】∵关于x 的一元二次方程x 2-2x+m=0有两个不相等的实数根, ∴△=(-2)2-4m=4-4m >0, 解得:m <1. 故选B . 【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.5.化简221x -÷11x -的结果是( ) A .21x + B .2xC .21x - D .2(x +1)【答案】A【解析】原式利用除法法则变形,约分即可得到结果. 【详解】原式=211x x +-()()•(x ﹣1)=21x +.故选A . 【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.6.如图,直线m ∥n ,直角三角板ABC 的顶点A 在直线m 上,则∠α的余角等于( )A .19°B .38°C .42°D .52°【答案】D【解析】试题分析:过C 作CD ∥直线m ,∵m ∥n ,∴CD ∥m ∥n ,∴∠DCA=∠FAC=52°,∠α=∠DCB ,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a 的余角是52°.故选D .考点:平行线的性质;余角和补角. 7.下列图形中,阴影部分面积最大的是A .B .C .D .【答案】C【解析】分别根据反比例函数系数k 的几何意义以及三角形面积求法以及梯形面积求法得出即可: 【详解】A 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy=1. B 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy 3=. C 、如图,过点M 作MA ⊥x 轴于点A ,过点N 作NB ⊥x 轴于点B ,根据反比例函数系数k 的几何意义,S △OAM =S △OAM =13xy 22=,从而阴影部分面积和为梯形MABN 的面积:()113242+⨯=. D 、根据M ,N 点的坐标以及三角形面积求法得出,阴影部分面积为:11632⨯⨯=. 综上所述,阴影部分面积最大的是C .故选C .8.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤【答案】A【解析】由抛物线的开口方向判断a 与2的关系,由抛物线与y 轴的交点判断c 与2的关系,然后根据对称轴判定b 与2的关系以及2a+b=2;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >2. 【详解】①∵对称轴在y 轴右侧, ∴a 、b 异号, ∴ab <2,故正确; ②∵对称轴1,2bx a=-= ∴2a+b=2;故正确; ③∵2a+b=2, ∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <2, ∴a ﹣(﹣2a )+c=3a+c <2,故错误; ④根据图示知,当m=1时,有最大值; 当m≠1时,有am 2+bm+c≤a+b+c , 所以a+b≥m (am+b )(m 为实数). 故正确.⑤如图,当﹣1<x <3时,y 不只是大于2. 故错误. 故选A . 【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定 抛物线的开口方向,当a >2时,抛物线向上开口;当a <2时,抛物线向下开口;②一次项 系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >2),对称轴在y 轴 左; 当a 与b 异号时(即ab <2),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛 物线与y 轴交点,抛物线与y 轴交于(2,c ).9.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.18B.16C.14D.12【答案】B【解析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是1 6 .故选B.考点:简单概率计算.10.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小【答案】C【解析】如图所示,连接CM,∵M是AB的中点,∴S△ACM=S△BCM=12S△ABC,开始时,S△MPQ=S△ACM=12S△ABC;由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=14S△ABC;结束时,S△MPQ=S△BCM=12S△ABC.△MPQ的面积大小变化情况是:先减小后增大.故选C.二、填空题(本题包括8个小题)11.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是______ .(填写所有正确结论的序号)①[0)=0;②[x)−x 的最小值是0;③[x)−x 的最大值是0;④存在实数x ,使[x)−x=0.5成立. 【答案】④【解析】根据题意[x)表示大于x 的最小整数,结合各项进行判断即可得出答案. 【详解】①[0)=1,故本项错误; ②[x)−x>0,但是取不到0,故本项错误; ③[x)−x ⩽1,即最大值为1,故本项错误;④存在实数x ,使[x)−x=0.5成立,例如x=0.5时,故本项正确. 故答案是:④. 【点睛】此题考查运算的定义,解题关键在于理解题意的运算法则.12.若22m n x y --与423m n x y +是同类项,则3m n -的立方根是 . 【答案】2.【解析】试题分析:若22m nxy --与423m nx y+是同类项,则:4{22m n m n -=+=,解方程得:2{2m n ==-.∴3m n -=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.13.如图,在△ABC 中,∠B =40°,∠C =45°,AB 的垂直平分线交BC 于点D ,AC 的垂直平分线交BC 于点E ,则∠DAE =______.【答案】10°【解析】根据线段的垂直平分线得出AD=BD ,AE=CE ,推出∠B=∠BAD ,∠C=∠CAE ,求出∠BAD+∠CAE 的度数即可得到答案.【详解】∵点D 、E 分别是AB 、AC 边的垂直平分线与BC 的交点, ∴AD=BD ,AE=CE , ∴∠B=∠BAD ,∠C=∠CAE , ∵∠B=40°,∠C=45°, ∴∠B+∠C=85°, ∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE )=180°-85°-85°=10°, 故答案为10° 【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.14.如图,若正五边形和正六边形有一边重合,则∠BAC =_____.【答案】132°【解析】解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.15.如图,小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得8CD =,20BC =米,CD 与地面成30角,且此时测得1米的影长为2米,则电线杆的高度为=__________米.【答案】(3【解析】过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F ,根据直角三角形30°角所对的直角边等于斜边的一半求出DE ,再根据勾股定理求出CE ,然后根据同时同地物高与影长成正比列式求出EF ,再求出BF ,再次利用同时同地物高与影长成正比列式求解即可.【详解】如图,过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F . ∵CD=8,CD 与地面成30°角, ∴DE=12CD=12×8=4, 根据勾股定理得:22CD DE -2242-2284-3.∵1m 杆的影长为2m , ∴DE EF =12, ∴EF=2DE=2×4=8,∴3+8=(3.∵AB BF =12, ∴AB=12(33.故答案为(14+23).【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键.16.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量100 200 500 1000 2000出芽种子数96 165 491 984 1965A发芽率0.96 0.83 0.98 0.98 0.98出芽种子数96 192 486 977 1946B发芽率0.96 0.96 0.97 0.98 0.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).【答案】②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.17.已知点P(2,3)在一次函数y=2x-m的图象上,则m=_______.【答案】1【解析】根据待定系数法求得一次函数的解析式,解答即可.【详解】解:∵一次函数y=2x-m的图象经过点P(2,3),∴3=4-m,解得m=1,故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.18.分解因式:a3b+2a2b2+ab3=_____.【答案】ab(a+b)1.【解析】a3b+1a1b1+ab3=ab(a1+1ab+b1)=ab(a+b)1.故答案为ab(a+b)1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.三、解答题(本题包括8个小题)19.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为,图①中m的值为;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【答案】(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1. (2)观察条形统计图, ∵1341410151116121731540x ⨯+⨯+⨯+⨯+⨯==,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多, ∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15+15=152, ∴这组数据的中位数为15. 【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.20.某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价. 【答案】足球单价是60元,篮球单价是90元.【解析】设足球的单价分别为x 元,篮球单价是1.5x 元,列出分式方程解答即可. 【详解】解:足球的单价分别为x 元,篮球单价是1.5x 元, 可得:24002250151.5x x-=, 解得:x=60,经检验x=60是原方程的解,且符合题意, 1.5x=1.5×60=90,答:足球单价是60元,篮球单价是90元. 【点睛】本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验. 21.《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱? 请解答上述问题. 【答案】甲有钱752,乙有钱25. 【解析】设甲有钱x ,乙有钱y ,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可. 【详解】解:设甲有钱x ,乙有钱y .由题意得:15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ , 解方程组得:75225x y ⎧⎪⎪=⎨⎪⎪=⎩, 答:甲有钱752,乙有钱25. 【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.22.已知关于x 的一元二次方程 2(1)(4)30m x m x -+--=(m 为实数且1m ≠).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数...m 的值.【答案】 (1)证明见解析;(2)2m =或4m =.【解析】(1)求出△的值,再判断出其符号即可;(2)先求出x 的值,再由方程的两个实数根都是整数,且m 是正整数求出m 的值即可.【详解】(1)依题意,得()()()24413m m =---⨯- 28161212m m m =-++-,244m m =++,()22m =+.∵()220m +≥,∴方程总有两个实数根.(2)∵()()1130x m x ⎡⎤+--=⎣⎦,∴11x =-,231x m =-. ∵方程的两个实数根都是整数,且m 是正整数,∴11m -=或13m -=.∴2m =或4m =.【点睛】本题考查的是根的判别式,熟知一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 的关系是解答此题的关键.23.某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A :0个学科,B :1个学科,C :2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.【答案】(1)图形见解析;(2)1;(3)1.【解析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得.【详解】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000×105 100=1(人),故答案为1.【点睛】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.24.在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.【答案】(1)12;(2)规则是公平的; 【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可; (2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种, 所以P (小王)=34; (2)不公平,理由如下:∵P (小王)=34,P (小李)=14,34≠14, ∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.25.在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.【答案】(1):()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,P(小黄赢)59=;红心牌点数是黑桃牌点数的整倍数有4种可能,∴在规划2中,P(小黄赢)49=.∵5499>,∴小黄要在游戏中获胜,小黄会选择规则1.【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比. 26.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数【答案】25°【解析】先利用正方形的性质得OA=OC,∠AOC=90°,再根据旋转的性质得OC=OF,∠COF=40°,则OA=OF,根据等腰三角形的性质得∠OAF=∠OFA,然后根据三角形的内角和定理计算∠OFA的度数.【详解】解:∵四边形OABC为正方形,∴OA=OC,∠AOC=90°,∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴OC=OF,∠COF=40°,∴OA=OF,∴∠OAF=∠OFA,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=12(180°-130°)=25°.故答案为25°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A′的坐标是( )A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1) 【答案】D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,即可求得答案.【详解】∵点A (-4,2),B (-6,-4),以原点O 为位似中心,相似比为12,把△ABO 缩小, ∴点A 的对应点A′的坐标是:(-2,1)或(2,-1).故选D .【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标比等于±k .2.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--【答案】B 【解析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B 符合.故选:B .【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.下列说法错误的是( )A .2-的相反数是2B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是0【答案】D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.4.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【答案】C【解析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:28007040=(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D正确.故选C.考点:函数的图象、行程问题.5.一、单选题如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D【答案】D【解析】根据全等三角形的性质和已知图形得出即可.【详解】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.6.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF【答案】B【解析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.7.下列四个几何体中,主视图是三角形的是()A.B.C.D.【答案】D【解析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【详解】解:主视图是三角形的一定是一个锥体,只有D是锥体.故选D.【点睛】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.8.下列各式中的变形,错误的是(()A.B.C.D.【答案】D【解析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A、,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选:D.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.9.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【解析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.10.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个【答案】C【解析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.二、填空题(本题包括8个小题)11.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.【答案】912,55⎛⎫- ⎪⎝⎭【解析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±35(负数舍去),则NO=95,NC1=125,故点C的对应点C1的坐标为:(﹣95,125).故答案为(﹣95,125).。

2019年重庆市九年级数学上期末试卷含答案

2019年重庆市九年级数学上期末试卷含答案

x 增大而增大.其中结论正确的个数是( )
A.4 个
B.3 个
C.2 个
7.下列命题错.误.的是 ( ) A.经过三个点一定可以作圆
B.经过切点且垂直于切线的直线必经过圆心
C.同圆或等圆中,相等的圆心角所对的弧相等
D.三角形的外心到三角形各顶点的距离相等
8.下列图标中,既是轴对称图形,又是中心对称图形的是(
2.A
解析:A 【解析】
【分析】 二次函数 y=ax2+1 的图象经过点(-2,0),得到 4a+1=0,求得 a=- ,代入方程 a(x-2) 2+1=0 即可得到结论. 【详解】 解:∵二次函数 y=ax2+1 的图象经过点(-2,0), ∴4a+1=0,
∴a=- 1 , 4
∴方程 a(x-2)2+1=0 为:方程- (x-2)2+1=0, 解得:x1=0,x2=4, 故选:A. 【点睛】 本题考查了二次函数与 x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的 解,正确的理解题意是解题的关键.
9.B
解析:B 【解析】 【详解】 ∵AC>BC,
∴AC 是较长的线段,
根据黄金分割的定义可知: AC BC = 5 1 ≈0.618, AB AC 2
故 A、C、D 正确,不符合题意; AC2=AB•BC,故 B 错误,符合题意; 故选 B.
12x+k=0 的两个根,则 k 的值是( )
A.27
B.36
C.27 或 36
D.18
6.如图,抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=1,与 x 轴的一个交点坐标为(-
1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程 ax2+bx+c=0 的两个根是 x1

《试卷3份集锦》重庆市2019-2020年九年级上学期期末复习检测数学试题

《试卷3份集锦》重庆市2019-2020年九年级上学期期末复习检测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE 的长为( )A.95B.125C.185D.365【答案】C【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【详解】解:在Rt△ABC中,∵AC=3,BC=4,∴AB=2234=1.过C作CM⊥AB,交AB于点M,如图所示,由垂径定理可得M为AE的中点,∵S△ABC=12AC•BC=12AB•CM,且AC=3,BC=4,AB=1,∴CM=125,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+(125)2,解得:AM=95,∴AE=2AM=185.故选:C.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A .相交B .相切C .相离D .以上三者都有可能【答案】A 【解析】试题分析:本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A 和圆的位置关系是解题关键.设直线经过的点为A ,若点A 在圆内则直线和圆一定相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA 的长和半径2比较大小再做选择.设直线经过的点为A ,∵点A 的坐标为(sin45°,cos30°),∴OA=2223()()22+=5, ∵圆的半径为2,∴OA <2,∴点A 在圆内,∴直线和圆一定相交.故选A .考点:1.直线与圆的位置关系;2.坐标与图形性质;3.特殊角的三角函数值.3.如图,点()()2.18,0.51, 2.68,0.54A B -在二次函数()20y ax bx c c =++≠的图象上,则方程20ax bx c ++=解的一个近似值可能是( )A .2.18B .2.68C .-0.51D .2.45【答案】D 【分析】根据自变量两个取值所对应的函数值是-0.51和0.54,可得当函数值为0时,x 的取值应在所给的自变量两个值之间.【详解】解:∵图象上有两点分别为A (2.18,-0.51)、B (2.68,0.54),∴当x=2.18时,y=-0.51;x=2.68时,y=0.54,∴当y=0时,2.18<x <2.68,只有选项D 符合,故选:D .【点睛】本题考查了图象法求一元二次方程的近似值,用到的知识点为:点在函数解析式上,点的横纵坐标适合这个函数解析式;二次函数值为0,就是函数图象与x 轴的交点,跟所给的接近的函数值对应的自变量相关. 4.下列标志中是中心对称图形的是( )A .B .C .D .【答案】B【分析】根据中心对称图形的定义即可解答.【详解】解:A 、是轴对称图形,不是中心对称的图形,不合题意;B 、是中心对称图形,符合题意;C 、既不是轴对称图形,也不是中心对称的图形,不合题意;D 、是轴对称图形,不是中心对称的图形,不合题意.故选:B .【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.5.如图,直线AB BC CD 、、分别与⊙O 相切于E F G 、、,且AB ∥CD ,连接OB OC OE OG 、、、,若6,8OB OC ==,则梯形BEGC 的面积等于( )A .64B .48C .36D .24【答案】B 【分析】先根据切线长定理得出,BE BF CF CG ==,然后利用OBC 面积求出OF 的长度,即可得到圆的半径,最后利用梯形的面积公式1()2S a b h =+ 即可求出梯形的面积. 【详解】连接OF ,∵直线AB BC CD 、、分别与⊙O 相切于E F G 、、,∴,,,,BE BF CF CG OF BC OE AB OG DC ==⊥⊥⊥ .在Rt OEB 和Rt OFB △ 中,OE OF OB OB =⎧⎨=⎩∴()Rt OEB Rt OFB HL ≅,∴EOB BOF ∠=∠.在Rt OGC 和Rt OFC 中,OG OF OC OC =⎧⎨=⎩∴()Rt OGC Rt OFC HL ≅,∴GOC FOC ∠=∠.∵180EOB BOF FOC GOC ∠+∠+∠+∠=︒ ,90BOC BOF FOC ∴∠=∠+∠=︒ .∵6,8OB OC ==,2210BC OB OC ∴=+= . 1122OB OC BC OF = , ∴245OF = , 245OE OG ∴== , ∴梯形BEGC 的面积为111()()()()()48222EB GC OE OG EB GC OE OG BC OE OG ++=++=+= . 故选:B .【点睛】本题主要考查切线的性质,切线长定理,梯形的面积公式,掌握切线的性质和切线长定理是解题的关键. 6.用配方法解方程22830x x --=时,原方程可变形为( )A .()2522x -=-B .()21122x -=C .()227x +=D .()227x -= 【答案】B【分析】先将二次项系数化为1,将常数项移动到方程的右边,方程两边同时加上一次项系数的一半的平方,结合完全平方公式进行化简即可解题.【详解】22830x x --=228=3x x ∴-234=2x x ∴- 234+4=+42x x ∴- 211(2)=2x ∴- 故选:B .【点睛】本题考查配方法解一元二次方程,其中涉及完全平方公式,是重要考点,难度较易,掌握相关知识是解题关键.7.下列事件中,必然发生的是 ( )A .某射击运动射击一次,命中靶心B .通常情况下,水加热到100℃时沸腾C .掷一次骰子,向上的一面是6点D .抛一枚硬币,落地后正面朝上 【答案】B【解析】A 、某射击运动射击一次,命中靶心,随机事件;B 、通常加热到100℃时,水沸腾,是必然事件.C 、掷一次骰子,向上的一面是6点,随机事件;D 抛一枚硬币,落地后正面朝上,随机事件;故选B . 8.己知a 、b 、c 均不为0,且0a b c ++≠,若222b c c a a b k a b c +++===,则k=( ) A .-1B .0C .2D .3【答案】D【解析】分别用含有k 的代数式表示出2b+c ,2c+a ,2a+b ,再相加即可求解. 【详解】∵222b c c a a b k a b c +++=== ∴2b c ak +=,2c a bk +=,2a b ck +=三式相加得,()2223()k a b c b c c a a b a b c ++=+++++=++∵ 0a b c ++≠∴k=3.故选D.【点睛】本题考查了比的性质,解题的关键是求得2b+c=ak ,2c+a=bk ,2a+b=ck.9.如图,△ABC 中,AB=AC ,∠ABC=70°,点O 是△ABC 的外心,则∠BOC 的度数为( )A .40°B .60°C .70°D .80°【答案】D 【分析】首先根据等腰三角形的性质可得∠A 的度数,然后根据圆周角定理可得∠O =2∠A ,进而可得答案.【详解】解:∵AB =AC ,∴∠ABC =∠ACB =70°,∴∠A =180°−70°×2=40°,∵点O 是△ABC 的外心,∴∠BOC =40°×2=80°,故选:D .【点睛】此题主要考查了三角形的外接圆和外心,关键是掌握圆周角定理:在同圆或等圆中,同弧所对的圆周角等于圆心角的一半.10.在Rt △ABC 中,∠C=90°.若AC=2BC ,则sinA 的值是( )A .12B 25C 5D .2【答案】C【分析】设BC=x ,可得AC=2x ,Rt △ABC 中利用勾股定理算出5,然后利用三角函数在直角三角形中的定义,可算出sinA 的值.【详解】解:由AC=2BC ,设BC=x ,则AC=2x ,∵Rt △ABC 中,∠C=90°,∴根据勾股定理,得2222(2)5AC BC x x x ++.因此,sinA=55BC AB x== 故选:C.【点睛】 本题已知直角三角形的两条直角边的关系,求角A 的正弦之值.着重考查了勾股定理、三角函数的定义等知识,属于基础题.11.在平面直角坐标系xOy 中,将横纵坐标之积为1的点称为“好点”,则函数||3y x =-的图象上的“好点”共有( )A .1个B .2个C .3个D .4个 【答案】C【分析】分x≥0及x <0两种情况,利用“好点”的定义可得出关于x 的一元二次方程,解之即可得出结论.【详解】当x≥0时,()31x x -=,即:2310x x --=, 解得:13132x +=,23132x -=(不合题意,舍去), 当x <0时,()31x x --=,即:2310x x ++=,解得:335x -+=,435x --=, ∴函数3y x =-的图象上的“好点”共有3个.故选:C .【点睛】本题考查了一次函数图象上点的坐标特征及解一元二次方程,分x≥0及x <0两种情况,找出关于x 的一元二次方程是解题的关键.12.如图,O 是ABC ∆的外接圆,已知50ACB ︒∠=,则ABO ∠的大小为( )A .30︒B .40︒C .45︒D .50︒【答案】B 【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=100°,再根据三角形内角和定理可得答案.【详解】∵∠ACB=50°,∴∠AOB=100°,∵AO=BO ,∴∠ABO=(180°-100°)÷2=40°,故选:B .【点睛】此题主要考查了三角形的外接圆与外心,圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题(本题包括8个小题)13.从长度为2cm 、4cm 、6cm 、8cm 的4根木棒中随机抽取一根,能与长度为3cm 和5cm 的木棒围成三角形的概率为_____. 【答案】12 【分析】根据三角形的三边关系得出第三根木棒长度的取值范围,再根据概率公式即可得出答案. 【详解】∵两根木棒的长分别是3cm 和5cm ,∴第三根木棒的长度大于2cm 且小于8cm ,∴能围成三角形的是:4cm 、6cm 的木棒,∴能围成三角形的概率是:21=42,故答案为12. 【点睛】 本题主要考查三角形的三边关系和概率公式,求出三角形的第三边长的取值范围,是解题的关键. 14.已知△ABC 的内角满足3tan 32cos 10A B C -+-=∠,则=__________度. 【答案】75【解析】由题意得:3tan 30A -=,2cos 10B -= ,∴tanA =3,cosB=2, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为75.15.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,AC =6,BD =8,那么菱形ABCD 的面积是____.【答案】1【分析】根据菱形的面积公式即可求解.【详解】∵菱形ABCD 的对角线AC 与BD 相交于点O ,AC =6,BD =8,∴菱形ABCD 的面积为12AC×BD=12×6×8=1, 故答案为:1.【点睛】此题主要考查菱形面积的求解,解题的关键是熟知其面积公式.16.随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________.【答案】1 8【分析】需要三步完成,所以采用树状图法比较简单,根据树状图可以求得所有等可能的结果与出现三次正面朝上的情况,再根据概率公式求解即可.【详解】画树状图得:∴一共有共8种等可能的结果;出现3次正面朝上的有1种情况.∴出现3次正面朝上的概率是18故答案为18.点评:此题考查了树状图法概率.注意树状图法可以不重不漏地表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.17.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.【答案】1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.18.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=1010,则CD的长等于_____.【答案】16【解析】如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题.【详解】连接BD,过点B分别作BM⊥AD于点M,BN⊥DC于点N,∵梯形ABCD是等距四边形,点B是等距点,∴AB=BD=BC=10,∵10cos A==AMAB,∴AM=10,∴BM=22AB AM-=310,∵BM⊥AD,∴AD=2AM=210,∵AB//CD,∴S△ABD=11·22AB BN AD BM=⋅,∴BN=6,∵BN⊥DC,∴DN=22BD BN-=8,∴CD=2DN=16,故答案为16.三、解答题(本题包括8个小题)19.如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.(1)求线段BC的长;(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.【答案】(2)33(2)t=2或2;(3)1322m t=+(03t<<).【分析】(2)由等边三角形OAB得出∠ABC=92°,进而得出CO=OB=AB=OA=3,AC=6,求出BC即可;(2)需要分类讨论:△PHQ ∽△ABC 和△QHP ∽△ABC 两种情况;(3)过点Q 作QN ∥OB 交x 轴于点N ,得出△AQN 为等边三角形,由OE ∥QN ,得出△POE ∽△PNQ ,以及OE PO QN PN =,表示出OE 的长,利用m=BE=OB ﹣OE 求出即可. 【详解】(2)如图l ,∵△AOB 为等边三角形,∴∠BAC=∠AOB=62,∵BC ⊥AB ,∴∠ABC=92°,∴∠ACB=32°,∠OBC=32°,∴∠ACB=∠OBC ,∴CO=OB=AB=OA=3,∴AC=6,∴BC=3AC=33; (2)如图2,过点Q 作x 轴垂线,垂足为H ,则QH=AQ•sin62°=()332t -.需要分类讨论:当△PHQ ∽△ABC 时,PH HQ AB BC =,即:()333322333t t t ---+=,解得,t=2. 同理,当△QHP ∽△ABC 时,t=2.综上所述,t=2或t=2; (3)如图2,过点Q 作QN ∥OB 交x 轴于点N ,∴∠QNA=∠BOA=62°=∠QAN ,∴QN=QA ,∴△AQN 为等边三角形,∴NQ=NA=AQ=3﹣t ,∴ON=3﹣(3﹣t )=t ,∴PN=t+t=2t ,∴OE ∥QN ,∴△POE ∽△PNQ ,∴OE PO QN PN =,∴132OE t =-,∴3122OE t =-,∵EF ∥x 轴,∴∠BFE=∠BCO=∠FBE=32°,∴EF=BE ,∴m=BE=OB ﹣OE=1322t =+(2<t <3).考点:相似形综合题.20.在平面直角坐标系中,已知抛物线y =14x 2+kx+c 的图象经过点C (0,1),当x =2时,函数有最小值. (1)求抛物线的解析式;(2)直线l ⊥y 轴,垂足坐标为(0,﹣1),抛物线的对称轴与直线l 交于点A .在x 轴上有一点B ,且AB 2l 上求异于点A 的一点Q ,使点Q 在△ABC 的外接圆上;(3)点P (a ,b )为抛物线上一动点,点M 为坐标系中一定点,若点P 到直线l 的距离始终等于线段PM 的长,求定点M 的坐标.【答案】(1)y =14x 2﹣x+1; (2)Q (1,﹣1);(3)M (2,1) 【分析】(1)由已知可求抛物线解析式为y =14x 2﹣x+1; (2)由题意可知A (2,﹣1),设B (t ,0),由AB,所以(t ﹣2)2+1=2,求出B (1,0)或B (3,0),当B (1,0)时,A 、B 、C 三点共线,舍去,所以B (3,0),可证明△ABC 为直角三角形,BC 为外接圆的直径,外接圆的圆心为BC 的中点(32,12),,设Q (x ,﹣1),则有(x ﹣32)2+(12+1)2=(2)2,即可求Q (1,﹣1); (3)设顶点M (m ,n ),P (a ,b )为抛物线上一动点,则有b =14a 2﹣a+1,因为P 到直线l 的距离等于PM ,所以(m ﹣a )2+(n ﹣b )2=(b+1)2,可得212n a -+(2n ﹣2m+2)a+(m 2+n 2﹣2n ﹣3)=0,由a 为任意值上述等式均成立,有1022220n n m -⎧=⎪⎨⎪+-=⎩,可求定点M 的坐标.【详解】解:(1)∵图象经过点C (0,1),∴c =1,∵当x =2时,函数有最小值,即对称轴为直线x =2, ∴2124k-=⨯,解得:k =﹣1,∴抛物线解析式为y =14x 2﹣x+1; (2)由题意可知A (2,﹣1),设B (t ,0),∵AB,∴(t ﹣2)2+1=2,∴t =1或t =3,∴B (1,0)或B (3,0),∵B (1,0)时,A 、B 、C 三点共线,舍去,∴B (3,0),∴AC =,BC,∴∠BAC =90°,∴△ABC 为直角三角形,BC 为外接圆的直径,外接圆的圆心为BC 的中点(32,12),半径为2,设Q(x,﹣1),则有(x﹣32)2+(12+1)2=(102)2,∴x=1或x=2(舍去),∴Q(1,﹣1);(3)设顶点M(m,n),∵P(a,b)为抛物线上一动点,∴b=14a2﹣a+1,∵P到直线l的距离等于PM,∴(m﹣a)2+(n﹣b)2=(b+1)2,∴212na-+(2n﹣2m+2)a+(m2+n2﹣2n﹣3)=0,∵a为任意值上述等式均成立,∴122220nn m-⎧=⎪⎨⎪+-=⎩,∴12nm=⎧⎨=⎩,此时m2+n2﹣2n﹣3=0,∴定点M(2,1).【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,结合圆的相关知识解题是关键.21.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境,为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的,,,A B C D四个小区进行检查,并且每个小区不重复检查.请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【答案】112.【分析】利用树状图得出所有可能的结果数和甲组抽到A小区,同时乙组抽到C小区的结果数,然后根据概率公式求解即可.【详解】解:画树状图如下:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率=112.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握用树状图或列表法求解的方法是解题的关键. 22.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x y +为奇数,则甲获胜;若x y +为偶数,则乙获胜.请你运用所学的概率的相关知识通过计算说明这个游戏对甲、乙双方是否公平.【答案】公平,见解析【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【详解】画树状图如图所示,由图知共有16种等可能结果,其中x y +为奇数的可能有8种,为偶数也有8种可能,故x y +结果为奇数或偶数的概率都是12, 甲乙获胜的概率相同,故游戏公平.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.23.化简:()2111x x ⎛⎫-÷-⎪+⎝⎭,并从11x -中取一个合适的整数x 代入求值. 【答案】-x-1,-1.【分析】先将原分式化简,然后根据分式有意义的条件代入适当的值即可.【详解】解:原式()2111x x x --⎛⎫=-÷ ⎪+⎝⎭()111x x x -⎛⎫=-÷ ⎪+⎝⎭()111x x x +⎛⎫=-⋅- ⎪-⎝⎭1x =--当0x =时(x 不能取-1或1,否则无意义)原式1=-.【点睛】此题考查的是分式的化简求值题,掌握分式的运算法则和分式有意义的条件是解决此题的关键. 24.如图,已知四边形ABCD 内接于圆,对角线AC 与BD 相交于点E ,F 在AC 上,AB=AD,∠BFC=∠BAD=2∠DFC .(1)若∠DFC=40º,求∠CBF 的度数.(2)求证: CD ⊥DF .【答案】(1)50º;(2)见解析【分析】(1)根据圆周角定理及三角形的外角,等腰三角形的知识进行角度的换算即可得;(2)根据圆的内接四边形对角互补的性质进行角度计算即可证明.【详解】解:(1)∵∠BAD=∠BFC ,∠BAD=∠BAC+∠CAD, ∠BFC=∠BAC+∠ABF,∴∠CAD=∠ABF又∵∠CAD=∠CBD,∴∠ABF=∠CBD∴∠ABD=∠FBC ,又AB AD =ABD ADB ∴∠=∠,CBF ADB ∴∠=∠,CBF BCF ∴∠=∠,280BFC DFC ∠=∠=︒,18080=502CBF ︒-︒∴∠=︒. (2)令CFD α∠=,则2BAD BFC α∠=∠=,∵四边形ABCD 是圆的内接四边形,∴180BAD BCD ∠+∠=︒,即1802BCD α∠=︒-,又∵AB AD =,∴ACD ACB ∠=∠,∴90ACD ACB a ∠=∠=︒-∴()9090CFD FCD a a ∠+∠=+︒-=︒∴90CDF ∠=︒,即CD DF ⊥.【点睛】本题主要考查圆的性质与三角形性质综合问题,难度适中,解题的关键是能够灵活运用圆及三角形的性质进行角度的运算.25.如图,在□ABCD 中, F 是AD 上一点,且3AF DF =,BF 与CD 的延长线交点E . (1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为1,求□ ABCD 的面积.【答案】(1)证明见解析;(2)24【分析】(1)利用平行线的性质得到∠ABF=∠E ,即可证得结论;(2)根据平行线的性质证明△ABF ∽△DEF ,即可求出S △ABF =9 ,再根据AD=BC=4DF ,求出S △CBE =16,即可求出答案.【详解】证明:(1)在□ABCD 中,∠A=∠C ,AB ∥CD ,∴∠ABF=∠E ,∴△ABF ∽△CEB ;(2)在□ABCD 中,AD ∥BC ,∴△DEF ∽△CEB ,又∵△ABF ∽△CEB∴ △ABF ∽△DEF ,∵AF=3DF ,△DEF 的面积为1,∴S △ABF =9 ,∵AD=BC=4DF ,∴S △CBE =16,∴□ABCD 的面积=9+15=24.【点睛】此题考查平行四边形的性质,相似三角形的判定及性质.26.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点F 是AD 上一点,连接AF 交CD 的延长线于点E .(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为AD的中点时,求AF的值.【答案】(1)见解析;(2)5【分析】(1)根据条件得出AD=AC,推出∠AFC=∠ACD,结合公共角得出三角形相似;(2)根据已知条件证明△ACF≌△DEF,得出AC=DE,利用勾股定理计算出AE的长度,再根据(1)中△AFC∽△ACE,得出AFAC=ACAE,从而计算出AF的长度.【详解】(1)∵CD⊥AB,AB是⊙O的直径∴AD=AC∴∠AFC=∠ACD.∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC∴△AFC ∽△ACE(2)∵四边形ACDF内接于⊙O∴∠AFD+∠ACD=180°∵∠AFD+∠DFE=180°∴∠DFE=∠ACD∵∠AFC=∠ACD∴∠AFC=∠DFE.∵△AFC∽△ACE∴∠ACF=∠DEF.∵F为AC的中点∴AF=DF.∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AF=DF ∴△ACF≌△DEF.∴AC=DE=1.∵CD⊥AB,AB是⊙O的直径∴CH=DH=2.∴EH=8在Rt△AHC中,AH2=AC2-CH2=16,在Rt△AHE中,AE2=AH2+EH2=80,∴AE=45.∵△AFC∽△ACE∴AFAC=ACAE,即5AF=545,∴AF=554.【点睛】本题属于圆与相似三角形的综合,涉及了圆内接四边形的性质,勾股定理,等弧所对的圆周角相等,相似三角形的判定定理等,解题的关键是灵活运用所学知识,正确寻找全等三角形.27.如图所示,在平面直角坐标系中,过点A(﹣3,0)的两条直线分别交y轴于B、C两点,且B、C 两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根.(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标.【答案】(1)线段BC的长度为4;(2)AC⊥AB,理由见解析;(3)点D的坐标为(﹣23,1)【解析】(1))解出方程后,即可求出B、C两点的坐标,即可求出BC的长度;(2)由A、B、C三点坐标可知OA2=OC•OB,所以可证明△AOC∽△BOA,利用对应角相等即可求出∠CAB=90°;(3)容易求得直线AC的解析式,由DB=DC可知,点D在BC的垂直平分线上,所以D的纵坐标为1,将其代入直线AC的解析式即可求出D的坐标;【详解】解:(1)∵x2﹣2x﹣3=0,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4,(2)∵A(﹣3,0),B(0,3),C(0,﹣1),∴OB=3,OC=1,∴OA2=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;(3)设直线AC的解析式为y=kx+b,把A,0)和C(0,﹣1)代入y=kx+b,∴1bb -=⎧⎪⎨=+⎪⎩,解得:k3b1⎧=-⎪⎨⎪=-⎩,∴直线AC的解析式为:y=﹣1,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入y=﹣3x﹣1,∴x=﹣∴D的坐标为(﹣1),【点睛】本题考查二次函数的综合问题,涉及一元二次方程的解法,相似三角形的判定,等腰三角形的性质,垂直平分线的判定等知识,内容较为综合,需要学生灵活运用所知识解决.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .正三角形B .正五边形C .正六边形D .正七边形 【答案】C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A 、此图形不是中心对称图形,是轴对称图形,故此选项错误;B 、此图形不是中心对称图形,是轴对称图形,故此选项错误;C 、此图形既是中心对称图形,又是轴对称图形,故此选项正确;D 、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:C .【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2.掷一枚质地均匀的硬币6次,下列说法正确的是( )A .必有3次正面朝上B .可能有3次正面朝上C .至少有1次正面朝上D .不可能有6次正面朝上【答案】B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】解:掷硬币问题,正、反面朝上的次数属于随机事件,不是确定事件,故A,C,D 错误. 故选:B .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.二次函数()20y ax bx c a =++≠图象的一部分如图所示,顶点坐标为()1,m -,与x 轴的一个交点的坐标为(-3,0),给出以下结论:①0abc >;②420a b c -+>;③若15,2B y ⎛⎫- ⎪⎝⎭、21,2C y ⎛⎫- ⎪⎝⎭为函数图象上的两点,则12y y <;④当30x -<<时方程2ax bx c t ++=有实数根,则t 的取值范围是0t m <≤.其中正确的结论的个数为( )A .1个B .2个C .3个D .4个【答案】D 【分析】由二次函数的图象可知0,0a c <>,再根据对称轴为x=-1,得出b=2a<0,进而判断①,当x=-2时可判断②正确,然后根据抛物线的对称性以及增减性可判断③,再根据方程的根与抛物线与x 交点的关系可判断④.【详解】解:∵抛物线开口向下,交y 轴正半轴∴0,0a c <>∵抛物线对称轴为x=-1,∴b=2a<0∴①0abc >正确;当x=-2 时, 42y a b c =-+位于y 轴的正半轴故②420a b c -+>正确; 点21,2C y ⎛⎫- ⎪⎝⎭的对称点为23,2y ⎛⎫- ⎪⎝⎭ ∵当31x -<<-时,抛物线为增函数,∴12y y <③正确;若当30x -<<时方程2ax bx c t ++=有实数根,则需2y ax bx c t =++-与x 轴有交点则二次函数2y ax bx c =++向下平移的距离即为t 的取值范围,则t 的取值范围是0t m <≤,④正确. 故选:D .【点睛】本题考查的知识点是二次函数图象及其性质,熟悉二次函数的图象上点的坐标特征以及求顶点坐标的公式是解此题额关键.4.如图,CD ⊥x 轴,垂足为D ,CO ,CD 分别交双曲线y =k x于点A ,B ,若OA =AC ,△OCB 的面积为6,则k 的值为( )A.2 B.4 C.6 D.8 【答案】B【分析】设A(m,n),根据题意则C(2m,2n),根据系数k的几何意义,k=mn,△BOD面积为12k,即可得到S△ODC=12•2m•2n=2mn=2k,即可得到6+12k=2k,解得k=1.【详解】设A(m,n),∵CD⊥x轴,垂足为D,OA=AC,∴C(2m,2n),∵点A,B在双曲线y=kx上,∴k=mn,∴S△ODC=12×2m×2n=2mn=2k,∵△OCB的面积为6,△BOD面积为12 k,∴6+12k=2k,解得k=1,故选:B.【点睛】本题考查了反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.5.下列根式中,是最简二次根式的是()A18B12C8D6【答案】D【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),逐一判断即可得答案.【详解】1832123D.6是最简二次根式,符合题意,故选:D.【点睛】本题考查了对最简二次根式的理解,被开方数不含有能开的尽方的因式或因数,被开方数不含有分数的二次根式叫做最简二次根式;能熟练地运用定义进行判断是解此题的关键.6.给出下列函数,其中y随x的增大而减小的函数是()①y=2x;②y=﹣2x+1;③y=2x(x<0);④y=x2(x<1).A.①③④B.②③④C.②④D.②③【答案】D【解析】分别根据一次函数、二次函数及反比例函数的增减性进行解答即可【详解】解:①∵y=2x中k=2>0,∴y随x的增大而增大,故本小题错误;②∵y=-2x+1中k=-2<0,∴y随x的增大而减小,故本小题正确;③∵y=2x(x<0)中k=2>0,∴x<0时,y随x的增大而减小,故本小题正确;④∵y=x2(x<1)中x<1,∴当0<x<1时,y随x的增大而增大,故本小题错误.故选D.【点睛】本题考查的是反比例函数的性质,熟知一次函数、二次函数及反比例函数的增减性是解答此题的关键.7.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙OA.2,22.5°B.3,30°C.3,22.5°D.2,30°【答案】A【解析】解:连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=1.5°,故选A.【点睛】本题考查切线的性质;等腰直角三角形.9.如图所示,∠APB=30°,O为PA上一点,且PO=6,以点O为圆心,半径为33的圆与PB的位置关系是()A.相离B.相切C.相交D.相切、相离或相交【答案】C【分析】过O作OC⊥PB于C,根据直角三角形的性质得到OC=3,根据直线与圆的位置关系即可得到结【详解】解:过O作OC⊥PB于C,∵∠APB=30°,OP=6,∴OC=12OP=3<33,∴半径为33的圆与PB的位置关系是相交,故选:C.【点睛】本题考查直线与圆的位置关系,掌握含30°角的直角三角形的性质是本题的解题关键.10.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是( )A.k>1 B.k<1 C.k>1且k≠0D.k<1且k≠0【答案】D【解析】根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.【详解】∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范围为k<1且k≠1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.11.如图是由5个完全相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.【答案】B【分析】主视图就是从正面看,根据横竖正方形的个数可以得到答案.【详解】主视图就是从正面看,视图有2层,一层3个正方形,二层左侧一个正方形.。

重庆市九年级上册期末测试数学试题(含答案)

重庆市九年级上册期末测试数学试题(含答案)一、选择题1.已知关于x的函数y=x2+2mx+1,若x>1时,y随x的增大而增大,则m的取值范围是()A.m≥1B.m≤1C.m≥-1 D.m≤-12.两个相似三角形的面积比是9:16,则这两个三角形的相似比是()A.9︰16 B.3︰4 C.9︰4 D.3︰163.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若BC的度数为50°,则∠ADC 的度数为()A.20°B.25°C.30°D.50°4.在平面直角坐标系中,点A(0,2)、B(a,a+2)、C(b,0)(a>0,b>0),若AB=42且∠ACB最大时,b的值为()A.226-+C.242+B.226+D.2425.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.33C.6 D.96.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位7.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是( )A.15,16 B.15,15 C.15,15.5 D.16,158.已知⊙O的半径为4,点P到圆心O的距离为4.5,则点P与⊙O的位置关系是()A.P在圆内B.P在圆上C.P在圆外D.无法确定9.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130°10.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8911.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个12.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC的度数等于( )A .50°B .49°C .48°D .47°13.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x… ﹣1﹣120 121322523 …y … 2 m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .214.2的相反数是( ) A .12-B .12C .2D .2-15.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题16.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.17.已知tan (α+15°)=3,则锐角α的度数为______°. 18.抛物线286y x x =++的顶点坐标为______. 19.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.20.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.21.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.22.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 23.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 24.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____. 25.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.26.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…27.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米. 28.若a b b -=23,则ab的值为________. 29.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.30.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题31.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶2.设BG的长为2x米.(1)用含x的代数式表示DF=;(2)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?32.如图,已知抛物线y1=﹣12x2+32x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.(1)△ABC是三角形;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)结合图象,写出满足y1>y2时,x的取值范围.33.定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.34.在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点).(1)以点O为位似中心,在网格区域内画出△A′B′C′,使△A′B′C′与△ABC位似(A′、B′、C′分别为A、B、C的对应点),且位似比为2:1;(2)△A′B′C′的面积为个平方单位;(3)若网格中有一格点D′(异于点C′),且△A′B′D′的面积等于△A′B′C′的面积,请在图中标出所有符合条件的点D′.(如果这样的点D′不止一个,请用D1′、D2′、…、D n′标出)35.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次第二次第三次第四次甲9887乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.四、压轴题36.如图, AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至∠=∠.点C,使得DAC AED(1)求证: AC是⊙O的切线;(2)若点E是BC的中点, AE与BC交于点F,=;①求证: CA CF②若⊙O的半径为3,BF=2,求AC的长.37.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(13D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与AD 相切,且切点为AD 的中点时,连接AC ,求t 的值及∠MAC 的度数;(3)在(2)的条件下,当点M 与AC 所在的直线的距离为1时,求t 的值.38.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =,求CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).39.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.40.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧,y随x的增大而减小.【详解】解:∵函数的对称轴为x=222b mma-=-=-,又∵二次函数开口向上,∴在对称轴的右侧y随x的增大而增大,∵x>1时,y随x的增大而增大,∴-m≤1,即m≥-1故选:C.【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.2.B解析:B【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果. 因为面积比是9:16,则相似比是3︰4,故选B. 考点:本题主要考查了相似三角形的性质点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方3.B解析:B 【解析】 【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC ,然后根据圆周角定理计算∠ADC 的度数. 【详解】∵BC 的度数为50°, ∴∠BOC=50°, ∵半径OC ⊥AB , ∴=AC BC , ∴∠ADC=12∠BOC=25°. 故选B . 【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.4.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可. 【详解】解:∵AB=A(0,2)、B(a ,a +2)= 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值.如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =-(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.5.A解析:A 【解析】 【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP 的长. 【详解】 连接OA ,∵PA 为⊙O 的切线, ∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.D解析:D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.7.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,+÷=15.5岁,∴中位数为(1516)2故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.8.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.9.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC 和∠AOC 所对的弧为AC ,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.11.C解析:C【解析】【分析】①③,根据已知把∠ABD ,∠CBD ,∠A 角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC ∽△BCD ,从而确定②是否正确,根据AD =BD =BC ,即BC AC BC AC BC -=解得AC ,故④正确. 【详解】①BC 是⊙A 的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得BC=51-AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 12.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.13.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.14.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.15.B解析:B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题16.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.17.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=3 3∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.18.【解析】【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为解析:()4,10--【解析】【分析】 直接利用公式法求解即可,横坐标为:2b a -,纵坐标为:244ac b a-. 【详解】解:由题目得出: 抛物线顶点的横坐标为:84221b a -=-=-⨯; 抛物线顶点的纵坐标为:22441682464104414ac b a -⨯⨯--===-⨯ 抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.19.相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的解析:相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的距离为2,∵4>2,即:d <r ,∴直线L 与⊙O 的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d <r ,则直线与圆相交;若d>r ,则直线与圆相离;若d=r ,则直线与圆相切.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:x解析:13【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.22.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.23.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.24.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB=2268=10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.25.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为30 00(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.26.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x=0+22=1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.27.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.28.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 解析:53【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】 ∵a b b -=23, ∴b=35a, ∴a b =5335a a =, 故答案为:53.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.29.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB ,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A 为上面小正方形边的中点,点B 为小正方形与圆的交点,D 为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形,∵⊙O 半径为,根据垂径定理得:∴=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()(22215=2x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16⨯.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.30.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题31.(1)48-12x;(2)x为1或3;(3)x为2时,区域③的面积最大,为240平方米【解析】【分析】(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以2可得DF的长度;(2)将区域③图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x(48-12x)=180,解得x1=1,x2=3答:x为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-12x)=-60x2+240x=-60(x-2)2+240∵-60<0,∴当x=2时,S有最大值,最大值为240答:x 为2时,区域③的面积最大,为240平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.32.(1)直角;(2)P (32,54);(3)0<x <4. 【解析】【分析】(1)求出点A 、B 、C 的坐标分别为:(-1,0)、(4,0)、(0,2),则AB 2=25,AC 2=5,BC 2=20,即可求解;(2)点A 关于函数对称轴的对称点为点B ,则直线BC 与对称轴的交点即为点P ,即可求解;(3)由图象可得:y 1>y 2时,x 的取值范围为:0<x <4.【详解】解:(1)当x=0时,y 1=0+0+2=2,当y=0时, ﹣12x 2+32x+2=0, 解得x 1=-1,x 2=4, ∴点A 、B 、C 的坐标分别为:(﹣1,0)、(4,0)、(0,2),则AB 2=25,AC 2=5,BC 2=20,故AB 2=AC 2+BC 2,故答案为:直角;(2)将点B 、C 的坐标代入一次函数表达式:y =kx+b 得:400k b b +=⎧⎨=⎩, 解得122k b ⎧=-⎪⎨⎪=⎩, ∴直线BC 的表达式为:y =﹣12x+2, 抛物线的对称轴为直线:x =32, 点A 关于函数对称轴的对称点为点B ,则直线BC 与对称轴的交点即为点P ,当x =32时,y =12-×32+2=54, 故点P(32,54); (3)由图象可得:y 1>y 2时,x 的取值范围为:0<x <4,故答案为:0<x <4.【点睛】本题考查了二次函数与坐标轴的交点,待定系数法求一次函数解析式,轴对称最短的性质,勾股定理及其逆定理,以及利用图像解不等式等知识,本题难度不大.33.(1)32)36;(3366. 【解析】【分析】(1)由AC ⊥BC ,AC ⊥AD ,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD 绕点B 顺时针旋转到△BCE ,则△BCE ≌△BAD ,连接DE ,作BH ⊥DE 于H ,作CG ⊥DE 于G ,作CF ⊥BH 于F .这样可以求∠DCE=90°,则可以得到DE 的长,进而把四边形ABCD 的面积转化为△BCD 和△BCE 的面积之和,△BDE 和△CDE 的面积容易算出来,则四边形ABCD 面积可求;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,则BE=CE=12BC ,证出△ABE 是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE ,得出∠EAC=∠ECA= =30°,证出∠BAC=∠BAE+∠EAC=90°,得出3,设AB=x ,则3,由直角三角形的性质得出CF=3,从而3CG=a ,AF=y ,证明△ACF ∽△CDG ,得出=AF AC CG CD ,求出y=36ax ,由勾股定理得出y 23x)2-32=3x 2-9,b 2=62-a 2=102-(2x+a)2,(2x+a)2+b 2=132,整理得出a=216x x -,进而得y=)23163=66x ax -,得出[)23166x -]2=3x 2-9,解得x 222,得出y 266272,解得663,得出66角形面积即可得出答案.【详解】解:(1)∵AC ⊥BC ,AC ⊥AD , ∴∠ACB =∠CAD =90°,∵对角互余四边形ABCD 中,∠B =60°,∴∠D =30°,在Rt △ABC 中,∠ACB =90°,∠B =60°,BC =1,∴∠BAC =30°,∴AB =2BC =2,AC =3BC =3,在Rt △ACD 中,∠CAD =90°,∠D =30°,∴AD =3AC =3,CD =2AC =23,∵S △ABC =12•AC•BC =12×3×1=32, S △ACD ═12•AC•AD =12×3×3=33, ∴S 四边形ABCD =S △ABC +S △ACD =23,故答案为:23;(2)将△BAD 绕点B 顺时针旋转到△BCE ,如图②所示:则△BCE ≌△BAD ,连接DE ,作BH ⊥DE 于H ,作CG ⊥DE 于G ,作CF ⊥BH 于F .∴∠CFH =∠FHG =∠HGC =90°,∴四边形CFHG 是矩形,∴FH =CG ,CF =HG ,∵△BCE ≌△BAD ,∴BE =BD =13,∠CBE =∠ABD ,∠CEB =∠ADB ,CE =AD =8,∵∠ABC+∠ADC =90°,∴∠DBC+∠CBE+∠BDC+∠CEB =90°,∴∠CDE+∠CED =90°,∴∠DCE =90°,在△BDE 中,根据勾股定理可得:DE 22CD CE +2268+=10,∵BD =BE ,BH ⊥DE ,∴EH =DH =5,∴BH 22BE EH 22135-12,∴S △BED =12•BH•DE =12×12×10=60, S △CED =12•CD•CE =12×6×8=24, ∵△BCE ≌△BAD ,∴S 四边形ABCD =S △BCD +S △BCE =S △BED ﹣S △CED =60﹣24=36;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,如图③所示:则BE =CE =12BC , ∵BC =2AB ,∴AB =BE ,∵∠ABC =60°, ∴△ABE 是等边三角形,∴∠BAE =∠AEB =60°,AE =BE =CE ,∴∠EAC =∠ECA =12∠AEB =30°, ∴∠BAC =∠BAE+∠EAC =90°, ∴AC 3,设AB =x ,则AC 3,∵∠ADC =30°,∴CF =12CD =3,DF 3=3 设CG =a ,AF =y ,在四边形ABCD 中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC =360°,∴∠DAC+∠BCD =180°,∵∠BCD+∠DCG =180°,∴∠DAC =∠DCG ,∵∠AFC =∠CGD =90°,∴△ACF ∽△CDG ,∴AF CG =AC CD ,即y a =36x , ∴y =36ax , 在Rt △ACF 中,Rt △CDG 和Rt △BDG 中,由勾股定理得:y 2=32﹣32=3x 2﹣9,b 2=62﹣a 2=102﹣(2x+a)2,(2x+a)2+b 2=132, 整理得:x 2+ax ﹣16=0,∴a =216x x-, ∴y =3ax =3x ×216x x -=()23166x -, ∴[()23166x -]2=3x 2﹣9, 整理得:x 4﹣68x 2+364=0,解得:x 2=34﹣622,或x 2=34+622(不合题意舍去),∴x 2=34﹣622,∴y 2=3(34﹣622)﹣9=93﹣1822=93﹣21728=(6627-)2,∴y =66﹣33,∴AF =66﹣33,∴AD =AF+DF =66,∴△ACD 的面积=12AD×CF =12×66×3=3662. 【点睛】此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.34.(1)详见解析;(2)10;(3)详见解析【解析】【分析】(1)依据点O 为位似中心,且位似比为2:1,即可得到△A ′B ′C ′;(2)依据割补法进行计算,即可得出△A ′B ′C ′的面积;(3)依据△A ′B ′D ′的面积等于△A ′B ′C ′的面积,即可得到所有符合条件的点D ′.【详解】解:(1)如图所示,△A ′B ′C ′即为所求;(2)△A ′B ′C ′的面积为4×6﹣12×2×4﹣12×2×4﹣12×2×6=24﹣4﹣4﹣6=10;。

〖汇总3套试卷〗重庆市2019年九年级上学期数学期末联考试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在矩形ABCD 中,B 的角平分线BE 与AD 交于点E ,BED ∠的角平分线EF 与DC 交于点F ,若7AB =,34DF FC =,则BC 的长为( )A .721-B .432+C .225+D .423+【答案】D 【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰直角三角形,并求得其斜边BE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据△EFD ∽△GFC 得出CG 与DE 的倍数关系,并根据BG =BC +CG 进行计算即可.【详解】延长EF 和BC ,交于点G ,∵3DF =4FC ,∴34CF DF =, ∵矩形ABCD 中,∠ABC 的角平分线BE 与AD 交于点E ,∴∠ABE =∠AEB =45°,∴AB =AE =7,∴直角三角形ABE 中,BE 227772+=又∵∠BED 的角平分线EF 与DC 交于点F ,∴∠BEG =∠DEF ,∵AD ∥BC ,∴∠G =∠DEF ,∴∠BEG =∠G ,∴BG =BE =72∵∠G =∠DEF ,∠EFD =∠GFC ,∴△EFD ∽△GFC ,∴34 CG CFDE DF==,设CG=3x,DE=4x,则AD=7+4x=BC,∵BG=BC+CG,∴7+4x+3x=72,解得x=2−1,∴BC=7+4x=7+42−4=3+42,故选:D.【点睛】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似.2.等腰三角形底边长为10㎝,周长为36cm,那么底角的余弦等于().A.513B.1213C.1013D.512【答案】A【分析】过顶点A作底边BC的垂线AD,垂足是D点,构造直角三角形.根据等腰三角形的性质,运用三角函数的定义,则可以求得底角的余弦cosB的值.【详解】解:如图,作AD⊥BC于D点.则CD=5cm,AB=AC=13cm.∴底角的余弦=513.故选A.【点睛】本题考查的是解直角三角形,解答本题的关键是熟练掌握等腰三角形的三线合一的性质:等腰三角形顶角平分线、底边上的高,底边上的中线重合.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【答案】D【分析】根据二次函数的顶点式方程可以直接写出其顶点坐标.【详解】∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2).故选D.【点睛】本题考查了二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD【答案】B【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC、BD互相垂直,则需添加条件:AC、BD互相平分故选:B5.如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF=2,则BD的长是()A.2 B.3 C.218D.247【答案】C【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB=∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.6.如图,AB是⊙O的直径,弦CD⊥AB,∠CAB=25°,则∠BOD等于()A.70°B.65°C.50°D.45°【答案】C【分析】先根据垂径定理可得BC BD=,然后根据圆周角定理计算∠BOD的度数.【详解】解:∵弦CD⊥AB,∴BC BD=,∴∠BOD=2∠CAB=2×25°=50°.故选:C.【点睛】本题考查了垂径定理、圆心角定理和圆周角定理,熟悉掌握定义,灵活应用是解本题的关键7.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球实验,之后把它放回袋中,搅匀后,再继续摸出一球,记下其颜色,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1000 5000 10000 50000 100000根据列表,可以估计出m 的值是( )A .8B .16C .24D .32【答案】C【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于3332911000003≈, 由题意得:813=m , 解得:m=24,故选:C .【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率,关键是根据黑球的频率得到相应的等量关系.8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k≥﹣1【答案】C【分析】根据根的判别式(240b ac =-≥△ )即可求出答案.【详解】由题意可知:440k +≥△=∴1k ≥-∵0k ≠∴1k ≥- 且0k ≠ ,故选:C .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围. 9.下列图形中,是相似形的是( )A .所有平行四边形B .所有矩形C .所有菱形D .所有正方形 【答案】D【分析】根据对应角相等,对应边成比例的两个多边形相似,依次分析各项即可判断.【详解】所有的平行四边形、矩形、菱形均不一定是相似多边形,而所有的正方形都是相似多边形,故选D.【点睛】本题是判定多边形相似的基础应用题,难度一般,学生只需熟练掌握特殊四边形的性质即可轻松完成. 10.如图所示是滨河公园中的两个物体一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是( )A .(3)(4)(1)(2)B .(4)(3)(1)(2)C .(4)(3)(2)(1)D .(2)(4)(3)(1)【答案】C 【解析】试题分析:根据平行投影的特点和规律可知,(3),(4)是上午,(1),(2)是下午,根据影子的长度可知先后为(4)(3)(2)(1).故选C .考点:平行投影.11.下列各组图形中,两个图形不一定是相似形的是( )A .两个等边三角形B .有一个角是100︒的两个等腰三角形C .两个矩形D .两个正方形 【答案】C【分析】根据相似图形的定义,以及等边三角形,等腰三角形,矩形,正方形的性质对各选项分析判断后利用排除法求解.【详解】解:A 、两个等边三角形,对应边的比相等,角都是60°,相等,所以一定相似,故A 正确; B 、有一个角是100°的两个等腰三角形,100°的角只能是顶角,夹顶角的两边成比例,所以一定相似,故B 正确;C 、两个矩形,四个角都是直角,但四条边不一定对应成比例,不一定相似,故C 错误;D 、两个正方形,对应边的比相等,角都是90°,相等,所以一定相似,故D 正确.故选:C .【点睛】本题考查了相似图形的判断,严格按照定义,对应边成比例,对应角相等进行判断即可,另外,熟悉等腰三角形,等边三角形,正方形的性质对解题也很关键.12.已知一元二次方程的一般式为20(a 0)++=≠ax bx c ,则一元二次方程x 2-5=0中b 的值为( ) A .1B .0C .-5D .5【答案】B【分析】对照一元二次方程的一般形式,根据没有项的系数为0求解即可.【详解】∵一元二次方程的一般式为20(a 0)++=≠ax bx c ,对于一元二次方程x 2-5=0中没有一次项,故b 的值为0,故选:B .【点睛】此题主要考查对一元二次方程的一般形式的认识,掌握住各项系数是解题的关键.二、填空题(本题包括8个小题)13.半径为2的圆中,60°的圆心角所对的弧的弧长为_____. 【答案】2π3 【解析】根据弧长公式可得:602180π⨯⨯=23π, 故答案为23π. 14.一元二次方程()()320x x --=的根是_____.【答案】123,2==x x【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.15.如图,在矩形ABCD 中对角线AC 与BD 相交于点O ,CE BD ⊥,垂足为点, 5E CE =,且2EO DE =,则AD 的长为___________.【答案】56【分析】由矩形的性质可得OC =OD ,于是设DE =x ,则OE =2x ,OD =OC =3x ,然后在Rt △OCE 中,根据勾股定理即可得到关于x 的方程,解方程即可求出x 的值,进而可得CD 的长,易证△ADC ∽△CED ,然后利用相似三角形的性质即可求出结果.【详解】解:∵四边形ABCD 是矩形,∴∠ADC =90°,BD =AC ,OD =12BD ,OC =12AC ,∴OC =OD , ∵EO =2DE ,∴设DE =x ,则OE =2x ,∴OD =OC =3x ,∵CE ⊥BD ,∴∠DEC =∠OEC =90°,在Rt △OCE 中,∵OE 2+CE 2=OC 2,∴(2x )2+52=(3x )2,解得:x =5,即DE =5,∴()22225530CD CE DE =+=+=,∵∠ADE+∠CDE=90°,∠ECD+∠CDE=90°,∴∠ADE=∠ECD ,又∵∠ADC=∠CED=90°,∴△ADC ∽△CED ,∴AD CE CD DE=,即305=,解得:56AD =. 故答案为:56.【点睛】本题考查了矩形的性质、勾股定理和相似三角形的判定与性质,属于常考题型,熟练掌握上述基本知识是解题的关键.16.如图,在等腰直角△ABC 中,∠C =90°,将△ABC 绕顶点A 逆时针旋转80°后得到△AB′C′,则∠CAB′的度数为_____.【答案】125°【分析】根据等腰直角三角形的性质得到∠CAB =45°,根据旋转的性质得到∠BAB′=80°,结合图形计算即可.【详解】解:∵△ABC 是等腰直角三角形,∴∠CAB =45°,由旋转的性质可知,∠BAB′=80°,∴∠CAB′=∠CAB+∠BAB′=125°,故答案为:125°.【点睛】本题考查旋转的性质,关键在于熟练掌握基础性质.17.如图,ABC 中,//DE BC ,且:2:5AD DB =,4DE =,则BC =___________【答案】1【分析】由//DE BC 及:2:5AD DB =,得27AD AB =,再证△ADE ∽△ABC ,推出DE AD BC AB =,代入值,即可求出BC .【详解】解:∵//DE BC ,:2:5AD DB =,∴27AD AD AB AD BD ==+ ∵DE ∥BC ,∴△ADE ∽△ABC ,∴27DE AD BC AB ==, ∵4DE =, ∴427BC =,则BC=1, 故答案为:1.【点睛】本题考查了相似三角形的性质和判定的应用,注意:相似三角形的对应边的比相等.18.如图,在△ABC 中,D 为AC 边上一点,且∠DBA=∠C ,若AD=2cm ,AB=4cm ,那么CD 的长等于________cm .【答案】1【解析】由条件可证得△ABC ∽△ADB ,可得到AD AB =AB AC,从而可求得AC 的长,最后计算CD 的长. 【详解】∵∠DBA =∠C ,∠A 是公共角,∴△ABC ∽△ADB ,∴AD AB =AB AC ,即24=4AC ,解得:AC =8,∴CD =8﹣2=1.故答案为:1.【点睛】本题考查了相似三角形的判定和性质,掌握利用两组角对应相等可判定两个三角形相似是解题的关键.三、解答题(本题包括8个小题)19.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x的之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大;最大利润是多少.(注:销售利润=销售收入-购进成本)【答案】(1) y=-100x2+600x+5500(0≤x≤11);(2)每件商品销售价是10.5元时,商店每天销售这种小商品的利润最大,最大利润是6400元.【分析】(1)根据等量关系“利润=(13.5-降价-进价)×(500+100×降价)”列出函数关系式;(2)根据(1)中的函数关系式求得利润最大值.【详解】解:(1)设降价x元时利润最大.依题意:y=(13.5-x-2.5)(500+100x) =100(-x2+6x+55) = -100x2+600x+5500整理得:y=-100(x-3)2+6400(0≤x≤11);(2)由(1)可知,∵a=-100<0,∴当x=3时y取最大值,最大值是6400,即降价3元时利润最大,∴销售单价为10.5元时,最大利润6400元.答:销售单价为10.5元时利润最大,最大利润为6400元.【点睛】本题考查的是函数关系式的求法以及最值的求法.20.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C 处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)【答案】3031)米【解析】设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD中,根据正切的概念列出方程求出x的值即可.【详解】由题意得,∠ABD=30°,∠ACD=45°,BC=60m,设AD =xm ,在Rt △ACD 中,∵tan ∠ACD =AD CD, ∴CD =AD =x ,∴BD =BC+CD =x+60,在Rt △ABD 中,∵tan ∠ABD =AD BD,∴60)x x =+,∴1)x =米,答:山高AD 为301)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.某商场销售一批衬衫,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就减少100件,如果商场销售这批衬衫要获利润12000元,又使顾客获得更多的优惠,那么这种衬衫售价应定为多少元?(1)设提价了x 元,则这种衬衫的售价为___________元,销售量为____________件.(2)列方程完成本题的解答.【答案】(1)(60x)+,(80020)x -;(2)(60+x−50)(800−1x )=1100,2,见解析【分析】(1)根据销售价等于原售价加上提价,销售量等于原销售量减去减少量即可;(2)根据销售利润等于单件的利润乘以销售量即可解答.【详解】(1)设这种衬衫应提价x 元,则这种衬衫的销售价为(60+x )元,销售量为(800−1005x )=(800−1x )件. 故答案为(60+x );(800−1x ).(2)根据(1)得:(60+x−50)(800−1x )=1100整理,得x 2−30x +10=0解得:x 1=10,x 2=1.为使顾客获得更多的优惠,所以x =10,60+x =2.答:这种衬衫应提价10元,则这种衬衫的销售价为2元.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握销售问题的关系式.22.已知,如图,△ABC 中,AD 是中线,且CD 2=BE·BA.求证:ED·AB=AD·BD.【答案】证明见解析【解析】试题分析:由AD 是中线以及CD 2=BE·BA 可得BE BD BD AB =,从而可得△BED ∽△BDA ,根据相似三角形的性质问题得证.试题解析:∵AD 是中线,∴BD =CD ,又CD 2=BE·BA , ∴BD 2=BE·BA ,即BE BD BD AB = , 又∠B=∠B,∴△BED ∽△BDA ,∴ED BD AD AB=, ∴ED·AB =AD·BD.【点睛】本题考查了相似三角形的判定与性质,根据已知得到△BED ∽△BDA 是解决本题的关键. 23.如图,AB 是O 的直径,,C D 是圆上的两点,且20BAC =︒∠,AD CD =.(1)求ABC ∠的度数;(2)求ACD ∠的度数.【答案】(1)70︒;(2)35︒.【分析】(1)根据AB 是⊙O 直径,得出∠ACB=90°,进而得出∠B=70°;(2)根据同弧所对的圆心角等于圆周角的2倍,得到圆心角∠AOC 的度数,根据同弧所对的圆周角等于所对圆心角的一半,可求出∠ACD 的度数.【详解】(1)∵AB是⊙O直径,∴∠ACB=90︒,∵∠BAC=20︒,∴∠ABC=70︒,(2)连接OC,OD,如图所示:∴∠AOC =2∠ABC =140︒,∵AD CD=,∴∠COD=∠AOD=1AOC702∠=︒,∴∠ACD=1AOD352∠=︒.【点睛】本题主要考查了圆周角定理的推论与定理,以及弦,弧,圆心角三者的关系,要求学生根据题意,作出辅助线,建立未知角与已知角的联系,利用同弧(等弧)所对的圆心角等于所对圆周角的2倍来解决问题.24.已知抛物线y=x2+(1﹣2a)x﹣2a(a是常数).(1)证明:该抛物线与x轴总有交点;(2)设该抛物线与x轴的一个交点为A(m,0),若2<m≤5,求a的取值范围;(3)在(2)的条件下,若a为整数,将抛物线在x轴下方的部分沿x轴向上翻折,其余部分保持不变,得到一个新图象G,请你结合新图象,探究直线y=kx+1(k为常数)与新图象G公共点个数的情况.【答案】(1)见解析;(2)1<a≤52;(3)新图象G公共点有2个.【分析】(1)令抛物线的y值等于0,证所得方程的△>0即可;(2)将点A坐标代入可求m的值,即可求a的取值范围;(3)分k>0和k<0两种情况讨论,结合图象可求解.【详解】解:(1)设y=0,则0=x2+(1﹣2a)x﹣2a,∵△=(1﹣2a)2﹣4×1×(﹣2a)=(1+2a)2≥0,∴x2+(1﹣2a)x﹣2a=0有实数根,∴该抛物线与x轴总有交点;(2)∵抛物线与x轴的一个交点为A(m,0),∴0=m2+(1﹣2a)m﹣2a,∴m=﹣1,m=2a,∵2<m≤5,∴2<2a≤5,∴1<a≤52;(3)∵1<a≤52,且a为整数,∴a=2,∴抛物线解析式为:y=x2﹣3x﹣4,如图,当k>0时,若y=kx+1过点(﹣1,0)时,直线y=kx+1(k为常数)与新图象G公共点有3个,即k=1,当0<k<1时,直线y=kx+1(k为常数)与新图象G公共点有4个,当k>1时,直线y=kx+1(k为常数)与新图象G公共点有2个,如图,当k<0时,若y=kx+1过点(4,0)时,直线y=kx+1(k为常数)与新图象G公共点有3个,即k=﹣14,当﹣14<k<0时,直线y=kx+1(k为常数)与新图象G公共点有4个,当k<﹣14时,直线y=kx+1(k为常数)与新图象G公共点有2个,【点睛】本题考查了二次函数与一次函数相结合的综合题:熟练掌握二次函数的性质;会利用根的判别式确定抛物线与x轴的交点个数;理解坐标与图形性质,会利用分类讨论的方法解题;要会利用数形结合的思想把代数和几何图形结合起来,利用数形结合的方法是解题的关键.25.倡导全民阅读,建设书香社会.(调查)目前,某地纸媒体阅读率为40%,电子媒体阅读率为80%,综合媒体阅读率为90%.(百度百科)某种媒体阅读率,指有某种媒体阅读行为人数占人口总数的百分比;综合阅读率,在纸媒体和电子体中,至少有一种阅读行为的人数占人口总数的百分比,它反映了一个国家或地区的阅读水平.(问题解决)(1)求该地目前只有电子媒体阅读行为人数占人口总数的百分比;(2)国家倡导全民阅读,建设书香社会.预计未来两个五年中,若该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加,这样十年后,只读电子媒体的人数比目前增加53%,求百分数x.【答案】(1)该社区有电子媒体阅读行为人数占人口总数的百分比为50%.(2)x为10%.【分析】(1)根据题意,利用某地传统媒体阅读率为80%,数字媒体阅读率为40%,而综合阅读率为90%,得出等式求出答案;(2)根据综合阅读人数﹣纸媒体阅读人数=只读电子媒体的人数,结合该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加列出方程即可求出答案.【详解】解:(1)设某地人数为a,既有传统媒体阅读又有数字媒体阅读的人数为y,则传统媒体阅读人数为0.8a,数字媒体阅读人数为0.4a.依题意得:0.8a+0.4a﹣y=0.9a,解得y=0.3a,∴传统媒体阅读又有数字媒体阅读的人数占总人口总数的百分比为30%.则该社区有电子媒体阅读行为人数占人口总数的百分比为=80%﹣30%=50%.(2)依题意得:0.9a(1+x)2+0.4a(1﹣x)2=0.5a(1+0.53),整理得:5x2+26x﹣2.65=0,解得:x1=0.1=10%,x2=﹣5.3(舍去),答:x为10%.【点睛】此题主要考查了一元二次方程的应用,根据题意得出正确等量关系是解题关键.26.如图,是由6个棱长相同的小正方形组合成的几何体.(1)请在下面方格纸中分别画出它的主视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么请在下面方格纸中画出添加小正方体后所得几何体可能的左视图(画出一种即可)【答案】图形见详解.【解析】根据题目要求作出三视图即可.【详解】解:(1)主视图和俯视图如下图,(2)左视图如下图【点睛】本题考查了三视图的实际作图,属于简单题,熟悉三视图的作图方法是解题关键.27.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【答案】(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P=(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x≥45,a=﹣20<0,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P=220(60)8000x --+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x=58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是二次函数y =ax 2+bx+c (a≠0)的图象的一部分,给出下列命题:①a+b+c =0;②b >2a ;③方程ax 2+bx+c =0的两根分别为-3和1;④a -2b+c≥0,其中正确的命题是( )A .①②③B .①④C .①③D .①③④【答案】C 【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x=-1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(-3,0),把(1,0)代入可对①做出判断;由对称轴为x=-1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断;根据a 、c 的符号,以及对称轴可对④做出判断;最后综合得出答案.【详解】解:由图象可知:抛物线开口向上,对称轴为直线x=-1,过(1,0)点,把(1,0)代入y=ax 2+bx+c 得,a+b+c=0,因此①正确;对称轴为直线x=-1,即:12b a-=-整理得,b=2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(-3,0),因此方程ax 2+bx+c=0的两根分别为-3和1;故③是正确的;由a >0,b >0,c <0,且b=2a ,则a-2b+c=a-4a+c=-3a+c <0,因此④不正确;故选:C .【点睛】本题考查的是二次函数图象与系数之间的关系,能够根据开口判断a 的符号,根据与x 轴,y 轴的交点判断c 的值以及b 用a 表示出的代数式是解题的关键.2.如图放置的几何体的左视图是( )A .B .C .D .【答案】C【分析】左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.【详解】解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.故选C .【点睛】本题考查简单组合体的三视图.3.在△ABC 中,若tanA =1,sinB =,你认为最确切的判断是( ) A .△ABC 是等腰三角形B .△ABC 是等腰直角三角形 C .△ABC 是直角三角形D .△ABC 是一般锐角三角形 【答案】B【分析】试题分析:由tanA=1,2结合特殊角的锐角三角函数值可得∠A 、∠B 的度数,即可判断△ABC 的形状.【详解】∵tanA=1,sinB=22 ∴∠A=45°,∠B=45°∴△ABC 是等腰直角三角形故选B.考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.4.已知M(1,2),则M 关于原点的对称点N 落在( )A .2y x =的图象上B .2y x 的图象上C .22y x =的图象上D .2y x =+的图象上 【答案】A【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数得出N 的坐标,再根据各函数关系式进行判断即可.【详解】点M (1,2)关于原点对称的点N 的坐标是(-1,-2),∴当x=-1时,对于选项A ,y=2×(-1)=-2,满足条件,故选项A 正确;对于选项B ,y=(-1)2=1≠-2故选项B 错误;对于选项C ,y=2×(-1)2=2≠-2故选项C 错误;对于选项 D ,y=-1+2=1≠-2故选项D 错误.故选A .【点睛】本题考查了关于原点对称的点的坐标,以及函数图象上点的坐标特征,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.5.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:则关于这20户家庭的月用水量,下列说法正确的是( ) A .中位数是5 B .平均数是5C .众数是6D .方差是6【答案】C【分析】根据中位数的定义、平均数的公式、众数的定义和方差公式计算即可.【详解】解:A 、按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误;B 、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误;C 、6出现了7次,出现的次数最多,则众数是6,故本选项正确;D 、方差是:S 2=120[4×(4﹣6)2+5×(5﹣6)2+7×(6﹣6)2+3×(8﹣6)2+(13﹣6)2]=4.1,故本选项错误; 故选C . 【点睛】此题考查的是中位数、平均数、众数和方差的算法,掌握中位数的定义、平均数的公式、众数的定义和方差公式是解决此题的关键.6.点()34P -,到x 轴的距离是( ) A .3 B .3-C .4D .4-【答案】C【分析】根据点的坐标的性质即可得.【详解】由点的坐标的性质得,点P 到x 轴的距离为点P 的纵坐标的绝对值则点()34P -,到x 轴的距离是44-= 故选:C. 【点睛】本题考查了点的坐标的性质,掌握理解点的坐标的性质是解题关键.7.如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x 轴,y 轴分别交于A,B 两点,正方形ABCD 的顶点C,D 在第一象限,顶点D 在反比例函数()y 0kk x=≠ 的图像上,若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图像上,则n 的值是( )A .2B .3C .4D .5【答案】B【分析】由一次函数的关系式可以求出与x 轴和y 轴的交点坐标,即求出OA ,OB 的长,由正方形的性质,三角形全等可以求出DE 、AE 、CF 、BF 的长,进而求出G 点的坐标,最后求出CG 的长就是n 的值. 【详解】如图过点D 、C 分别做DE ⊥x 轴,CF ⊥y 轴,垂足分别为E,F .CF 交反比例函数的图像于点G . 把x=0和y=0分别代入y=-4x+4 得y=4和x=1 ∴A(1,0),B(0,4) ∴OA=1,OB=4由ABCD 是正方形,易证 △AOB ≌△DEA ≌△BCF (AAS ) ∴DE=BF=OA=1,AE=CF=OB=4 ∴D(5,1),F(0,5)把D 点坐标代入反比例函数y=kx,得k=5 把y=5代入y=5x,得x=1,即FG=1 CG=CF-FG=4-1=3,即n=3 故答案为B . 【点睛】本题考查了反比例函数的图像上的坐标特征,正方形的性质,以及全等三角形判断和性质,根据坐标求出线段长是解决问题的关键. 8.若反比例函数()110a y a x x-=><,图象上有两个点()()1122,,x y x y ,,设()1212()m x x y y =--,则 y mx m =-不经过第( )象限.A .一B .二C .三D .四【答案】C【分析】利用反比例函数的性质判断出m 的正负,再根据一次函数的性质即可判断. 【详解】解:∵()110a y a x x-=><,, ∴a-1>0, ∴()110a y a x x-=><,图象在三象限,且y 随x 的增大而减小, ∵图象上有两个点(x 1,y 1),(x 2,y 2),x 1与y 1同负,x 2与y 2同负, ∴m=(x 1-x 2)(y 1-y 2)<0,∴y=mx-m 的图象经过一,二、四象限,不经过三象限, 故选:C . 【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,A 为反比例函数y=kx的图象上一点,AB 垂直x 轴于B ,若S △AOB =2,则k 的值为( )A .4B .2C .﹣2D .1【答案】A【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=12|k|. 【详解】由于点A 是反比例函数图象上一点,则S △AOB =12|k|=2; 又由于函数图象位于一、三象限,则k=4. 故选A. 【点睛】本题考查反比例函数系数k 的几何意义,解题的关键是掌握反比例函数系数k 的几何意义.10.如图,AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠CDB =25°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( )。

{3套试卷汇总}2019年重庆市九年级上学期数学期末质量检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一元二次方程25x x =的解是( )A .5或0B . 15或0C .15D .0 【答案】B【解析】根据因式分解法即可求出答案.【详解】∵5x 2=x ,∴x(5x ﹣1)=0,∴x=0或x 15=. 故选:B .【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用一元二次方程的解法,本题属于基础题型. 2.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )A .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100D .80(1+x 2)=100 【答案】A【解析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x ,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x ,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x )吨,2018年蔬菜产量为80(1+x )(1+x )吨,预计2018年蔬菜产量达到100吨,即: 80(1+x )2=100,故选A .【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.3.掷一枚质地均匀的硬币10次,下列说法正确的是( )A .每2次必有一次正面朝上B .必有5次正面朝上C .可能有7次正面朝上D .不可能有10次正面朝上 【答案】C 【分析】利用不管抛多少次,硬币正面朝上的概率都是12,进而得出答案. 【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12, 所以掷一枚质地均匀的硬币10次, 可能有7次正面向上;故选:C .【点睛】 本题考查了可能性的大小,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.4.当k>0时,下列图象中哪些可能是y=kx 与y=k x在同一坐标系中的图象( ) A . B . C .D . 【答案】B【分析】由系数0k >即可确定y kx =与k y x =经过的象限. 【详解】解:0k >y kx ∴=经过第一、三象限,k y x=经过第一、三象限,B 选项符合. 故选:B【点睛】 本题考查了一次函数与反比例函数的图像,灵活根据k 的正负判断函数经过的象限是解题的关键. 5.如图,在△ABC 中,∠A=90°,sinB=35,点D 在边AB 上,若AD=AC ,则tan ∠BCD 的值为( )A .15B .16C .17D .18【答案】C【分析】作DE ⊥BC 于E ,在△CDE 中根据已知条件可求得DE,CE 的长,从而求得tan ∠BCD.【详解】解:作DE ⊥BC 于E.∵∠A=90°,sinB=35,设AC=3a=AD , 则AB=4a,BC=5a,∴BD=AB-AD=a.∴DE= BD·sinB=35 a,∴根据勾股定理,得BE=45 a,∴CE=BC-BE=21 5a,∴tan∠BCD=1.7 DECE故选C.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形中三角函数值的计算,本题中正确求三角函数值是解题的关键.6.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.7.如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()A .B .C .D .【答案】B【分析】求出2142tan DBC∠==,12112428xDH CD CHxADADn DAta H--=∠==-=,y=EF−EM−NF =2−BFtan∠DBC−AEtan∠DAH,即可求解.【详解】解:2142tan DBC∠==,12112428xDH CD CHxADADn DAta H--=∠==-=y=EF﹣EM﹣NF=2﹣BFtan∠DBC﹣AEtan∠DAH=2﹣x×12﹣x(1128x-)=18x2﹣x+2,故选:B.【点睛】本题考查的是动点图象问题,涉及到二次函数,此类问题关键是确定函数的表达式,进而求解.8.一元二次方程220x ax-+=的一根是1,则a的值是()A.3B.-3C.2D.-2【答案】A【解析】将1x=代入方程,求出a的值.【详解】将1x=代入方程得120a-+=解得3a=故答案为:A.【点睛】本题考查了求一元二次方程系数的问题,掌握代入求值法求解a的值是解题的关键.9.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.23B.16C.13D.12【答案】D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=31 62 .故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.10.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25πB.65πC.90πD.130π【答案】B【解析】解:由已知得,母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.11.硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是()A.正面向上B.正面不向上C.正面或反面向上D.正面和反面都不向上【答案】C【分析】根据概率公式分别求出各选项事件的概率, 即可判断.【详解】解: 若不考虑硬币竖起的情况,A.正面向上概率为1÷2=1 2 ;B.正面不向上的概率为1÷2=1 2 ;C.正面或反面向上的概率为2÷2=1; D.正面和反面都不向上的概率为0÷2=0∵1>12>0∴正面或反面向上的概率最大故选C.【点睛】此题考查的是比较几个事件发生的可能性的大小,掌握概率公式是解决此题的关键.12.有一副三角板,含45°的三角板的斜边与含30°的三角板的长直角边相等,如图,将这副三角板直角顶点重合拼放在一起,点B ,C ,E 在同一直线上,若BC =2,则AF 的长为( )A .2B .3﹣2C .4﹣3D .36【答案】D 【分析】根据正切的定义求出AC ,根据正弦的定义求出CF ,计算即可.【详解】解:在Rt △ABC 中,BC =2,∠A =30°,AC =tan BC A=3 则EF =AC =3∵∠E =45°,∴FC =EF •sinE 6,∴AF =AC ﹣FC =36,故选:D .【点睛】本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.二、填空题(本题包括8个小题)13.小强同学从0,1,2,3这四个数中任选一个数,满足不等式12x +<的概率是__________. 【答案】14【分析】找到满足不等式x+1<2的结果数,再根据概率公式计算可得.【详解】解:在0,1,2,3这四个数中,满足不等式x+1<2的中只有0一个数,所以满足不等式x+1<2的概率是14. 故答案是:14. 【点睛】本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.14.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.【答案】1,83,32【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。

【精选3份合集】2019-2020年重庆市九年级上学期期末综合测试数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,抛物线y =ax 2+bx+c 交x 轴分别于点A (﹣3,0),B (1,0),交y 轴正半轴于点D ,抛物线顶点为C .下列结论①2a ﹣b =0;②a+b+c =0;③当m≠﹣1时,a ﹣b >am 2+bm ;④当△ABC 是等腰直角三角形时,a =1-2;⑤若D (0,3),则抛物线的对称轴直线x =﹣1上的动点P 与B 、D 两点围成的△PBD 周长最小值为32+10,其中,正确的个数为( )A .2个B .3个C .4个D .5个【答案】D 【分析】把A 、B 两点坐标代入抛物线的解析式并整理即可判断①②;根据抛物线的顶点和最值即可判断③;求出当△ABC 是等腰直角三角形时点C 的坐标,进而可求得此时a 的值,于是可判断④;根据利用对称性求线段和的最小值的方法(将军饮马问题)求解即可判断⑤.【详解】解:把A (﹣3,0),B (1,0)代入y =ax 2+bx+c 得到0930a b c a b c ++=⎧⎨-+=⎩,消去c 得到2a ﹣b =0,故①②正确;∵抛物线的对称轴是直线x =﹣1,开口向下,∴x =﹣1时,y 有最大值,最大值=a ﹣b+c , ∵m≠﹣1,∴a ﹣b+c >am 2+bm+c ,∴a ﹣b >am 2+bm ,故③正确;当△ABC 是等腰直角三角形时,C (﹣1,2),可设抛物线的解析式为y =a (x+1)2+2,把(1,0)代入解得a =﹣12,故④正确, 如图,连接AD 交抛物线的对称轴于P ,连接PB ,则此时△BDP 的周长最小,最小值=PD+PB+BD =PD+PA+BD =AD+BD ,∵AD 2233+=2BD 2231+10,∴△PBD 周长最小值为2+10,故⑤正确.【点睛】本题考查了二次函数的图象与性质、二次函数的图象与其系数的关系、待定系数法求二次函数的解析式和求三角形周长最小值的问题,熟练掌握二次函数的图象与性质是解题的关键.2.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是()A.23B.3C.33D.32【答案】D【分析】根据已知条件,先求Rt△AED的面积,再证明△ECD的面积与它相等.【详解】如图:过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∠BAE=30°.∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°,∠AED=30°,∴△ABE≌△CDF.∴AE=CF.∴S△AED=12ED⋅AE,S△ECD=12ED⋅CF.∴S△AED=S△CDE∵AE=12AD=1,DE=223AD AE=-=,∴△ECD的面积是32. 故答案选:D.本题考查了矩形的性质与含30度角的直角三角形相关知识,解题的关键是熟练的掌握矩形的性质与含30度角的直角三角形并能运用其知识解题.3.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2【答案】D 【分析】根据已知图象可以得到图象与x 轴的交点是(-1,0),(2,0),又y >0时,图象在x 轴的上方,由此可以求出x 的取值范围.【详解】依题意得图象与x 轴的交点是(-1,0),(2,0),当y >0时,图象在x 轴的上方,此时x <-1或x >2,∴x 的取值范围是x <-1或x >2,故选D .【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x 轴的交点,然后由图象找出当y >0时,自变量x 的范围,注意数形结合思想的运用.4.一5的绝对值是( )A .5B .15C .15-D .-5 【答案】A【解析】试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣5到原点的距离是5,所以﹣5的绝对值是5,故选A .5.若3a b +=2a b -=22a b -的值为( ) A .6B .23C 5D 6 【答案】D【分析】先利用平方差公式得到22a b -=(a+b )(a-b ),再把3a b +=2a b -=【详解】解:22a b -=(a+b )(a-b )326.故答案为D .【点睛】本题考查了平方差公式,把a+b 和a-b 看成一个整体是解题的关键.6.如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为( ) A .y =10x B .y =5x C .y =20x D .y =20x 【答案】C【解析】试题解析:∵等腰三角形的面积为10,底边长为x ,底边上的高为y ,1102xy ,∴= ∴y 与x 的函数关系式为:20y x =. 故选C .点睛:根据三角形的面积公式列出1102xy =,即可求出答案. 7.图中的两个梯形成中心对称,点P 的对称点是( )A .点AB .点BC .点CD .点D【答案】C 【分析】根据两个中心对称图形的性质即可解答.关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分;关于中心对称的两个图形能够完全重合.【详解】解:根据中心对称的性质:图中的两个梯形成中心对称,点P 的对称点是点C.故选:C【点睛】本题考查中心对称的性质,属于基础题,掌握其基本的性质是解答此题的关键.8.如图,A ,B ,C ,D ,E 互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的总面积是( )A .1.5πB .2.5πC .3.5πD .4.5π【答案】C【分析】根据圆心角之和等于五边形的内角和,由于半径相等,根据扇形的面积公式计算先算出五边形内部五个扇形的面积之和,再用五个圆的面积之和减去五边形内部五个扇形的面积之和即可求得结果.【详解】∵五边形的内角和是:(5−2)×180°=540°,∴阴影部分的面积之和是:2 25401 15 3.5360πππ⨯⨯⨯-=,故选C.【点睛】本题主要考查多边形的内角和以及扇形的面积公式,解决问题的关键是把阴影部分的面积当成一个扇形面积来求,将五边形的内角和理解成圆心角也很关键;这题是易错题,注意是求五边形外部的扇形面积之和.9.如图,在平面直角坐标系中,函数y kx=与3yx=-的图像相交于A,B两点,过点A作x轴的平行线,交函数4yx=的图像于点C,连接BC,交x轴于点E,则OBE△的面积为()A.72B.74C.2 D.32【答案】B【分析】先确定A、B两点坐标,然后再确定点C坐标,从而可求△ABC的面积,再根据三角形中位线的性质可知答案.【详解】∵函数y kx=与3yx=-的图像相交于A,B两点∴联立3y kxyx=⎧⎪⎨=-⎪⎩解得12123333k kx xy k y k⎧⎧--==⎪⎪⎨⎨⎪⎪=-=-⎩⎩∴点A、B坐标分别是333,3k kA kB k⎛----⎝⎝∵过点A作x轴的平行线,交函数4yx=的图像于点C∴把3y k=-代入到4yx=中得,43kx=-解得433kxk-=-∴点C 的坐标为43,3k k ⎛⎫--- ⎪ ⎪⎝ ∴1433=2372ABC k k S k ⎛⎫--⨯--⨯-= ⎪ ⎪⎝⎭∵OA=OB,OE∥AC∴OE 是△ABC 的中位线∴17==44OBE ABC S S 故答案选B.【点睛】本题是一道综合题,考查了一次函数与反比例函数和三角形中位线性质,能够充分调动所学知识是解题的关键.10.如图,直线y mx =与双曲线k y x=交于A 、B 两点,过点A 作AM x ⊥轴,垂足为M ,连接BM ,若2ABM S ∆=,则k 的值是( )A .2B .4C .-2D .-4 【答案】A【解析】由题意得:2ABM AOM SS =,又1||2AOM S k =,则k 的值即可求出. 【详解】设(,)A x y , ∴直线y mx =与双曲线k y x=交于A 、B 两点, (,)B x y ∴--,1||2BOM Sxy ∴=,1||2AOM S xy = , BOM AOM S S ∴=,122||12ABM AOM BOM AOM AOM S S S S S k ∴=+====,则2k =±. 又由于反比例函数位于一三象限,0k >,故2k =.【点睛】 本题主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为||k ,是经常考查的一个知识点.11.如图,抛物线2y ax bx c =++与x 轴交于点()1,0-,对称轴为1x =,则下列结论中正确的是( )A .0a >B .当1x >时,y 随x 的增大而增大C .0c <D .3x =是一元二次方程20ax bx c ++=的一个根【答案】D【解析】根据二次函数图象的开口方向向下可得a 是负数,与y 轴的交点在正半轴可得c 是正数,根据二次函数的增减性可得B 选项错误,根据抛物线的对称轴结合与x 轴的一个交点的坐标可以求出与x 轴的另一交点坐标,也就是一元二次方程ax 2+bx +c =0的根,从而得解.【详解】A 、根据图象,二次函数开口方向向下,∴a <0,故本选项错误;B 、当x >1时,y 随x 的增大而减小,故本选项错误;C 、根据图象,抛物线与y 轴的交点在正半轴,∴c >0,故本选项错误;D 、∵抛物线与x 轴的一个交点坐标是(−1,0),对称轴是x =1,设另一交点为(x ,0),−1+x =2×1,x =3,∴另一交点坐标是(3,0),∴x =3是一元二次方程ax 2+bx +c =0的一个根,故本选项正确.故选:D .【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x 轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.12.将抛物线265y x x =-+向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是A .()246y x =+-B .()242y x =--C .()242y x =-+D .()213y x =--【答案】B【分析】把265y x x =-+配成顶点式,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线()2265=34y x x x =-+--向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:()()22-3-1-4+2=-4-2y x x =故选:B【点睛】考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.二、填空题(本题包括8个小题)13.若关于x 的一元二次方程x 2﹣4x+m =0没有实数根,则m 的取值范围是_____.【答案】m >4【分析】根据根的判别式即可求出答案.【详解】解:由题意可知:△<0,∴()2=441640m m ∆--=<﹣, ∴m >4故答案为:m >4【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式.14.已知圆的半径是2,则该圆的内接正六边形的面积是__________【答案】【分析】根据正六边形被它的半径分成六个全等的等边三角形,再根据等边三角形的边长,求出等边三角形的高,再根据面积公式即可得出答案.【详解】解:连接OA 、OB ,作OG AB ⊥于G ,等边三角形的边长是2,OG ∴,∴等边三角形的面积是122⨯= ∴正六边形的面积是:6故答案为:【点睛】本题考查的是正多边形和圆的知识,解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.15.如图,△ABC 中,AB =6,BC =1.如果动点D 以每秒2个单位长度的速度,从点B 出发沿边BA 向点A 运动,此时直线DE ∥BC ,交AC 于点E .记x 秒时DE 的长度为y ,写出y 关于x 的函数解析式_____(不用写自变量取值范围).【答案】y =﹣3x+1【分析】由DE ∥BC 可得出△ADE ∽△ABC ,再利用相似三角形的性质,可得出y 关于x 的函数解析式.【详解】∵DE ∥BC ,∴△ADE ∽△ABC , ∴DE AD BC AB=,即6296y x -=,∴y =﹣3x+1. 故答案为:y =﹣3x+1.【点睛】 本题考查根据实际问题列函数关系式,利用相似三角形的性质得出DE AD BC AB=是关键. 16.抛物线y=x 2+2x+3的顶点坐标是_____________.【答案】(﹣1,2)【详解】解:将二次函数转化成顶点式可得:y=2(1)2x ++,则函数的顶点坐标为(-1,2)故答案为:(-1,2)【点睛】本题考查二次函数的顶点坐标.17.如图,在△ABC 中,D 、E 、F 分别在AB 、AC 、BC 上,DE ∥BC ,EF ∥AB ,AD :BD =5:3,CF =6,则DE 的长为_____.【答案】1【分析】根据平行线分线段成比例定理得到53AE ADEC DB==,证明△AED∽△ECF,根据相似三角形的性质列出比例式,代入计算得到答案.【详解】解:∵DE∥BC,∴53AE ADEC DB==,∠AED=∠C,∵EF∥AB,∴∠CEF=∠A,又∠AED=∠C,∴△AED∽△ECF,∴5=3DE AEFC EC=,即563DE=,解得,DE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质、平行线分线段成比例定理,掌握相似三角形的判定和性质是解题的关键.18.如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为5,则AEBE(AE BE<)的值为_____.【答案】1 2【分析】根据题意,由AAS证明△AEH≌△BFE,则BE=AH,根据相似比为53EHAB=,令5k,AB=3k,设AE=a,AH=3k a-,在直角三角形AEH中,利用勾股定理,即可求出a的值,即可得到答案.【详解】解:在正方形EFGH与正方形ABCD中,∠A=∠B=90°,EF=EH ,∠FEH=90°,∴∠AEH+∠AHE=90°,∠BEF+∠AEH=90°,∴∠AHE=∠BEF ,∴△AEH ≌△BFE (AAS ),∴BE=AH ,∵EH AB =令,AB=3k ,在直角三角形AEH 中,设AE=a ,AH=AB-AE=3k a -,由勾股定理,得222AE AH EH +=,即222(3))a k a +-=,解得:a k =或2a k =,∵AE BE <,∴AE k =,∴2BE k =, ∴122AE k BE k ==; 故答案为:12. 【点睛】 本题考查了相似四边形的性质,正方形的性质,全等三角形的判定和性质,勾股定理,解题的关键是利用勾股定理求出AE 和BE 的长度.三、解答题(本题包括8个小题)19.已知二次函数的图象顶点是(12)-,, 且经过()1, 3-,求这个二次函数的表达式. 【答案】()25124y x =-++ 【分析】根据二次函数解析式的顶点式以及待定系数法,即可得到答案.【详解】把顶点()12-,代入()2y a x h k =-+得:()212y a x =++, 把()1,3-代入()212y a x =++得:54a =-, ∴二次函数的表达式为:()25124y x =-++. 【点睛】 本题主要考查二次函数的待定系数法,掌握二次函数解析式的顶点式是解题的关键.20.若关于x 的方程()2260x b x b +++-=有两个相等的实数根(1)求b 的值;(2)当b 取正数时,求此时方程的根,【答案】(1)b=2或b=10-;(2)x 1=x 2=2;【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案.【详解】解:(1)由题意可知:△=(b+2)2-4(6-b )=0,∴28200b b +-=解得:b=2或b=10-.(2)当b=2时,此时x 2-4x+4=0,∴2(2)0x -=,∴x 1=x 2=2;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.21.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:(1)把表格填写完整;(2)根据上表填空:①抛物线与x 轴的交点坐标是________和__________;②在对称轴右侧,y 随x 增大而_______________;③当22x -<<时,则y 的取值范围是_________________;(3)请直接写出抛物线2y ax bx c =++的解析式.【答案】(1)2;(2)①抛物线与x 轴的交点坐标是()30-,和()10,;②y 随x 增大而减小;③y 的取值范围是54y -<≤;(2)223y x x =--+.【分析】(1)利用表中对应值的特征和抛物线的对称性得到抛物线的对称轴为直线x=-1,则x=0和x=-2时,y 的值相等,都为2;(2)①利用表中y=0时x 的值可得到抛物线与x 轴的交点坐标;②设交点式y=a (x+2)(x-1),再把(0,2)代入求出a 得到抛物线解析式为y=-x 2-2x+2,则可判断抛物线的顶点坐标为(-1,1),抛物线开口向下,然后根据二次函数的性质解决问题;③由于x=-2时,y=2;当x=2时,y=-5,结合二次函数的性质可确定y 的取值范围;(2)由(2)得抛物线解析式.【详解】解:(1)∵x=-2,y=0;x=1,y=0,∴抛物线的对称轴为直线x=-1,∴x=0和x=-2时,y=2;故答案是:2;(2)①∵x=-2,y=0;x=1,y=0,∴抛物线与x轴的交点坐标是(-2,0)和(1,0);故答案是:(-2,0)和(1,0);②设抛物线解析式为y=a(x+2)(x-1),把(0,2)代入得2=-2a,解得a=-1,∴抛物线解析式为y=-(x+2)(x-1),即y=-x2-2x+2,抛物线的顶点坐标为(-1,1),抛物线开口向下,∴在对称轴右侧,y随x增大而减小;故答案是:减小;③当x=-2时,y=2;当x=2时,y=-1-1+2=-5,当x=-1,y有最大值为1,∴当-2<x<2时,则y的取值范围是-5<y≤1.故答案是:-5<y≤1;(2)由(2)得抛物线解析式为y=-x2-2x+2,故答案是:y=-x2-2x+2.【点睛】本题考查了抛物线解析式的求法及与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点问题转化为关于x的一元二次方程的问题.也考查了二次函数的性质.22.(2011四川泸州,23,6分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,1.从这3个口袋中各随机地取出1个小球.(1)求取出的3个小球的标号全是奇数的概率是多少?(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.【答案】解:(1)16;(2)12.【分析】(1)根据题意画出树状图,根据树状图进行解答概率;(2)用列举法求概率.【详解】解:(1)画树状图得∴一共有12种等可能的结果,取出的3个小球的标号全是奇数的有2种情况,∴取出的3个小球的标号全是奇数的概率是:P(全是奇数)=21126=(2)∵这些线段能构成三角形的有2、4、3,7、4、8,7、4、1,7、5、3,7、5、8,7、5、1共6种情况,∴这些线段能构成三角形的概率为P(能构成三角形)= 61122=【点睛】本题考查概率的计算,难度不大.23.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,BD=25,求⊙O的半径.【答案】(1)见解析;(2)52.【分析】(1)证明△DAF≌△DCE,可得∠DFA=∠DEC,证出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切线.(2)在Rt△ADF和Rt△BDF中,可得AD2-(AD-BF)2=DB2-BF2,解方程可求出AD的长即可.【详解】(1)证明:如图1,连接DF,∵四边形ABCD 为菱形,∴AB =BC =CD =DA ,AD ∥BC ,∠DAB =∠C , ∵BF =BE ,∴AB ﹣BF =BC ﹣BE ,即AF =CE ,∴△DAF ≌△DCE (SAS ),∴∠DFA =∠DEC ,∵AD 是⊙O 的直径,∴∠DFA =90°,∴∠DEC =90°∵AD ∥BC ,∴∠ADE =∠DEC =90°,∴OD ⊥DE ,∵OD 是⊙O 的半径,∴DE 是⊙O 的切线;(2)解:如图2,∵AD 是⊙O 的直径,∴∠DFA =90°,∴∠DFB =90°,在Rt △ADF 和Rt △BDF 中,∵DF 2=AD 2﹣AF 2,DF 2=BD 2﹣BF 2, ∴AD 2﹣AF 2=DB 2﹣BF 2,∴AD 2﹣(AD ﹣BF )2=DB 2﹣BF 2,∴()2222()2252AD AD ---=,∴AD =1.∴⊙O 的半径为52. 【点睛】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市江北区九年级(上)期末模拟数学试卷一、选择题(共10题;共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A. 40°B. 60°C. 70°D. 80°3.如果反比例函数的图象经过点(-1,-2),则的值是()A. 2B. -2C. -3D. 34.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(>0);②E点的坐标是(5,8);③sin∠COA=;④AC+OB=12.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个5.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A. 20%B. 40%C. -220%D. 30%6.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为,根据题意列方程得()A. 10(1+)2=16.9B. 10(1+2)=16.9C. 10(1﹣)2=16.9D. 10(1﹣2)=16.97.二次根式有意义,则的取值范围是()A. ≤﹣7B. ≥﹣7C. <﹣7D. >﹣78.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=30°,则∠OCB的度数为()A. 30°B. 60°C. 50°D. 40°9.已知函数y=a2﹣2a﹣1(a是常数,a≠0),下列结论正确的是()A. 当a=1时,函数图象过点(﹣1,1)B. 当a=﹣2时,函数图象与轴没有交点C. 若a>0,则当≥1时,y随的增大而减小D. 若a<0,则当≤1时,y随的增大而增大10.以点O为圆心,以5cm为半径作⊙O,若线段OP的长为8cm,那么OP的中点A与⊙O的位置关系是()A. A点在⊙O外B. A点在⊙O上C. A点在⊙O内D. 不能确定二、填空题(共8题;共24分)11.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF=________.12.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为________.13.计算:=________.14.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB的度数为________(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)________ .(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ 的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是________15.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=,PB=y,则(﹣y)的最大值是________.16.如图所示,以边长为2的等边△ABO的顶点O为坐标原点,点B在轴上,则经过点A的反比例函数的表达式为________17.已知⊙O半径为3cm,点P到圆心O的距离为3cm,则点P与⊙O的位置关系是 ________.18.如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是________.三、解答题(共6题;共36分)19.解方程:2﹣﹣12=0.20.某批乒乓球的质量检验结果如下:优等品频率(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?21.在Rt△ABC中,∠C=90°,BC=3,AC=4,以C点为圆心、BC长为半径画圆,请你判断点A与⊙C的位置关系.22.如图,在⊙O中,AB为弦,C、D在AB上,且AC=BD,请问图中有几个等腰三角形?把它们分别写出,并说明理由.23.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?24.如图,2×2网格(每个小正方形的边长为1)中,有A,O,B,C,D,E,F,H,G九个格点.抛物线l的解析式为y=2+b+c.(1)若l经过点O(0,0)和B(1,0),则b= ,c= ;它还经过的另一格点的坐标为.(2)若l经过点H(﹣1,1)和G(0,1),求它的解析式及顶点坐标;通过计算说明点D(1,2)是否在l上.(3)若l经过这九个格点中的三个,直接写出所有满足这样的抛物线的条数.四、综合题(共10分)25.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.重庆市江北区九年级(上)期末模拟数学试卷参考与答案与试题解析一、选择题1.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.2.【答案】D【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,又∠ADC=140°,∴∠B=40°,∴∠AOC=2∠B=80°,故选:D.【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理得到答案.3.【答案】D【考点】待定系数法求反比例函数解析式【解析】【分析】根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数的方程,通过解方程即可求得的值.【解答】根据题意,得-2=,即2=-1,解得,=3.故选D.【点评】此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.4.【答案】B【考点】反比例函数的应用【解析】【解答】解:过点C作CF⊥轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF==8,在Rt△OCF中,∵OC=10,CF=8,∴OF==6,∴C(6,8),∵点D时线段AC的中点,∴D点坐标为,即(8,4),∵双曲线y=(>0)经过D点,∴4=,即=32,∴双曲线的解析式为:y=(>0),故①错误;∵CF=8,∴直线CB的解析式为y=8,∴,解得=4,y=8,∴E点坐标为(4,8),故②错误;∵CF=8,OC=10,∴sin∠COA= ,故③正确;∵A(10,0),C(6,8),∴AC= ,∵OB•AC=160,∴OB= ,∴AC+OB=4+8=12,故④正确.故选:B.【分析】过点C作CF⊥轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB•AC=160即可求出OB的长.5.【答案】A【考点】一元二次方程的应用【解析】【解答】设每年投资的增长率为,根据题意,得:5(1+)2=7.2,解得:1=0.2=20%,2=-2.2(舍去),故每年投资的增长率为为20%.故选:A.【分析】先设每年投资的增长率为,再根据2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,列方程求解.此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+)n,其中n为共增长了几年,a为第一年的原始数据,是增长率.6.【答案】A【考点】一元二次方程的应用【解析】【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为,根据题意,可列方程:10(1+)2=16.9,故选:A.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为,则经过两次变化后的数量关系为a(1±)2=b.7.【答案】B【考点】二次根式有意义的条件【解析】【解答】解:由题意,得+7≥0,解得≥﹣7,故选:B.【分析】根据被开房数是非负数,可得答案.8.【答案】B【考点】切线的性质,切线的判定与性质【解析】【解答】解:∵AB是⊙O的切线,B为切点,∴∠OBA=90°,∵∠BAO=30°,∴∠O=60°,∵OB=OC,∴△OBC是等边三角形,∴∠OCB=60°,故选:B.【分析】根据切线性质得出∠OBA=90°,求出∠O=60°,证出△OBC是等边三角形,即可得出结果.9.【答案】D【考点】二次函数的性质【解析】【解答】解:A、∵当a=1,=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与轴有两个交点,故错误;C、∵抛物线的对称轴为直线=﹣=1,∴若a>0,则当≥1时,y随的增大而增大,故错误;D、∵抛物线的对称轴为直线=﹣=1,∴若a<0,则当≤1时,y随的增大而增大,故正确;故选D.【分析】把a=1,=﹣1代入y=a2﹣2a﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与轴有两个交点,根据抛物线的对称轴为直线=﹣=1判断二次函数的增减性.10.【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=8cm,A是线段OP的中点,∴OA=4cm,小于圆的半径5cm,∴点A在圆内.故选C.【分析】知道OP的长,点A是OP的中点,得到OA的长与半径的关系,求出点A与圆的位置关系.二、填空题11.【答案】20°【考点】圆周角定理【解析】【解答】解:∵⊙O的直径CD过弦EF的中点G,∴弧ED=弧DF(垂径定理),∴∠DCF=∠EOD(等弧所对的圆周角是圆心角的一半),∴∠DCF=20°.【分析】欲求∠DCF,又已知一圆心角,可利用圆周角与圆心角的关系求解.12.【答案】122°【考点】圆周角定理,三角形的内切圆与内心【解析】【解答】解:在⊙O中,∵∠CBD=32°,∵∠CAD=32°,∵点E是△ABC的内心,∴∠BAC=64°,∴∠EBC+∠ECB=(180°﹣64°)÷2=58°,∴∠BEC=180°﹣58°=122°.故答案为:122°.【分析】根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.13.【答案】12【考点】二次根式的乘除法【解析】【解答】解:=3 × ÷=3=12.故答案为:12.【分析】直接利用二次根式乘除运算法则化简求出答案.14.【答案】30°;90°﹣α;45°<α<60°【考点】圆周角定理,生活中的旋转现象【解析】【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠APQ=α,∴∠BAC=∠ACD,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD>∠PAD>∠MAD,代入可得出α的范围.15.【答案】2【考点】切线的性质【解析】【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=,PB=y,半径为4,∴,∴y= 2,∴﹣y=﹣2=﹣2+=﹣(﹣4)2+2,当=4时,﹣y有最大值是2,故答案为:2.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用,得出y= 2,所以﹣y=﹣2=﹣2+=﹣(﹣4)2+2,当=4时,﹣y有最大值是2.16.【答案】y=-【考点】反比例函数系数的几何意义【解析】【解答】解:过A作AM⊥BO于点M,∵△ABO为等边三角形,∴AB=BO=AO=2,∵AM⊥BO,∴OM=BO=1,∴AM=则点A的坐标为(﹣1,)则这个反比例函数的解析式为y=-.故答案为:y=-.【分析】过A作AM⊥BO于点M,根据等边三角形的性质和B点坐标求出A点坐标,然后用待定系数法求出解析式.17.【答案】点P在⊙O上【考点】点与圆的位置关系【解析】【解答】解:PO=r=3,点P在⊙O上,故答案为:点P在⊙O上.【分析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.18.【答案】36πcm2【考点】扇形面积的计算,旋转的性质【解析】【解答】解:∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC= AB= ×12=6cm,∵△ABC以点B为中心顺时针旋转得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=120°,∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD= ﹣=48π﹣12π=36πcm2.故答案为:36πcm2.【分析】根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC= AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.三、解答题19.【答案】解:分解因式得:(+3)(﹣4)=0,可得+3=0或﹣4=0,解得:1=﹣3,2=4.【考点】解一元二次方程-因式分解法【解析】【分析】方程左边利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程求解.20.【答案】解:(1)如图;(2)这批乒乓球“优等品”概率的估计值是0.946;(3)①∵袋中一共有球5+13+22=40个,其中有5个黄球,∴从袋中摸出一个球是黄球的概率为:②设从袋中取出了个黑球,由题意得≥,解得≥8,故至少取出了9个黑球.【考点】利用频率估计概率【解析】【分析】(1)根据统计表中的数据,先描出各点,然后折线连结即可;(2)根据频率估计概率,频率都在0.946左右波动,所以可以估计这批乒乓球“优等品”概率的估计值是0.946;(3)①用黄球的个数除以球的总个数即可;②设从袋中取出了个黑球,根据搅拌均匀后使从袋中摸出一个是黄球的概率不小于,列出不等式,解不等式即可.21.【答案】解:如图所示:∵∠C=90°,BC=3,AC=4,以点C为圆心、BC长为半径画圆,∴AC>BC,则点A在⊙C外.【考点】点与圆的位置关系【解析】【分析】直接利用点与圆的位置关系进而得出答案.22.【答案】解:等腰三角形有:△OAB、△OCD.证明:∵OA=OB(同圆半径相等),∴△OAB是等腰三角形,∴∠A=∠B,又∵AC=BD,OA=OB,∴△OAC≌△OBD,∴OC=OD,∴△OCD是等腰三角形.【考点】圆的认识【解析】【分析】图中等腰三角形有两个,圆中半径处处相等,所以△OAB是等腰三角形,根据所给的已知条件,易证△OAC≌△OBD,根据全等三角形的性质,OC=OD,所以△OCD也是等腰三角形.23.【答案】解:连CO∵DC⊥AD,CE⊥OBCD=EC∠1=∠2【考点】圆心角、弧、弦的关系【解析】【解答】连CO∵DC⊥AD,CE⊥OBCD=EC∠1=∠2【分析】此题考查了圆心角弦弧的关系,作好辅助线,利用好相关条件.24.【答案】解:(1)根据题意得:,解得:,故函数的解析式是:y=2﹣,点中H(﹣1,1)满足函数解析式,则另一个格点的坐标是(﹣1,1).故答案是:-,0,(﹣1,1);(2)根据题意得:,解得:,则函数的解析式是:y=2++1,y=2++1=(+)2+,则顶点坐标为(﹣,),点D(1,2)在抛物线l上;(3)因为题目中的a=0.5,在这个条件下,抛物线的开口方向和开口大小是确定的.应该是4条,分别过HOB三点,AOC三点,HGD三点,还有FGC三点,综上所述,满足这样的抛物线有4条.【考点】二次函数的应用【解析】【分析】(1)把两个点代入解析式即可得到关于b、c的方程组,从而求得b和c的值,然后把格点坐标代入解析式即可判断;(2)与(1)的解法相同;(3)二次函数的二次项系数不变,则抛物线的形状和开口方向不变,则移动抛物线的顶点到图中的一个点,同时,经过另外两个的抛物线就是符合要求的图形.四、综合题25.【答案】(1)解:如图,△A1B1C1为所作,(2)解:四边形AB1A1B的面积= ×6×4=12【考点】作图-旋转变换【解析】【分析】(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B 为菱形,然后利用菱形的面积公式计算即可.本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。

相关文档
最新文档