面心立方的晶面间距
材料科学基础_艾云龙_习题

※<第一章>一、复习思考题1.空间点阵与晶体点阵有何区别?试举例说明。
2.为什么说密排六方点阵不是一种空间点阵?3.作图表示出立方晶系的(123)、(0)、(421)晶面和[02]、[11]、[346]晶向。
4.试计算体心立方晶格的{100}、{110}、{111}晶面的原子面密度和<100>、<110>、<111>晶向的原子线密度,并指出其中最密面和最密方向。
5.作图表示出六方晶系的{101}和{110}晶面族所包括的晶面。
6.立方晶系的各{111}晶面构成一个八面体,试作图画出该八面体,并注出这些具体晶面的指数。
7.已知面心立方晶格的晶格常数为a,试求出(100)、(110)和(111)晶面的面间距,并指出面间距最大的晶面。
8.体心立方晶格的晶格常数为a,试求出(100)、(110)和(111)晶面的面间距,并指出面间距最大的面。
9.一克铁在室温和1000℃时各有多少个晶胞?10.说明间隙固溶体和间隙化合物的异同点。
11.常见的金属化合物有哪几类?它们各有何特点?Mg2Si、MnS、Fe3C、VC、Cu31Sn8等是哪种类型的化合物?12.碳可以溶入铁中而形成间隙固溶体,试分析是α-Fe还是γ-Fe能溶入较多的碳,为什么?13.作图说明一个面心立方结构相当于体心正方结构。
14.作图说明一个面心立方结构相当于棱方结构。
15.银和铝都具有面心立方点阵,且原子尺寸很接近(dAg=2.882?,dAl=2.856?),但他们在固态下却不能无限互溶,试解释其原因。
16.在一个简单立方的二维晶体中,画出一个正刃型位错和一个负刃型位错,并(1)用柏氏回路求出正、负刃型位错的柏氏矢量;(2)若将正、负刃型位错反向时,其柏氏矢量是否也随之反向;(3)具体写出该柏氏矢量的大小和方向;(4)求出此两位错的柏氏矢量和。
17.用作图法证明柏氏矢量与回路起点的选择及回路的具体途径无关。
晶面间距计算公式

晶面间距计算公式正交晶系1/d2=h2/a2+k2/b2+l2/c2单斜晶系1/d2={h2/a2+k2sin2β/b2+l2/c2-2hlcosβ/(ac)}/ sin2β立方晶系d=a/(h2+k2+l2)六角晶系四角晶系单斜晶系三斜晶系If Φ is the angle between plane (h 1 k 1 l 1) and (h 2 k 2 l 2), then for Orthorhombic2/12222222222/1221221221221221221)()()(cos ⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++++=Φc l b k a h c l b k a h c l l b k k a h hTetragonal []()2/1222222222/12212212122122121))/)(cos ⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++++=Φc l a k h c l a k h c l l a k k h hCubic()()[]2/1222222212121212121cos l k h l k h l l k k h h++++++=ΦHexagonal()()2/12222222222212211212121221221212143434321cos ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛+++++++=Φl c a k h k h l c a k h k h l l c a K h k h k k h hVOLUME:Orthorhombic: =abcTetragonal: =c a 2Cubic: =3aHexagonal: =c a 223 hcp transition between (UVW) and (uvtw)U=u-t, V=v-t, W=wu=1/3(2U-V), v=1/3(2V -U), t= - (u+v), w=W.文 - 汉语汉字 编辑词条文,wen ,从玄从爻。
《金属学原理》典型题例

《金属学原理》典型题例晶体结构章节1. 纯铁在912 ℃ 由bcc结构转变为fcc结构,体积减少1.06%,根据fcc形态的原子半径计算bcc形态的原子半径。
它们的相对变化为多少?如果假定转变前后原子半径不便,计算转变后的体积变化。
这些结果说明了什么?2. 铜的相对原子质量为63.55,密度为8.96g/cm3,计算铜的点阵常数和原子半径。
测得Au的摩尔分数为40%的Cu-Au固溶体,点阵常数a=0.3795nm,密度为14.213g/cm3,计算说明他是什么类型的固溶体。
3. Fe-Mn-C合金中,Mn和C的质量分数为12.3%及1.34%,它是面心立方固溶体,测得点阵常数a=0.3642nm,合金密度为7.83g/cm3,计算说明它是什么类型的固溶体。
4 标出具有下列密勒指数的晶面和晶向:①立方晶系(421),(123),(130),[211],[311];②六方晶系(2111),(1101),(3212),[2111],[1213]。
5 已知纯钛有两种同素异构体:低温稳定的密排六方结构 ??Ti和高温稳定的体心立方结构??Ti,其同素异构转变温度为882.5℃,计算纯钛在室温(20℃)和900℃时晶体中(112)和(001)的晶面间距(已知aα20℃=0.2951nm, cα20℃=0.4679 nm,aβ900℃=0.3307nm)。
6 试计算面心立方晶体的(100),(110),(111)等晶面的面间距和面致密度,并指出面间距最大的面。
7 Mn的同素异构体有一为立方结构,其晶格常数为α为0.632nm,ρ为7.26g/cm3,r为0.112nm,问Mn晶胞中有几个原子,其致密度为多少?8 ①按晶体的钢球模型,若球的直径不变,当Fe从fcc转变为bcc时,计算其体积膨胀多少?②经X射线衍射测定,在912℃,α-Fe的a=0.2892nm,γ-Fe的―――――――――――- 1 -a=0.3633nm,计算从γ-Fe转变为α-Fe时,其体积膨胀为多少?与①相比,说明其产生差异的原因。
某面心立方晶体110的面间距

某面心立方晶体110的面间距面心立方晶体(FCC)是一种具有简单晶格结构的晶体形态。
在面心立方晶体结构中,每个晶胞内的原子分布在6个面心上,这些面心与相邻晶体层的面心相接触,形成一个周期性的结构。
面间距是指相邻晶体层之间的距离,可以通过晶体学公式计算得出。
在FCC晶体中,面心立方晶体的晶胞参数可以表示为a = 4R/√2,其中a为晶胞边长,R 为原子半径。
对于110面,根据晶体学的规律,面法向为[001]方向,面间距可表示为:d = a/√(h^2 + k^2 + l^2)其中,h、k、l是晶面的指数。
对于110面,h=1,k=1,l=0,代入公式计算得:d = 4R/√(1^2 + 1^2 + 0^2) = 4R/√2因此,110面心立方晶体的面间距为4R/√2。
这个结果的意义在于,面间距是晶体学中一个重要的参数,它与晶体的结构和性质有关。
面心立方晶体具有紧密堆积的结构,使得晶体具有良好的强度和塑性。
面间距的大小直接影响了晶体的热膨胀性能、电子结构和机械性能等。
在实际应用中,面间距的知识可以用于材料的设计和工程应用中。
例如,在合金设计中,通过改变晶体结构的面间距,可以调控合金的硬度、强度和导电性等性能。
在材料加工中,了解晶体的面间距有助于优化工艺参数,提高材料的成形性能。
此外,面间距的测量也是研究晶体结构和材料性能的重要手段之一,通过X 射线衍射和电子显微镜等技术,可以精确地测量晶体的面间距,进而研究材料的微观结构和性质。
总之,面心立方晶体110面的面间距为4R/√2。
面间距是晶体学中一个重要的参数,它与晶体的结构和性质密切相关,对材料的设计、加工和研究都具有重要意义。
X射线复习和思考题

X射线复习和思考题一、名词解释1、物相分析:确定材料由哪些相组成(即物相定性分析)和确定各组成相的含量(常以体积分数或质量分数表示,即物相定量分析)。
2、零层倒易面:属于同一[uvw]晶带的各(HKL)晶面对应的倒易矢量r*HKL处于一个平面内.这是一个通过倒易点阵原点的倒易面,称为零层倒易面。
3、X射线:一种波长介于紫外线和射线之间的具有较短波长的电磁波。
4、K射线与K 射线:管电压增加到某一临界值(激发电压),使撞击靶材的电子能量(eV)足够大,可使靶原子K层产生空位,其外层电子向K层跃迁产生的X射线统称为K系特征辐射,其中由L层或M层或更外层电子跃迁产生的K系特征辐射分别顺序称为K,K,…射线。
5、短波限:电子与靶材相撞,其能量(eV)全部转变为辐射光子能量,此时光子能量最大、波长最短,因此连续谱有一个下限波长0,即称为短波限。
6、参比强度:参比强度是被测物相与刚玉(-Al2O3)按1 : 1重量比混合时,被测相最强线峰高与刚玉(六方晶系,113衍射线)最强线峰高的比值。
7、质量吸收系数:设m= / (为物质密度),称m为质量吸收系数,m为X射线通过单位质量物质时能量的衰减,亦称单位质量物质对X射线的吸收。
8、晶带:在晶体中如果若干个晶面同时平行于某一轴向时,则这些晶面属于同一晶带,而这个轴向就称为晶带轴。
9、光电效应:当入射X射线光子能量达到某一阈值,可击出物质原子内层电子,产生光电效应。
10、二次特征辐射(X射线荧光辐射):当高能X射线光子击出被照射物质原子的内层电子后,较外层电子填其空位而产生了次生特征X射线(称二次特征辐射)。
11、相干散射:相干散射是指入射电子与原子内受核束缚较紧的电子(如内层电子)发生弹性碰撞作用,其辐射出的电磁波的波长与频率与入射电磁波完全相同,新的散射波之间可以发生相互干涉。
二、简答,论述,计算题1、辨析点阵与阵胞、点阵与晶体结构、阵胞与晶胞的关系。
答:(1)点阵与阵胞:点阵是为了描述晶体中原子的排列规则,将每一个原子抽象视为一个几何点(称为阵点),从而得到一个按一定规则排列分布的无数多个阵点组成的空间阵列,称为空间点阵或晶体点阵,简称点阵。
晶体学部分习题与答案

一、 名词解释(1)阵点;(2)(空间)点阵;(3)晶体结构;(4)晶胞;(5)晶带轴;二、填空(1)晶体中共有 种空间点阵,属于立方晶系的空间点阵有 三种。
(2)对于立方晶系,晶面间距的计算公式为 。
(3){110}晶面族包括 等晶面。
(4){h 1k 1l 1}和{h 2k 2l 2}两晶面的晶带轴指数[u v w]为 。
(5)(110)和(11-0)晶面的交线是 ;包括有[112]和[123]晶向的晶面是 。
三、计算及简答(1)原子间的结合键共有几种?各自有何特点?(2)在立方晶系的晶胞中,画出(111)、(112)、(011)、(123)晶面和[111]、[101]、[111-]晶向。
(3)列出六方晶系{101-2} 晶面族中所有晶面的密勒指数,并绘出(101-0)、(112-0)晶面和〔112-0〕晶向。
(4)试证明立方晶系的〔111〕晶向垂直于(111)晶面。
(5)绘图指出面心立方和体心立方晶体的(100)、(110)、及(111)晶面,并求其面间距;试分别指出两种晶体中,哪一种晶面的面间距最大?(6)在立方晶系中,(1-10)、(3-11)、(1-3-2)晶面是否属于同一晶带?如果是,请指出其晶带轴;并指出属于该晶带的任一其他晶面。
(7)写出立方晶系的{111}、{123}晶面族和<112>晶向族中的全部等价晶面和晶向的具体指数。
(8)计算立方晶系中(111)和〔111-〕两晶面间的夹角。
(9)若采用四轴坐标系标定六方晶体的晶向指数,应该有什么约束条件?为什么?答 案一、名词解释(略)二、填空(1)14 简单、体心、面心(2)hkl d =(3) (110)、(101)、(011)、(1-10)、(1-01) 、(01-1) (4)1122k l u k l =;1122l h v l h =;1122h k w h k =(5)〔001〕 (111-)三、简答及计算(1)略(2)(3){101-2}晶面的密勒指数为(101-2)、(1-012)、(01-12)、(011-2)、(1-102)、(11-02)。
立方晶系晶面间距公式

立方晶系晶面间距公式立方晶系是一种晶体结构,它的晶格常数a、b、c相等,轴角α、β、γ都等于90°。
立方晶系有三种类型:简单立方(SC)、面心立方(FCC)和体心立方(BCC)。
不同类型的立方晶系的晶面间距公式也不同。
简单立方晶面间距公式简单立方是最简单的晶体结构,它的每个顶点上都有一个原子。
简单立方的晶面间距公式是:d=a√h2+k2+l2其中,a是晶格常数,h、k、l是晶面指数。
这个公式可以用几何方法推导出来,如下图所示:简单立方晶面间距推导在简单立方中,相邻两个原子的距离就是a,所以我们可以用a作为单位长度。
假设我们要求的晶面为(hkl),它与三个坐标轴的交点分别为A、B、C。
那么,A点的坐标就是(a/h,0,0),B点的坐标就是(0,a/k,0),C点的坐标就是(0,0,a/l)。
由于A、B、C三点共线,所以它们满足以下关系:x a/h =ya/k=za/l这个方程就是(hkl)晶面的方程。
我们可以用它来求出任意一点P(x,y,z)到这个晶面的距离d。
为了方便计算,我们取P点为原点(0,0,0),那么d就等于原点到晶面的垂直距离。
根据点到平面距离的公式,我们有:d=|Ax+By+Cz+D|√A2+B2+C2其中,A、B、C、D是平面方程Ax+By+Cz+D=0的系数。
将(hkl)晶面的方程代入,得到:d=|a/hx+a/ky+a/lz|√(a/h)2+(a/k)2+(a/l)2将P点的坐标(0,0,0)代入,得到:d=a√(h/a)2+(k/a)2+(l/a)2化简后,得到:d=a√h2+k2+l2这就是简单立方晶面间距公式。
面心立方晶面间距公式面心立方是一种常见的金属结构,它在每个顶点和每个面心都有一个原子。
面心立方的晶面间距公式是:d=a√4(h2+k2+l2)其中,a是晶格常数,h、k、l是晶面指数。
这个公式也可以用几何方法推导出来,如下图所示:面心立方晶面间距推导在面心立方中,相邻两个顶点原子的距离是√2a,相邻两个面心原子的距离是a,所以我们可以用a作为单位长度。
(参考资料)固体物理习题带答案

D E ( ) ,其中 , 表示沿 x , y , z 轴的分量,我们选取 x , y , z
沿立方晶体的三个立方轴的方向。
显然,一般地讲,如果把电场 E 和晶体同时转动, D 也将做相同转动,我们将以 D' 表示转
动后的矢量。
设 E 沿 y 轴,这时,上面一般表达式将归结为:Dx xyE, Dy yyE, Dz zy E 。现在
偏转一个角度 tg 。(2)当晶体发生体膨胀时,反射线将偏转角度
tg , 为体胀系数
3
解:(1)、布拉格衍射公式为 2d sin ,既然波长改变,则两边同时求导,有
2d cos ,将两式组合,则可得 tg 。
(2)、当晶体发生膨胀时,则为 d 改变,将布拉格衍射公式 2d sin 左右两边同时对 d
考虑把晶体和电场同时绕 y 轴转动 / 2 ,使 z 轴转到 x 轴, x 轴转到 z 轴, D 将做相同
转动,因此
D'x Dz zy E
D'y Dy yyE
D'z Dx xy E 但是,转动是以 E 方向为轴的,所以,实际上电场并未改变,同时,上述转动时立方晶体
的一个对称操作,所以转动前后晶体应没有任何差别,所以电位移矢量实际上应当不变,即
第一章:晶体结构 1. 证明:立方晶体中,晶向[hkl]垂直于晶面(hkl)。
证 明 : 晶 向 [hkl] 为 h1 k2 l3 , 其 倒 格 子 为
b1
2
a1
a2
a3
(a2 a3 )
b2
2
a1
a3 a1 (a2 a3)
b3
2
a1
a1
a2
(a2 a3)
。可以知道其倒格子矢量