高中物理计算题训练4

合集下载

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。

现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。

再经过一段时间,物体的速度变为零。

如果这一过程物体的总位移为15m。

求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。

(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。

高中物理 20个力学经典计算题汇总及解析

高中物理 20个力学经典计算题汇总及解析

高中物理 20个力学经典计算题汇总及解析1. 概述在力学领域中,经典的计算题是学习和理解物理知识的重要一环。

通过解题,我们能更深入地了解力学概念,提高解决问题的能力。

在本文中,我将为您带来高中物理领域中的20个经典力学计算题,并对每个问题进行详细解析,以供您参考和学习。

2. 一维运动1) 题目:一辆汽车以30m/s的速度行驶,经过10秒后匀减速停下,求汽车减速的大小和汽车在这段时间内行驶的距离。

解析:根据公式v=at和s=vt-0.5at^2,首先可求得汽车减速度a=3m/s^2,然后再求出汽车行驶的距离s=30*10-0.5*3*10^2=150m。

3. 二维运动2) 题目:一个质点在竖直平面内做抛体运动,初速度为20m/s,抛体初位置为离地30m的位置,求t=2s时质点的速度和所在位置。

解析:首先利用v=vo+gt求得t=2s时的速度v=20-9.8*2=-19.6m/s,然后再利用s=s0+vo*t-0.5gt^2求得t=2s时的位置s=30+20*2-0.5*9.8*2^2=30+40-19.6=50.4m。

1. 牛顿运动定律3) 题目:质量为2kg的物体受到一个5N的力,求物体的加速度。

解析:根据牛顿第二定律F=ma,可求得物体的加速度a=5/2=2.5m/s^2。

2. 牛顿普适定律4) 题目:一个质量为5kg的物体受到一个力,在10s内速度从2m/s 增加到12m/s,求物体受到的力的大小。

解析:利用牛顿第二定律F=ma,可求得物体受到的力F=5*(12-2)/10=5N。

3. 弹力5) 题目:一个质点的质量为4kg,受到一个弹簧的拉力,拉力大小为8N,求弹簧的弹性系数。

解析:根据弹簧的胡克定律F=kx,可求得弹簧的弹性系数k=8/0.2=40N/m。

4. 摩擦力6) 题目:一个质量为6kg的物体受到一个10N的水平力,地面对其的摩擦力为4N,求物体的加速度。

解析:首先计算摩擦力是否达到最大值f=μN=6*10=60N,由于摩擦力小于最大值,所以物体的加速度a=10-4/6=1m/s^2。

高中物理动能定理经典计算题和答案

高中物理动能定理经典计算题和答案

动能和动能定理经典试题【1】例 1 一架喷气式飞机,质量m=5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力。

例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为()A .Δv=0 B. Δv=12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A. gh v 20+B. gh v 20-C. gh v 220+D. gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。

小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mglcosθB. mgl(1-cosθ)C. FlcosθD. Flsinθ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。

高中物理牛顿第三定律计算题专题训练含答案

高中物理牛顿第三定律计算题专题训练含答案

高中物理牛顿第三定律计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共11题)1、如图K12-5所示,两块小磁铁质量均为0.5 kg,A磁铁用轻质弹簧吊在天花板上,B磁铁在A正下方的地板上,弹簧的原长L0=10 cm,劲度系数k=100 N/m.当A、B均处于静止状态,弹簧的长度为L=11 cm.不计地磁场对磁铁的作用和磁铁与弹簧间的相互作用,则地面对B的支持力F N为多大?图K12-52、如图K12-6所示,质量均为m的甲、乙两同学分别静止于水平地面的台秤P、Q上,他们用手分别竖直牵拉一只弹簧测力计的两端,稳定后弹簧测力计的示数为F,若弹簧测力计的质量不计,求:(1)台秤P的读数;(2)两台秤的读数之和为多少?图K12-63、如图K12-7所示,在台秤上放半杯水,台秤示数为G′=50 N,另用挂在支架上的弹簧测力计悬挂一边长a=10 cm的金属块,金属块的密度ρ=3×103 kg/m3,当把弹簧测力计下的金属块平稳地浸入水中深b=4 cm处时,弹簧测力计和台秤示数分别为多少?(水的密度是ρ=103 kg/m3,g取10 m/s2)水图K12-74、如图所示,竖直悬挂的弹簧测力计吊一物体,处于静止状态,弹簧测力计示数表示物体对弹簧的拉力,其大小为F,试论证物体受到重力大小等于F,每一步推导都要写出所根据的物理规律。

5、皮划艇选手与艇的总质量为100 kg,他冲刺时的加速度可达10 m/s2,求此时他的桨对水的推力是多少?(设水的阻力可忽略)6、如图所示,质量M=60 kg的人通过光滑的定滑轮用绳拉着质量为m=20 kg的物体.当物体以加速度a=5 m/s2上升时,人对地面的压力是多少?(g取10 m/s2)7、如下图所示,质量M=60 kg的人通过光滑的定滑轮拉着m=20 kg的物体,当物体以加速度a=5 m/s2上升时,人对地面的压力多大?(g=10 m/s2)8、图为马戏团中猴子爬杆的装置.已知底座连同直杆总质量为20 kg,猴子质量为5 kg,现让猴子沿杆以1 m/s2的加速度从杆底部向上爬,设猴子与杆之间的作用力为恒力,则底座对水平面的压力为多少?9、一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图所示.已知环沿杆匀加速下滑时,环与杆间的摩擦力大小为Ff,则此时箱子对地面的压力大小为多少?10、质量为,m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,水平地面后,反跳的最大高度为h2=0.2m,已知小球与地面接触的时间为t=0.1s,取g=10m/s2。

高中物理计算题专项训练附答案解析

高中物理计算题专项训练附答案解析

1.道路千万条,安全第一条.行车不规范,亲人两行泪.近日,道路上某酒驾人员驾乘汽车A以v A=4 m/s的速度向右做匀速直线运动,同时后方相距x0=24 m处正以v B=2 m/s 的速度同向运动的警车B开始做a=2 m/s2的匀加速直线运动,从此时开始计时,求:(1)B追上A之前,A、B之间的最远距离是多少?(2)经多长时间,警车B才能追上A车?2.舰载机着舰被称为“在刀尖上跳舞”,指的是舰载机着舰有很大的风险,一旦着舰不成功,飞行员必须迅速实施“逃逸复飞”,“逃逸复飞”是指制动挂钩挂拦阻索失败后飞机的复飞.若航母跑道长为280 m,某飞行员在一次训练“逃逸复飞”科目时,战斗机在跑道一端着舰时的速度为55 m/s,着舰后以10 m/s2的加速度做匀减速直线运动,3 s后制动挂钩挂拦阻索失败,于是战斗机立即以6.25 m/s2的加速度复飞,起飞需要的最小速度为50 m/s.求:(1)战斗机着舰3 s时的速度大小;(2)本次“逃逸复飞”能否成功?若不能,请说明理由;若能,达到起飞速度时战斗机离跑道终端的距离.3.如图所示,在水平地面上有一高h=4.2 m的竖直墙,现将一小球以v0=6 m/s的速度,从离地面高为H=6 m的A点水平抛出,小球撞到墙上B点时的速度与竖直墙成37°角,不计空气阻力和墙的厚度,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小球从A到B所用的时间t;(2)抛出点A到墙的水平距离s;(3)若仍将小球从原位置沿原方向抛出,为使小球能越过竖直墙,小球抛出时的初速度大小应满足什么条件?4.当地时间2021年7月30日,东京奥运会女子蹦床决赛,整套动作完美发挥的朱雪莹,以56.635分夺得金牌,帮助中国蹦床队时隔13年重获该项目冠军.队友刘灵玲收获一枚银牌.已知朱雪莹的体重为45 kg,在比赛中,朱雪莹从离水平网面3.2 m高处自由下落,着网后沿竖直方向蹦回离水平网面 5.0 m高处.已知朱雪莹与网接触的时间为0.15 s,g 取10 m/s2,求:(1)朱雪莹下落接触网面前瞬间的速率v1和上升离开网面瞬间的速率v2;(2)网面对朱雪莹的平均作用力F.5.如图所示,半径R =0.40 m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m =0.10 kg 的小球,以初速度v 0=7.0 m/s 在水平地面上向左做加速度a =3.0 m/s 2的匀减速直线运动,运动4.0 m 后,冲上竖直半圆环.(取重力加速度g =10 m/s 2).(1)求小球在A 点的速度大小; (2)通过计算得出小球能否通过B 点;(3)若能通过B 点,最后小球落在C 点,求A 、C 间的距离.6.如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道 AB 、圆心为O 1的半圆形光滑轨道 BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,求滑块第1次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值.7.如图所示,质量为M=4 kg的木板静止在光滑的水平面上,在木板的右端放置一个质量为m=1 kg,大小可以忽略的铁块,铁块与木板之间的动摩擦因数μ=0.4,在铁块上加一个水平向左的恒力F=8 N,铁块在长L=6 m的木板上滑动.取g=10 m/s2.求:(1)经过多长时间铁块运动到木板的左端;(2)在铁块到达木板左端的过程中,恒力F对铁块所做的功;(3)在铁块到达木板左端时,铁块和木板的总动能.8.如图所示,光滑固定斜面上有一个质量为10 kg的小球被轻绳拴住悬挂在天花板上,已知绳子与竖直方向的夹角为45°,斜面倾角为30°,整个装置处于静止状态,取g=10 m/s2,结果中可保留根号.求:(1)绳中拉力的大小和斜面对小球支持力的大小;(2)若另外用一个外力拉小球,能够把小球拉离斜面,其最小拉力的大小.9.如图所示,倾角为θ=37°的足够长光滑斜面AB与长L BC=2 m的粗糙水平面BC用一小段光滑圆弧(长度不计)平滑连接,半径R=1.5 m的光滑圆弧轨道CD与水平面相切于C 点,OD与水平方向的夹角也为θ=37°.质量为m的小滑块从斜面上距B点L0=2 m的位置由静止开始下滑,恰好运动到C点.已知重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D点,求小滑块的释放位置与B点的最小距离.10.如图所示,在半径为a、圆心角为90°的扇形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,圆弧部分为绝缘弹性挡板.一带电量为+q、质量为m的粒子以某一速度垂直OM边界射入匀强磁场,进入磁场后仅与挡板碰撞(电荷不发生转移)一次后又垂直ON边界射出,已知粒子与挡板碰撞后速度大小不变、方向反向.不计粒子重力,求:(1)粒子入射点到O点距离;(2)粒子的入射速度.11.如图,一对长平行栅极板水平放置,极板外存在方向垂直纸面向外、磁感应强度大小为B 的匀强磁场,极板与可调电源相连.正极板上O 点处的粒子源垂直极板向上发射速度为v 0、带正电的粒子束,单个粒子的质量为m 、电荷量为q .一足够长的挡板OM 与正极板成37°倾斜放置,用于吸收打在其上的粒子.C 、P 是负极板上的两点,C 点位于O 点的正上方,P 点处放置一粒子靶(忽略靶的大小),用于接收从上方打入的粒子,CP 长度为L 0.忽略栅极的电场边缘效应、粒子间的相互作用及粒子所受重力,sin 37°=35.(1)若粒子经电场一次加速后正好打在P 点处的粒子靶上,求可调电源电压U 0的大小; (2)调整电压的大小,使粒子不能打在挡板OM 上,求电压的最小值U min ;(3)若粒子靶在负极板上的位置P 点左右可调,则负极板上存在H 、S 两点(CH ≤CP <CS ,H 、S 两点未在图中标出),对于粒子靶在HS 区域内的每一点,当电压从零开始连续缓慢增加时,粒子靶均只能接收到n (n ≥2)种能量的粒子,求CH 和CS 的长度(假定在每个粒子的整个运动过程中电压恒定).12.一名潜水员在夜间进行深水作业,其头盔上的照明灯可看做是点光源向各个方向发射光线,在平静的水面上可看到该光源发出的光只从一个半径r =1.8 m 的圆形区域内射出水面,若水的折射率n =53.求:(1)此时潜水员的头部在水面下方的深度h ;(2)若在8 s 的时间内,我们发现透光的圆形水域半径从1.8 m 扩大到6 m ,试根据光学知识求出潜水员在水下竖直方向匀速运动的速度v y .13.如图所示,一导热性能良好的球形容器内部不规则,某兴趣小组为了测量它的容积,在容器上插入一根两端开口的长玻璃管,接口密封.玻璃管内部横截面积为S=0.2 cm2,一长为h =15 cm的静止水银柱封闭了一定质量的气体,其下方玻璃管内空气柱长度为l1=10 cm,此时外界温度为t1=27 ℃.现把容器浸在100 ℃的沸水中,水银柱缓慢上升29.2 cm后稳定.实验过程中认为大气压强没有变化,大气压强p=1.0×105 Pa(相当于75 cm高汞柱压强).(结果保留两位有效数字)(1)容器的容积为多少?(2)若实验过程中管内气体内能增加了 1.3 J,请判断气体是从外界吸收热量还是向外界放出热量,并计算热量的多少.14.如图所示,水平地面与一半径为L的竖直光滑圆弧轨道相接于B点,轨道上的C 点位置处于圆心O的正下方.质量为m的小球在距离地面高度也为L的水平平台边缘上的A 点以2gL的初速度水平抛出,小球在空中运动至B点时,恰好沿圆弧轨道在该点的切线方向滑入轨道.小球运动过程中空气阻力不计,重力加速度为g.求:(1)B点与抛出点A正下方的水平距离x;(2)圆弧BC段所对的圆心角θ;(3)小球经B点时,对圆轨道的压力大小.15.如图所示,足够长,间距为L的平行光滑金属导轨ab、de构成倾角为θ的斜面,上端接有阻值为R的定值电阻,足够长的平行光滑金属导轨bc、ef处于同一水平面内,倾斜导轨与水平导轨在b、e处平滑连接,且b、e处装有感应开关;倾斜导轨处于垂直导轨平面向上的匀强磁场中,水平导轨处于竖直向上的匀强磁场中,磁感应强度大小均为B;距离b足够远处接有未闭合的开关S,在开关S右侧垂直导轨放置导体棒N,在倾斜导轨上距b、e足够远的位置放置导体棒M,现将导体棒M由静止释放,当导体棒M通过b、e处后瞬间感应开关自动断开.已知导体棒M的质量为m,电阻为R,导体棒N的质量为2m,电阻为2R,两导体棒运动过程中始终与导轨接触良好且与导轨垂直,重力加速度为g,不计导轨电阻及空气阻力.(1)保持开关S断开,求导体棒M通过感应开关前瞬间的速度大小;(2)若固定导体棒N,导体棒M通过感应开关后瞬间闭合开关S,求导体棒M在水平导轨上运动的位移;(3)若不固定导体棒N,导体棒M通过感应开关后瞬间闭合开关S,求导体棒N上产生的焦耳热.16.如图所示,足够长的平行金属导轨在水平面上,间距为L,一端连接有阻值为R的电阻;导轨上放质量为m的金属杆,金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力大小时,相对应的匀速运动速度v也会变化,v和F的关系如图所示.若m=0.5 kg,L=0.5 m,R=0.5 Ω;(取重力加速度g=10 m/s2)求:(1)磁感应强度B为多大?(2)金属杆与导轨间的摩擦力.17.如图所示,位于竖直平面内的坐标系xOy,在其第三象限空间有垂直于纸面向外的匀强磁场,磁感应强度大小为B=0.5 T,还有沿x轴负方向的匀强电场,场强大小为E=2 N/C.在其第一象限空间有沿y轴负方向的、场强大小也为E的匀强电场,并在y>h=0.4 m的区域有磁感应强度也为B的垂直于纸面向里的匀强磁场.一个带电荷量为q的油滴从图中第三象限的P点得到一初速度,恰好能沿PO做匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限.已知重力加速度g=10 m/s2,问:(1)油滴在第三象限运动时受到的重力、电场力、洛伦兹力三力的大小之比;(2)油滴在第一象限运动的时间.18.如图所示,y轴左侧有沿x轴正方向的匀强电场,电场强度为E,屏CD与y轴垂直,OACD为一矩形,OA边长为L,OD边长为2L,矩形OACD内某区域存在磁感应强度为B的匀强磁场.质量为m、电荷量为q、重力不计的正粒子从x轴负半轴上的P点由静止释放,从O点进入磁场后最终垂直于屏打到C点,且从x轴PO段上任意位置由静止释放的同种正粒子最终都能垂直打到屏CD上,求:(1)PO之间的距离x;(2)上述由P点释放的粒子,从P到C经历的时间t;(3)磁场区域的最小面积S.19.如图,容积均为V0、缸壁可导热的A、B两汽缸放置在压强为p0、温度为T0的环境中;两汽缸的底部通过细管连通,A汽缸的顶部通过开口C与外界相通;汽缸内的两活塞将缸内气体分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,其中第Ⅱ、Ⅲ部分的体积分别为18V0和14V0.环境压强保持不变,不计活塞的质量和体积,忽略摩擦.(1)将环境温度缓慢升高,求B汽缸中的活塞刚到达汽缸底部时的温度;(2)将环境温度缓慢改变至2T0,然后用气泵从开口C向汽缸内缓慢注入气体,求A汽缸中的活塞到达汽缸底部后,B汽缸内第Ⅳ部分气体的压强.20.如图所示,一种光学传感器是通过接收器Q接收到光的强度变化而触发工作的.光从挡风玻璃内侧P点射向外侧M点再折射到空气中,测得入射角为α,折射角为β;光从P 点射向外侧N点,刚好发生全反射并被Q接收,求光从玻璃射向空气时临界角θ的正弦值表达式.答案及解析1.(1)25 m (2)6 s 解析:追及和相遇问题(1)两车速度相等时,相距最远,则由有v A =v B +at 1 解得t 1=1 s ,此段时间内A 车的位移x A =v A t 1 B 车的位移x B =v B t 1+12at 21A 、B 之间的最远距离Δx =x A +x 0-x B以上各式联立解得最远距离Δx =25 m.(2)设经过时间t B 车追上A 车,则通过的位移关系有x ′B =x ′A +x 0 即v B t +12at 2=v A t +x 0代入数据解得t =6 s .2.(1)25 m/s (2)能成功,起飞时离跑道终端的距离为10 m 解析:匀变速直线运动规律的应用 (1)战斗机着舰减速过程,根据速度公式得v 1=v 0+a 1t 1代入数据解得v 1=25 m/s(2)战斗机减速过程,根据位移公式得x 1=v 0t 1+12a 1t 21代入数据解得x 1=120 m.假设战斗机能“逃逸复飞”成功,根据速度-位移关系式得v 22 -v 21 =2a 2x2 代入数据得战斗机复飞过程的最小位移x 2=150 m , 飞机的总位移x =x 1+x 2=270 m<L =280 m , 因此本次“逃逸复飞”训练能成功. 离跑道终端的距离Δx =L -x =10 m .3.(1)0.8 s (2)4.8 s (3)v ′0≥8 m/s 解析:抛体运动(1)将B 点的速度分解到水平和竖直方向,有tan 37°=v 0v y竖直方向上是自由落体运动v y =gt 代入数据解得t =0.8 s(2)平抛运动在水平方向上是匀速直线运动,s =v 0t 代入数据解得s =4.8 m(3)恰好从墙上越过时,由平抛运动规律得H -h =12gt ′2s =v ′0t ′解得v ′0=8 m/s.均使小球能越过竖直墙,抛出时的初速度应满足v ′0≥8 m/s.4.(1)8 m/s ,10 m/s (2)5 850 N 解析:动量和动量定理(1)运动员下落接触网面前瞬间的速度大小为v 1=2gh 1=2×10×3.2 m/s =8 m/s运动员上升离开网面瞬间的速度大小为v 2=2gh 2=2×10×5.0 m/s =10 m/s(2)取竖直向上为正方向,运动员和网接触过程中,由动量定理知 (F -mg )t =mv 2-mv 1 可解得F =mv 2-m (-v 1)t+mg=45×10-45×(-8)0.15N +45×10 N =5 850 N5.(1)5 m/s (2)见解析 (3)1.2 m 解析:机械守恒定律 (1)匀减速运动过程中,有:v 2A -v 20 =-2as ,解得v A =5 m/s(2)假设物体能到达圆环的最高点B ,由机械能守恒: 12mv 2A =2mgR +12mv 2B 解得:v B =3 m/s恰好通过最高点B 满足:mg =m v 2B 1 R.解得:v B 1=2 m/s因为v B >v B 1,所以小球能通过最高点B . (3)小球从B 点做平抛运动,有: 2R =12gt 2s AC =v B ·t解得:s AC =1.2 m6.(1)7 N (2)v =12l x -0.96(m/s)(0.85 m ≤l x ≤3 m) (3)1315 m 或95 m 或4115 m解析:能量守恒定律(1)滑块从A 到C 的过程只有重力做功,机械能守恒,则mgl sin 37°+mgR (1-cos 37°)=12mv 2C C 点时F N =mg +m v 2CR=7 N(2)要使得滑块到达F 点,则必过圆弧轨道DEF 的最高点,即有mgl x sin 37 °-mg (3R cos 37 °+R )=12mv 20 ≥0即l x ≥0.85 m滑块运动到F 的过程中,由机械能守恒定律有mgl x sin 37 °-4mgR cos 37 °=12mv 2解得v =12l x -9.6(m/s)(0.85 m ≤l x ≤3 m)(3)设摩擦力做的功为滑块第一次到达FG 中点时的n 倍 由动能定理得mgl x sin 37°-mgl FG2sin 37°-n μmgl FG2cos 37°=0l x =7n +615m 将0.85 m ≤l x ≤3 m 代入上式可得2728≤n ≤397,由运动过程可知,n 只能取1、3、5 当n =1时l x =1315m当n =3时l x =95m当n =5时l x =4115m.7.(1)2 s (2)64 J (3)40 J解析:传送带模型和滑块—木板模型中的能量问题(1)铁块与木板间的滑动摩擦力F f =μmg =0.4×1×10 N =4 N 铁块的加速度a 1=F -F f m =4 m/s 2木板的加速度a 2=F f M=1 m/s 2设铁块滑到木板左端的时间为t ,则12a 1t 2-12a 2t 2=L解得t =2 s(2)铁块位移x 1=12a 1t 2=12×4×22m =8 mF 对铁块做的功W =Fx 1=8×8 J =64 J(3)由功能关系可知E k 总=W -μmgL =(64-24) J =40 J8.(1)51.8 N 73.2 N (2)70.7 N解析:平衡中的临界和极值问题(1)如图,沿水平方向和竖直方向建立直角坐标系,对小球受力分析,把不在坐标轴上的力沿轴分解,则水平方向上有F T sin 45°-F N sin 30°=0竖直方向上有F T cos 45°+F N cos 30°-mg=0由以上两式得F N=100(3-1) N≈73.2 NF T=50(6-2) N≈51.8 N(2)外力方向与绳子垂直时,拉力最小.拉力的最小值为F min=mg sin 45°代入数据,解得F min=50 2 N≈70.7 N9.(1)0.6 (2)6.75 m解析:动能和动能原理(1)滑块恰好运动到C点,由动能定理得mgL0sin 37°-μmgL BC=0-0解得:μ=0.6(2)滑块能够通过D点,在D点的最小速度,由mg sin θ=m v 2DR解得:v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12mv 2D -0解得:L =6.75 m10.(1)(2-1)a (2)qaB m解析:带电粒子在有界匀强磁场中的运动(1)根据题意可知,粒子与挡板碰撞为弹性碰撞,碰撞后速度大小不变,根据运动的对称性可知,粒子在碰撞挡板前的运动轨迹与碰撞后的轨迹完全对称,由此可作运动轨迹如图所示.设半径为r ,由图几何关系可得r =a 由入射点到O 的距离为d =2r -r 即d =(2-1)a(2)由洛伦兹力提供向心力可得qvB =mv 2r即v =qaB m11.(1)qB 2L 20 8m -mv 20 2q (2)7mv 218q(3)见解析解析:磁场对运动电荷的作用 (1)根据动能定理得qU 0=12mv 2-12mv 20 ,带电粒子进入磁场,由洛伦兹力提供向心力得qvB =m v 2r,又有r =L 02,联立解得U 0=qB 2L 20 8m -mv 22q.(2)使粒子不能打在挡板OM 上,则加速电压最小时,粒子的运动轨迹恰好与挡板OM 相切,如图甲所示,设此时粒子加速后的速度大小为v 1,在上方磁场中运动的轨迹半径为r 1,在下方磁场中运动的轨迹半径为r 2,由几何关系得 2r 1=r 2+r 2sin 37°, 解得r 1=43r 2,由题意知,粒子在下方磁场中运动的速度为v 0,由洛伦兹力提供向心力得qv 1B =m v 21r 1,qv 0B =mv 20 r 2,由动能定理得 qU min =12mv 21 -12mv 20 ,解得U min =7mv 218q.(3)画出粒子的运动轨迹,由几何关系可知P 点的位置满足k (2r P -2r 2)+2r P =x CP (k =1,2,3…).当k =1时,轨迹如图乙所示;当k =5时,轨迹如图丙所示.由题意可知,每个粒子的整个运动过程中电压恒定,粒子在下面的磁场中运动时,根据洛伦兹力提供向心力,有qv 0B =m v 20 r 2,解得r 2=mv 0qB ,为定值,由第(2)问可知,r P ≥43r 2,所以当k 取1,r P =43r 2时,x CP 取最小值,即CH =x CP min =103·mv 0qB,CS →无穷远.12.(1)2.4 m (2)0.7 m/s ,方向竖直向下 解析:光的反射、折射、全反射(1)由题意可知潜水员头盔上照明灯发出的光线在透光区域边缘恰好发生全反射,则根据几何关系可知sin C =r r 2+h2=1n解得h =2.4 m(2)当透光的圆形水域半径扩大到r ′=6 m 时,设潜水员的深度为h ′,由于全反射临界角不变,则根据几何关系可得r h =r ′h ′解得h ′=8 m潜水员在水下竖直方向匀速运动的速度为v y =h ′-ht=0.7 m/s ,方向竖直向下.13.(1)22 cm 3(2)吸热 2.0 J 解析:热力学定律(1)设容器的容积为V ,封闭气体等压膨胀T 1=300 K ,T 2=373 K由盖—吕萨克定律V +l 1S T 1=V +l 2ST 2l 2=l 1+29.2 cm =39.2 cm得V =(T 1l 2-T 2l 1)S T 2-T 1=22 cm 3(2)气体压强为p =1.2×105Pa因为气体膨胀,对外做功W =-p (l 2-l 1)S 得W =-0.70 J根据热力学第一定律ΔU =W +Q 可得Q =2.0 J ,气体从外界吸收热量14.(1)2L (2)45° (3)(4+22)mg 解析:圆周运动(1)设小球做平抛运动到达B 点的时间为t ,由平抛运动规律得x =v 0t L =12gt 2联立解得x =2L(2)小球到达B 点时竖直分速度为v y ,由运动学规律得v 2y =2gL 由运动分解得tan θ=v y v 0解得θ=45°(3)设小球到B 点时速度大小为v B ,则有v B =2v 0由牛顿第二定律得F -mg cos θ=mv 2BL解得F =(4+22)mg 根据牛顿第三定律小球对圆轨道的压力大小为F ′=F =(4+22)mg15.(1)2mgR sin θB 2L 2 (2)6m 2gR 2sin θB 4L 4 (3)8m 3g 2R 2sin 2θ9B 4L 4解析:电磁感应中能量和动量问题(1)由题意可知导体棒M 到达b 、e 前已做匀速直线运动,由法拉第电磁感应定律得E =BLv由闭合电路欧姆定律得I =E2R由平衡条件得mg sin θ=BIL 解得:v =2mgR sin θB 2L2(2)若固定导体棒N ,导体棒M 通过感应开关后瞬间闭合开关S ,导体棒M 、N 构成回路,最终导体棒M 静止,由法拉第电磁感应定律得E -=BL Δx Δt由闭合电路欧姆定律得I -=E -3R对导体棒M ,由动量定理得-B I -L Δt =0-mv解得:Δx =6m 2gR 2sin θB 4L 4 (3)若不固定导体棒N ,导体棒M 通过感应开关后瞬间闭合开关S ,导体棒M 、N 组成的系统动量守恒,最终它们共速,则mv =3mv 共由能量守恒定律得12mv 2=12×3mv 2共 +Q 导体棒N 上产生的焦耳热为Q N =2R R +2RQ 解得:Q N =8m 3g 2R 2sin 2θ9B 4L 4.16.(1)1 T (2)2 N 解析:电磁感应中的动力学问题 设摩擦力为F f ,平衡时有F =F f +F 安=F f +B 2L 2v R由图像可知,如当F =4 N 时v =4 m/s当F =10 N 时v =16 m/s代入F =F f +B 2L 2v R,解得B =1 T ,F f =2 N .17.(1)1∶1∶ 2 (2)0.828 s解析:带电粒子在叠加场中的运动(1)恰好能沿PO 做匀速直线运动,受力分析如图所示则qvB cos 45°=Eq ,qvB sin 45°=mg因此mg ∶qE ∶qvB =1∶1∶ 2(2)因为qvB =2Eq可知,粒子速度v =4 2 m/s粒子从O 到A ,受重力和电场力,二力合力为0,因此粒子匀速直线运动,运动时间t 1=x 1v =hsin 45°v=0.1 s 粒子在磁场部分做匀速圆周运动qvB =m v 2r周期T =2πr v =2πm Bq磁场中运动时间t 2=α2πT =14T =0.628 s 由对称性可知,粒子从C 到N 与O 到A 时间相同,因此运动总时间t =2t 1+t 2=0.828 s .18.(1)qB 2L 22mE (2)BL E +m (π+2)2qB (3)π-24L 2 解析:带电粒子在组合场中的运动(1)如图所示,由几何关系得垂直于屏打在C 点的粒子在磁场中的运动半径为L ,根据带电粒子在磁场中的运动规律qBv =mv 2r 得R =mv qB=L 由P 到O 运用动能定理得 qEx =12mv 2得x =qB 2L 22mE (2)第一阶段由P 到O 粒子做匀加速直线运动由x =v 2t 1 解得t 1=BL E第二阶段在磁场中粒子经历1/4圆周,故 t 2=14·2πm qB =πm 2qB第三阶段粒子做匀速直线运动x =2L -R v =m qB故总时间t =t 1+t 2+t 3=BL E +m (π+2)2qB (3)磁场下边界为半径为L 的1/4圆弧,磁场的上边界上任意一点坐标x 、y 始终满足y =x ,故磁场的上边界是一条y =x 的直线,如(1)中图所示,月牙部分即为磁场区域面积,故S =14πR 2-12L 2=π-24L 2.19.(1)43T 0 (2)94p 0 解析:热学(1) 选第Ⅳ部分气体为研究对象,在B 汽缸中的活塞到达汽缸底部的过程中发生等压变化:V 0-14V 0T 0=V 0T 1,解得T 1=43T 0. (2) (2)以第Ⅱ、Ⅲ部分气体整体为研究对象,温度由T 0升至2T 0过程,由理想气体状态方程:p 0⎝⎛⎭⎪⎫18V 0+14V 0T 0=p 1V 12T 0.对第Ⅳ部分气体,温度由T 0升至2T 0过程,由理想气体状态方程:p 0⎝⎛⎭⎪⎫V 0-14V 0T 0=p 1(V 0-V 1)2T 0,解得p 1=94p 0.20.sin αsin β 解析:光学根据光的折射定律有n =sin βsin α. 根据光的全反射可得sin θ=1n. 联立解得sin θ=sin αsin β.。

高中物理功率计算题(含答案)

高中物理功率计算题(含答案)

高中物理功率计算题(含答案)题目1电炉的电阻为20欧姆,通电电压为220伏特。

请计算电炉的功率是多少?解答1根据功率公式:功率 = 电压² / 电阻,代入已知的电压和电阻,计算出功率为244瓦特。

题目2一个电灯泡接在电压为110伏特的电源上,功率为60瓦特。

请问电灯泡的电阻是多少?解答2根据功率公式:功率 = 电压² / 电阻,代入已知的功率和电压,解方程计算得到电阻为242欧姆。

题目3一台电动机的功率为500瓦特,电压为220伏特。

请问电动机的电流是多少?解答3根据功率公式:功率 = 电流 ×电压,代入已知的功率和电压,解方程计算得到电流为2.27安培。

题目4一台设备的功率为800瓦特,电压为110伏特。

请问该设备的电流是多少?解答4根据功率公式:功率 = 电流 ×电压,代入已知的功率和电压,解方程计算得到电流为7.27安培。

题目5一个电阻为60欧姆的装置,接在电压为220伏特的电源上,消耗的电功率是多少?解答5根据功率公式:功率 = 电压² / 电阻,代入已知的电压和电阻,计算出功率为808.89瓦特。

题目6一台电视机的电阻为10欧姆,通电电流为1安培。

请问电视机所接的电压是多少?解答6根据欧姆定律:电流 = 电压 / 电阻,代入已知的电流和电阻,解方程计算得到电压为10伏特。

题目7一台电压为220伏特的电源上接有两个并联的电阻,其中一个电阻为50欧姆,另一个电阻为100欧姆。

请问这两个电阻的总功率是多少?解答7两个电阻并联时,总电阻可以通过公式:1 / 总电阻 = 1 / 电阻₁ + 1 / 电阻₂计算。

代入已知的电阻值,计算得到总电阻为33.33欧姆。

根据功率公式:功率 = 电压² / 电阻,代入已知的电压和总电阻,计算出总功率为1456瓦特。

以上是关于高中物理功率计算题的解答。

希望能对你有所帮助!。

高中物理重力势能计算题四道

高中物理重力势能计算题四道

、计算题1、某同学研究轻质弹簧的弹性势能与形变量的关系,实验装置如下图所示,在高度为h的光滑水平桌面上,沿与桌面边缘垂直的方向放置一轻质弹簧,其左端固定,右端与质量为m的小钢球接触,弹簧处于自然长度时,小钢球恰好在桌面边缘。

使钢球压缩弹簧△x后由静止释放,钢球沿桌面水平飞出,落到水平地面,小球在空中飞行的水平距离为s,实验数据记录如表所示,重力加速度为g。

(1)试导出弹簧的弹性势能E p与m、h、s的关系(2)分析实验数据,写出s和△x的关系(3)由(1)和(2)的结论,试分析弹簧的弹性势能E p与形变量△x的关系2、如图所示,圆柱形水箱高2m、容积10m3,水箱底部接通水管A,顶部接通水管B。

开始时箱中无水,若仅用A管或仅用B管缓慢地将水注入,直到水箱中水满为止。

设外界待注入的水开始时均与箱底等高,问这两种情况下外界所做的功分别是多少?它们是否相等?(g=10m/s2)某同学分析过程如下:由于整个过程是缓慢地将水注入,所以不考虑水的动能增量,外界对水所做的功只改变水的重力势能。

而两种情况均为将水箱注满,因此水的重力势能改变量相同,外界所做的功相等。

问:你同意上述分析过程吗?______________若同意,按照这种分析方法求出外界所做的功;若不同意,指明错误之处并求出你认为正确的结果。

3、在水平地面上平铺n块砖,每块砖的质量为m,厚度为h,若将砖一块一块地叠放起来,至少需要做多少功?4、如图所示,面积很大的水池,水深为H,水面上浮着一正方体木块,木块边长为a,密度为水的1/2,质量为m.开始时,木块静止,有一半没入水中,现用力F将木块缓慢地压到池底,不计摩擦,求:(1)从木块刚好完全没入水中到停在池底的过程中,池水势能的改变量.(2)从开始到木块刚好完全没入水的过程中,力F所做的功.(2000年广东高考试题)【7】参考答案1、解:(1)设小球在空中运动时间为t,由小球平抛的初速度由机械能守恒,小球在弹开过程中获得的动能等于开始时弹簧的弹性势能则:(2)从表格中可以看出s正比于,即,(或s=k,k为比例系数,也可写成s=3)(3)由(1)知,由(2)知,故弹性势能E p与弹簧的形变量的平方成正比关系(或:E p=k2,k为比例系数;也可写成)。

高中物理运动学46道计算题专练

高中物理运动学46道计算题专练

1、一辆汽车以72km/h的速度匀速行驶,现因故障紧急刹车并最终停止运动.已知汽车刹车过程加速度的大小为5m/s2,试求:(1)从开始刹车经过3s时的瞬时速度是多少?(2)从开始刹车经过30m所用的时间是多少?(3)从开始刹车经过5s,汽车通过的距离是多少?2、汽车刹车前以5m/s的速度做匀速直线运动,刹车获得加速度大小为0.4m/s2,求:(1)汽车刹车开始后10s末的速度;(2)汽车刹车开始后20s内滑行的距离;3、物体在斜坡顶端以1 m/s的初速度和0.5 m/s2的加速度沿斜坡向下作匀加速直线运动,已知斜坡长24米,求:(1) 物体滑到斜坡底端所用的时间。

(2) 物体到达斜坡中点速度。

4、如图所示,一小物块从静止沿斜面以恒定的加速度下滑,依次通过A,B,C 三点,已知AB=12 m,AC=32 m,小球通过AB,BC所用的时间均为2 s,求:(1)小物块下滑时的加速度?(2)小物块通过A,B,C三点时的速度分别是多少?5、如图所示,一玩具小车(可视为质点)在水平地面上,由静止开始沿直线从A 匀加速滑到B用时6s,再从B匀速滑行7s到达C点,已知AC段总长为15m。

求:(1)小车经过B点的速度和在AB段的加速度;(2)BC段的长度。

6有一列火车正在做匀加速直线运动.从某时刻开始计时,第1分钟内,发现火车前进了180 m.第6分钟内,发现火车前进了360 m.则火车的加速度为多少?7.物体做匀加速直线运动,初速度为v0=2m/s,加速度a=0.1m/s2,求:(1)前4s的位移和前4s的平均速度大小;(2)第4秒内的位移大小。

8.质点做匀减速直线运动,在第1s内位移为6m,停止运动前的最后1s内位移为2m,求:(1)在整个减速运动过程中质点的位移大小;(2)整个减速过程所用的时间.9.跳伞运动员做低空表演,他离开飞机后先做自由落体运动,当距离地面160m 时打开降落伞,伞张开后运动员就以的加速度做匀减速直线运动,到达地面时速度为10m/s,取求:(1)运动员离开飞机时距地面的高度为多少;(2)离开飞机后,经过多长时间运动员才能到达地面.10.做匀加速直线运动的物体途中依次经过A、B、C三点,已知AB=BC=,AB段和BC段的平均速度分别为=3m/s、=6m/s,则(1)物体经B点时的瞬时速度为多大?(2)若物体运动的加速度a=2,试求AC的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算题定时规范训练(四)
(建议用时:45分钟)
1.
如图所示是公路上的“避险车道”,车道表面是粗糙的碎石,其作用是供下坡的汽车在刹车失灵的情况下避险。

质量m=2.0×103 kg的汽车沿下坡行驶,当驾驶员发现刹车失灵的同时发动机失去动力,此时速度表示数v1=36 km/h,汽车继续沿下坡匀加速直行l=350 m、下降高度h=50 m时到达“避险车道”,此时速度表示数v2=72 km/h。

(1)求从发现刹车失灵至到达“避险车道”这一过程汽车动能的变
化量;
(2)求汽车在下坡过程中所受的阻力大小;
(3)若“避险车道”与水平面间的夹角为17°,汽车在“避险车道”受到的阻力是在下坡公路上的3倍,求汽车在“避险车道”上运动的最大位移。

(sin 17°=0.3)
2.(2022·湖南岳阳市质监)如图所示,倾斜放置的传送带与水平地面间的夹角为θ=37°,传送带长为L=0.8 m,以v0=1 m/s的速度沿顺时针方向匀速转动,传送带下端与地面平滑连接(可认为物体在连接处速率不变)。

一滑块A从传送带顶端由静止释放,滑块A的质量为m1=1 kg,与传送带之间的动摩擦因数为μ1=0.5。

一段时间以后,滑块A到达传送带底端,刚进入水平地面时与静止在地面上的滑块B发生弹性正碰,滑块B的质量为m2=1 kg。

滑块A、B与地面间的动摩擦因数均为μ2=0.2。

重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8。

求:
(1)滑块A加速到传送带的速度大小需要的时间;
(2)滑块A运动到传送带底端时的速度大小;
(3)滑块A与滑块B都停止运动后,二者之间的距离d。

3.(2022·高考全国卷乙,T24)如图,一不可伸长的细绳的上端固定,下端系在边长为l=0.40 m的正方形金属框的一个顶点上。

金属框的一条对角线水平,其下方有方向垂直于金属框所在平面的匀强磁场。

已知构成金属框的导线单位长度的阻值为λ=5.0×10-3Ω/m;在t=0到t=3.0 s时间内,磁感应强度大小随时间t的变化关系为B(t)=0.3-0.1t(SI)。

求:
(1)t=2.0 s时金属框所受安培力的大小;
(2)在t=0到t=2.0 s时间内金属框产生的焦耳热。

4.(2022·江苏苏锡常镇四市调研)设想半径为r的圆形区域内有平行于纸面的匀强电场,电场线方向与水平方向成60°角,同心大圆半径为3r,两圆间有磁感应强度为B垂直于纸面向里的匀强磁场,如图所示。

从粒子源飘出带正电的粒子经加速电压加速后竖直向上恰好与磁场外边界相切的P点进入磁场。

当加速电压为U0时,其在磁场中运动的半径恰为r,不计粒子的重力。

(1)求粒子的比荷;
(2)若粒子在4
3U0,电压下加速进入磁场,经磁场和电场偏转后恰好
从内圆的最低点Q处离开电场,求偏转电场的场强大小;
(3)撤去小圆中的电场,将加速电压变为1
3U0,求粒子从P点进入磁
场到第一次回到P点的时间。

参考答案与解析
1.解析:(1)由ΔE k=1
2m v
2
2

1
2m v
2
1
得ΔE k=3.0×105 J。

(2)由动能定理mgh-F f l=1
2m v
2
2

1
2m v
2
1
得F f=1
2m v
2
1

1
2m v
2
2
+mgh
l=2.0×10
3 N。

(3)设向上运动的最大位移是l′,由动能定理
-(mg sin 17°+3F f)l′=0-1
2m v
2
2
得l′=
1
2m v
2
2
mg sin 17°+ 3F f
=33.3 m。

答案:(1)3.0×105 J(2)2.0×103 N(3)33.3 m 2.解析:(1)设开始时滑块A的加速度为a,有m1g sin θ+μ1m1g cos θ=m1a,a=10 m/s2
滑块A达到与传送带共速时的时间为t=v0
a=0.1 s。

(2)A从开始运动到与传送带共速所经过的位移x1=1
2at
2=0.05 m,
共速后,因为m1g sin θ>μ1m1g cos θ,滑块A继续加速,设加速度为a1,m1g sin θ-μm1g cos θ=m1a1
解得a1=2 m/s2,设A滑到底端时的速度为v,有
2a1()
L-x1=v2-v20,解得v=2 m/s。

(3)A与B碰撞过程由动量守恒定律以及能量关系有
m1v=m1v1+m2v2
1
2m1v 2=
1
2m1v
2
1

1
2m2v
2
2

解得v1=0,v2=2 m/s,即碰后A静止,滑块B获得v2=2 m/s的速度。

对滑块B向右减速到零的过程,由动能定理
-μ2m 2gs B =0-12 m 2v 22 ,解得s B =1 m 滑块A 与物块B 都停止运动后,二者之间的距离d =s B =1 m 。

答案:(1)0.1 s (2)2 m/s (3)1 m
3.解析:(1)安培力F =BIL ①
t =2.0 s 时,B =(0.3-0.1t )T =0.1 T ②
又I =E R ,R =4lλ③
E =ΔΦΔt =S ΔB Δt =l 22 ·ΔB Δt ④
L 为等效长度,大小等于正方形对角线的长度
L =2 l ⑤
将②③④⑤代入①得F =225 N 。

(2)0~2.0 s 时间内金属框产生的焦耳热
Q =E 2
R t ⑥
解得Q =1.6×10-2 J 。

答案:(1)225
N (2)1.6×10-2 J 4.解析:(1)粒子在电场中加速时U 0q =12 m v 20
在磁场中做匀速圆周运动时q v 0B =m v 20 r
联立解得q m =2U 0B 2r 2 。

(2)若粒子在43 U 0电压下加速,则43 U 0q =12 m v 21
在磁场中做匀速圆周运动时q v 1B =m v 21 r 1
解得r 1=23
r v 1=4U 03Br
由几何关系x 2+(3 r -r 1)2=r 21
可得x =r
则粒子恰能从电场的最高点A 点射入电场,且图中的θ=30°,由题意可知,电场与水平方向成60°角,则粒子进入电场时速度方向与电场方向垂直,带电粒子进入电场后做类平抛运动,垂直于电场方向2r cos 60°=v 1t
沿电场方向2r sin 60°=qE 2m t 2
解得E =163U 0
3r 。

(3)撤去小圆中的电场,将加速电压变为13 U 0,则
13 U 0q =12
m v 22 v 2=23U 03Br
在磁场中做匀速圆周运动时q v 2B =m v 22 r 2
解得r 2=r 3
由几何关系可知α=30°
粒子做一个圆弧运动对应的时间为t 1=23 T
t 1=23 ·2πm Bq =2πBr 2
3U 0
粒子做一次直线运动的时间t 2=2r v 2 =3Br 2
U 0
则回到P 点的时间t =3t 1+3t 2=(2π+33)U 0
Br 2。

答案:(1)2U 0B 2r 2 (2)163U 03r (3)(2π+33)U 0
Br 2。

相关文档
最新文档