694#——化学与仪器分析
HJ694-2014-水质-硒的测定--方法验证报告

方法验证报告项目名称:水质硒的测定分析方法:原子荧光法方法编号:HJ 694-2014验证人员:验证日期:2020年7月21日〜30日一、适用范围适用于地表水、地下水、生活污水和工业废水中硒的测定;方法检出限为0.4 ug/L,测定下限为1.6 ug/Lo二、检测方法原理检测方法:原子荧光法方法原理:经预处理后的试液进入原子荧光仪,在酸性条件的硼氢化钾还原作用下,生成硒化氢,氢化物在氢氢火焰中形成基态原子,其基态原子灯发射光的激发产生原子荧光,原子荧光强度与试液中待测元素含量在一定范围内呈正比。
三、仪器和试剂1、仪器1.1原子荧光光谱仪:北京海光AFS-230E型;1.2硒元素灯;1.3抽滤装置:0. 45 um孔径水系微孔滤膜;1.4分析天平:梅特勒电子天平,精度为0.0001g;1.5一般实验室常用器皿和设备:1.6采样容器:硬质玻璃瓶。
2、试剂1.1盐酸:P (HC1) = 1.19 g/ml,优级纯。
1.2氢氢化钠(NaOH):优级纯。
1.33氢化钾(KBH4):优级纯。
1.4硒标准溶液直接购买市售有证标准物质(1000mg/L)和样品;硒标准贮备液:P (Sb) =100 mg/L,以有证标准物质制备硒储备液;硒标准中间液:P (Sb) =1.00 mg/L,以硒储备液制备硒中间液;硒标准使用液:P (Sb) =10 u g/L,以硒中间液制备硒使用液;四、采样要求和样品预处理1.5样品的采集样品采集参照HJ/T 91和HJ/T 164的相关规定执行,溶解态样品和总量样品分别采集。
1.6样品的保存样品保存参照HJ 493的相关规定进行。
1.7试样的制备样品采集后尽快用0.45 um滤膜过滤,弃去初始滤液50ml,用少量滤液清洗采样瓶,收集滤液于采样瓶中。
每升水样中加入2nli盐酸,样品保存期为14d。
量取50. 0ml混匀后的样品于150nli锥形瓶中,加入5ml硝酸-高氯酸混合酸,于电热板上加热至冒白烟,冷却。
解读国税函[2009]694号:《国家税务总局关于企业年金个人所得税征收管理有关问题的通知》
![解读国税函[2009]694号:《国家税务总局关于企业年金个人所得税征收管理有关问题的通知》](https://img.taocdn.com/s3/m/2bf68abc1a37f111f1855b9a.png)
解读国税函[2009]694号:《国家税务总局关于企业年金个人所得税征收管理有关问题的通知》2009年12月10日,国家税务总局出台了《关于企业年金个人所得税征收管理有关问题的通知》(国税函[2009]694号)(以下简称694号文),对企业年金个人所得税的处理给予了明确,为了使建立年金制度的企业深入理解该税收文件,笔者现解读如下:一、694号文出台背景企业年金,是指企业及其职工在依法参加基本养老保险的基础上,自愿建立的补充养老保险制度。
根据《企业年金试行办法》(劳动和社会保障部令第20号)中相关规定,企业年金所需费用由企业和职工个人共同缴纳。
企业缴费的列支渠道按国家有关规定执行;职工个人缴费可以由企业从职工个人工资中代扣。
在企业年金的税务处理上,财政部、国家税务总局出台的《关于基本养老保险费基本医疗保险费失业保险费住房公积金有关个人所得税政策的通知》(财税[2006]10号)规定,企事业单位和个人超过规定的比例和标准缴付的基本养老保险费、基本医疗保险费和失业保险费,应将超过部分并入个人当期的工资、薪金收入,计征个人所得税。
因企业年金属于补充养老保险,是企业职工福利范畴,不属于免税范围,因此在694号文出台前,企业年金应并入工资、薪金收入,全额计算缴纳个人所得税。
企业年金是我国社会保障体系的重要组成部分,其同基本养老保险、个人储蓄养老保险共同构成目前多层次的企业养老保险制度,国家一直对企业建立年金采取鼓励态度。
但在实践中,我国企业的年金制度起步较晚,尚不成熟,很多企业处于观望状态。
因此,近年来,给予企业年金税收优惠政策支持的呼声一直不断,在此背景下,国家税务总局终于出台了694号文件,该文件既考虑调节收入分配,又要体现对企业年金发展给予适当鼓励和扶持的原则,对企业年金的税收处理给予了明确。
二、政策解读1、企业年金应区分个人缴费和企业缴费,进行不同的税务处理。
根据694号文件的规定,企业年金的个人缴费部分,不得在个人当月工资、薪金计算个人所得税时扣除。
GE Fanuc RX3i PACSystem IC694APU300高速计数器模块说明说明书

Rx3i PacSystem919-535-3180*******************GE Fanuc IC694APU300/automation/ge-fanuc/rx3i-pacsystem/IC694APU300High speed counter module 200KHZ A B and C type. IC694A IC694APIC694APU8-2 PACSystems* RX3i – August 2011 GFK-2314DHigh-speed Counter Module: IC694APU300The High-speed Counter module, IC694APU300, provides direct processing of rapid pulse signals up to 80 kHz. The module senses inputs, processes the input count information, and controls the outputs without needing to communicate with a CPU.The High Speed Counter uses 16 bits of discrete input memory (%I), 15 words of analog input memory (%AI), and 16 bits of discrete outputmemory (%Q) in the CPU. The High-speed Counter can be configured to have:▪ 4 identical, independent simple counters ▪ 2 identical, independent more complex counters ▪ 1 complex counterTwo green LEDs indicate the operating status of the module and the status of configuration parameters. Additional module features include:▪ 12 positive logic (source) inputs with input voltage range selection of either 5 VDC or 10 to 30 VDC ▪ 4 positive logic (source) outputs▪ Counts per timebase register for each counter ▪ Internal module diagnostics▪A removable terminal board for field wiringInputs can be used as count signals, direction, disable, edge-sensitive strobe, and preload inputs depending on the counter type selected by the user. Outputs can be used to drive indicating lights, solenoids, relays, and other devices. Power for the module is drawn from the backplane’s 5VDC bus. Power sources for input and output devices must be supplied by the user or by the +24 VDC Isolated output of the power supply. The module also provides a selectable threshold voltage to allow the inputs to respond to either 5VDC signal levels or 10 to 30VDC signal levels.The blue bands on the label show that APU300 is a low-voltage module. This module can be installed in any I/O slot in an RX3i system.Refer to Appendix A for product standards and general specifications.Input ImpedanceGFK-2314D Chapter 8 Discrete Mixed Modules 8-3Field Wiring: APU300Wiring information for APU300 is shown below.Shielded cable must be used for connecting to the High Speed Counter module. The shield for the cable must have a high frequency ground within 6 inches (15.24 cm) of the module to meet the IEC 1000-4-4 levels specified in Appendix A. The cable’s length is limited to 30 meters.Terminals Field WiringAll 12 High Speed Counter inputs are single-ended positive logic (source) type inputs. Transducers with CMOS buffer outputs (74HC04 equivalent) can directly drive the High-speed Counter inputs using the 5V input range. Transducers using TTL totem pole or open-collector outputs must include a 470 ohm pull-up resistor (to 5V) to guarantee compatibility with the High-speed Counter inputs. Transducers using high voltage open collector (sink) type outputs must have a 1K pull-up resistor to + 12V for compatibility with the High-speed Counter 10 to 30 volt input range.The 5VDC threshold is selected by connecting a jumper between two terminals on the detachable terminal board connector. Leaving the threshold selection terminals unconnected places the inputs in the default 10 to 30 VDC voltage range.Do not connect 10 to 30 VDC to the module inputs when the 5 VDC inputrange (pins 13 to 15 jumpered) is selected. Doing so will damage themodule.8-4 PACSystems* RX3i – August 2011 GFK-2314DTerminal Assignments for Each Counter TypeThe following table shows which terminals to use for the type of counter selected during module configuration.(1). Type B counter:A1, B1 are the A and B inputs for counter 1.A2, B2 are the A and B inputs for counter 2.(2) Type C Counter:A1, B1 are the A and B count inputs for (+) loopA2, B2 are the A and B count inputs for (–) loop(3) OUTPWR does not source power for user loads. Output power must be supplied from an external supply.* Inputs and outputs identified by two numbers separated by a decimal point indicate the counter number to the left of the decimal point and the element number on the right. For example, STRB1.2 indicates Counter 1, Strobe 2 input.GFK-2314D Chapter 8 Discrete Mixed Modules 8-5。
mt694-1997闭锁螺栓

MT694-1997闭锁螺栓:安全保障的关键组件一、引言在现代工业、建筑和交通等领域,螺栓作为一种紧固件,其重要性不言而喻。
在众多螺栓类型中,MT694-1997闭锁螺栓凭借其独特的结构和性能,在安全保障方面发挥着关键作用。
本文将详细介绍MT694-1997闭锁螺栓的特点、应用及发展前景,以期提高公众对其重要性的认识。
二、MT694-1997闭锁螺栓概述MT694-1997闭锁螺栓是一种具有特殊锁紧功能的螺栓,其结构通常由螺栓本体、锁紧装置和涂层等部分组成。
这种螺栓具有防松、防盗、耐腐蚀等优点,广泛应用于桥梁、高速公路、铁路、建筑等重要工程领域。
三、MT694-1997闭锁螺栓的特点1. 防松性能:MT694-1997闭锁螺栓采用独特的锁紧装置,能够有效防止螺栓在使用过程中因振动、冲击等原因而松动,确保工程结构的安全稳定。
2. 防盗性能:该螺栓的锁紧装置具有较高的防盗性能,不易被破坏或拆卸,有效防止了恶意拆卸和破坏行为,维护了公共设施的安全。
3. 耐腐蚀性:MT694-1997闭锁螺栓表面涂层具有良好的耐腐蚀性能,能够在恶劣环境下长期使用,减少维修更换的频率和成本。
4. 易于安装:该螺栓的安装过程相对简便,只需使用专用工具进行紧固即可,降低了施工难度和成本。
四、MT694-1997闭锁螺栓的应用领域1. 桥梁工程:在桥梁建设中,MT694-1997闭锁螺栓被广泛应用于桥墩、桥台、支座等关键部位的紧固,确保桥梁的安全运行。
2. 高速公路:在高速公路建设中,该螺栓主要用于护栏、标牌、隧道支护等设施的紧固,提高道路的安全性。
3. 铁路工程:铁路轨道、信号设备、接触网等设施的紧固都离不开MT694-1997闭锁螺栓,它为铁路的安全运行提供了有力保障。
4. 建筑行业:在建筑领域,该螺栓广泛应用于钢结构、幕墙、电梯等设施的紧固,确保建筑的安全稳定。
五、MT694-1997闭锁螺栓的发展前景随着科技的不断进步和应用领域的拓宽,MT694-1997闭锁螺栓在未来将面临更多的发展机遇和挑战。
Silicon Laboratories AN694应用说明书

Rev. 0.1 9/12Copyright © 2012 by Silicon LaboratoriesAN6941. IntroductionThis application note applies to the SiM3Cxxx, SiM3Uxxx, and SiM3Lxxx device families. The Flash memory on allSilicon Labs MCU devices is readable and writable from application code. This capability allows user software tostore values, such as calibration constants or system parameters, to the Flash and to implement a boot-loadingfeature in which user firmware can be updated in-system from a remote site. The Flash that is not used byapplication code can be treated like an EEPROM, thus negating the need to connect an external EEPROM to thedevice.This document starts with the basics of accessing Flash from application code on any device, including device-specific details. Then, it discusses advanced routines that can be developed from the basic routines. Finally, itdescribes precautions to take when writing or erasing Flash. Example code for the basic routines for all devices isinstalled with the Precision32 SDK, which can be downloaded from /32bit-software .2. Key Points⏹ The voltage supply monitor must be enabled in the VMONn module during Flash write and eraseoperations.⏹ The voltage supply monitor must be enabled as a reset source in the RSTSRCn module during Flash writeand erase operations.Note:Any write or erase operations initiated while the voltage supply monitor is disabled or the voltage supply monitor isdisabled as a reset source will be ignored.⏹ A Lock and Key sequence must be executed before executing a write or erase operation. The Flashinterface can be unlocked for one or multiple write or erase operations.⏹ Writes to the WRDATA register while the Flash interface is locked or an incorrect unlock sequence willpermanently lock the Flash interface until the next device reset.⏹ Firmware should disable interrupts when writing or erasing Flash to ensure the Flash interface accesses aresequential in time and take the minimum time possible.⏹ For all Flash write operations, firmware will stall unless operating from a memory space other than Flash.⏹ Interrupts posted during a Flash write or erase operation will be held pending until the completion of theFlash operation, after which they will be serviced in priority order.AN6943. Flash EssentialsDifferent device series have many similarities for Flash, including page sizes, lock bits, and the instructions used to read and write to Flash. The main differences are the amount of Flash available, how the voltage supply monitor is enabled, how the voltage supply monitor is enabled as a reset source, and how registers are modified to allow Flash writes and erases. Although the core stalls during Flash write and erase operations, peripherals (USARTn, SARADCn, TIMERn, etc.) remain active. Interrupts posted during a Flash write or erase operation are held until the Flash operation has completed, after which they are serviced in priority order.3.1. Flash OrganizationThe Flash memory on most devices is organized into a set of 1024-byte pages. See the Memory Organization chapter of the device reference manual for specific information. Figures 1, 2, 3, and 4 show the Flash organization for the SiM3Uxxx devices.AN6943.2. Locking FlashThe Flash can be locked by writing to the lock word in the Flash memory region. A value of 0xFFFF_FFFF or 0x0000_0000 at this location will unlock the Flash. Any other value written to this location will lock the entire Flash from external (debugger) writes or reads until:⏹ An erase operation is initiated from firmware.⏹ An erase operation is initiated through the debug port (SWD/JTAG).⏹ Firmware writes 0x0000_0000 to the lock word.The location for the Flash lock word will differ between devices, so consult the device reference manual for more information.AN6943.3. Device-Specific NotesVarious MCUs have features that require consideration when accessing Flash.3.3.1. SiM3Cxxx, SiM3Uxxx, and SiM3Lxxx Flash Lock and KeyAll SiM3Cxxx, SiM3Uxxx, and SiM3Lxxx devices' writes and erases to Flash are protected with a lock and key function. The Flash Lock and Key Register (FLASHCTRLn) must be written with the correct key codes in sequence before Flash operations may be performed. The key codes are: 0xA5, 0xF1 for a single write or erase operation, and 0xA5, 0xF2 for multiple writes or erase operations. The timing does not matter, but the codes must be written in order. If the key codes are written out of order or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. For a single write or erase, the Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. For multiple writes or erases, the Flash remains unlocked until the lock sequence is written (0xA5, 0x5A); the key codes do not need to be written before a following Flash operation can be performed.3.3.2. SiM3Cxxx, SiM3Uxxx, and SiM3Lxxx Flash Read TimingThe SiM3Cxxx, SiM3Uxxx, and SiM3Lxxx devices require that the speed mode (SPMD) and the read-store enable (RDSEN) bits be set appropriately, depending on the AHB frequency. In addition, the Flash read timing mode (FLRTMD) bit can be configured to save power at slower clock frequencies. See the FLASHCTRLn chapter in the device's reference manual for detailed information on the read timing ranges.3.3.3. SiM3Cxxx, SiM3Uxxx, and SiM3Lxxx VDD High ThresholdThe SiM3Cxxx, SiM3Uxxx, and SiM3Lxxx devices have two settings for the VDD monitor threshold: Standard and High. The High setting increases the VDD Low (early warning) and VDD reset thresholds by approximately 300mV. The High setting is recommended when operating at faster AHB clock speeds. See the VMONn chapter in the device's reference manual for detailed information on enabling the High threshold.3.4. Flash Write and Erase OperationsThe basic write operation writes a single half-word to Flash. The erase operation applies to a full page of Flash. Flash write and erase operations on Silicon Labs MCU devices are accomplished by using the WRDATA and WRADDR registers within the FLASHCTRLn module. The setting of the ERASEEN field within the FLASHCTRLn module determines whether a write or an erase will execute. Flash erase operations occur on page boundaries. The erase operation sets all the bits in the Flash page to logic 1. Flash write operations, which clear bits to logic 0, occur on single-byte boundaries. To successfully complete a write to Flash, the target bytes must be erased to 0xFFFF because the write instruction can only clear bits in a half-word.3.5. Flash Read OperationsThe basic read operation reads a single word from Flash. Flash read operations are accomplished by reading an address within the Flash region of the device memory map. See the Memory Organization chapter in the device's reference manual for detailed information on the Flash region boundaries.AN694 4. Basic Flash OperationsThe basic procedure for basic Flash operations is the same on all devices. Some devices require setting additional registers to enable Flash operations. The procedures in this section include the exceptions for the various device families. The code that implements these routines for each device family is in the FLASHCTRL examples, which are installed with the Precision32 SDK.4.1. Reading a Single Half-Word1. Disable interrupts.2. Read the byte.3. Restore interrupts, if originally enabled.4.2. Writing a Single Half-WordAll bits, fields, and registers referred to in this sequence are in the FLASHCTRLn module.1. Ensure the voltage supply monitor is enabled and enabled as a reset source (device reset sources andVMONn modules).2. Disable erase operations (ERASEEN=0).3. Write the destination address to the WRADDR register.4. Disable interrupts.5. Write the initial unlock value to KEY (0xA5).6. Write the single unlock value to KEY (0xF1).7. Write the data half-word to WRDATA in right-justified format.8. (Optional) If executing code from a memory space other than Flash, poll on the BUSYF flag until hardwareclears it to 0.9. Enable interrupts.4.3. Writing Multiple Half-Words to Sequential Flash AddressesTo write a sequential set of bytes to Flash, code should execute from a memory space other than Flash. All bits, fields, and registers referred to in this sequence are in the FLASHCTRLn module.1. Ensure the voltage supply monitor is enabled and enabled as a reset source (device reset sources andVMONn modules).2. Disable erase operations (ERASEEN=0).3. Write the initial destination address to the WRADDR register.4. Enable sequential writes (SQWEN=1).5. Disable interrupts.6. Write the initial unlock value to KEY (0xA5).7. Write the multiple unlock value to KEY (0xF2).8. Write the data half-word to WRDATA in right-justified format.9. (Optional) Poll on the BURSTS flag until the buffer has room for more data. If code is executing from RAM,this allows the core to perform other actions until a write operation completes and the buffer has room. The AHB bus will automatically stall until the operation completes if firmware writes data to WRDATA when the buffer is full.10. Repeat steps 8 and 9 until all data is written. Hardware automatically increments the WRADDR field by 2after each write operation.11. (Optional) If executing code from a memory space other than Flash, poll on the BUSYF flag until hardwareclears it to 0.12. Write the multiple lock value to KEY (0x5A).13. Enable interrupts.AN6944.4. Writing Multiple Half-Words to Non-Sequential Flash AddressesAll bits, fields, and registers referred to in this sequence are in the FLASHCTRLn module. To write multiple bytes to non-sequential addresses in Flash:1. Ensure the voltage supply monitor is enabled and enabled as a reset source (device reset sources andVMONn modules).2. Disable erase operations (ERASEEN=0).3. Disable interrupts.4. Write the initial unlock value to KEY (0xA5).5. Write the multiple unlock value to KEY (0xF2).6. Write the destination address to WRADDR.7. Write the data half-word to WRDATA in right-justified format.8. (Optional) If executing code from a memory space other than Flash, poll on the BUSYF flag until hardwareclears it to 0.9. Repeat steps 6, 7, and 8 until all data is written.10. Write the multiple lock value to KEY (0x5A).11. Enable interrupts.4.5. Erasing a Flash PageAll bits, fields, and registers referred to in this sequence are in the FLASHCTRLn module. To erase a page of Flash:1. Ensure the voltage supply monitor is enabled and enabled as a reset source (device reset sources andVMONn modules).2. Write the address of a byte in the Flash page to WRADDR.3. Enable erase operations (ERASEEN=1).4. Disable interrupts.5. Write the initial unlock value to KEY (0xA5).6. Write the single unlock value to KEY (0xF1).7. Write any value to WRDATA in right-justified format to initiate the page erase.8. (Optional) If executing code from a memory space other than Flash, poll on the BUSYF flag until hardwareclears it to 0.9. Enable interrupts.4.6. Erasing Multiple Flash PagesAll bits, fields, and registers referred to in this sequence are in the FLASHCTRLn module. To erase multiple pages of Flash:1. Ensure the voltage supply monitor is enabled and enabled as a reset source (device reset sources andVMONn modules).2. Enable erase operations (ERASEEN=1).3. Disable interrupts.4. Write the initial unlock value to KEY (0xA5).5. Write the multiple unlock value to KEY (0xF2).6. Write the address of a byte in the Flash page to WRADDR.7. Write any value to WRDATA in right-justified format to initiate the page erase.8. (Optional) If executing code from a memory space other than Flash, poll on the BUSYF flag until hardwareclears it to 0.9. Repeat steps 6, 7, and 8 for each page.AN69410. Write the multiple lock value to KEY (0x5A).11. Enable interrupts.4.7. Example Code Implementation NotesThe FLASHCTRL example code that is installed with the Precision32 SDK contains functions that can be copied and pasted into applications. These functions can be modified as needed but should be used as a starting point for Flash write and erase operations.5. Flash Write and Erase GuidelinesThe following guidelines are strongly recommended for any system containing routines that write or erase Flash from code.5.1. Voltage Supply Maintenance and the Voltage Supply Monitor1. If the system power supply is subject to voltage or current “spikes”, add sufficient transient protectiondevices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings table in the device data sheet are not exceeded.2. If the device has a minimum voltage supply rise time specification, ensure that it is met. If the systemcannot meet the rise time specification, add an external voltage supply brownout circuit to the RESETb pin of the device that holds the device in reset until the voltage supply reaches the VDD High Supply Monitor Threshold and re-asserts RESETb if the voltage supply drops below the VDD High Supply MonitorThreshold.3. Enable the on-chip voltage supply monitor and enable the voltage supply monitor as a reset source asearly in code as possible. This should be the first set of instructions executed after the Reset Vector. For C-based systems, this will involve modifying the startup code in the Precision32 HAL. Ensure that there are no delays in software between enabling the voltage supply monitor and enabling the voltage supplymonitor as a reset source.4. As an added precaution, explicitly enable the voltage supply monitor and enable the voltage supply monitoras a reset source inside the functions that write and erase Flash memory. The voltage supply monitorenable instructions should be placed at the beginning of the Flash write and erase functions.5. Ensure that all writes to the RESETEN register explicitly set the VMONREN bit to a 1. Areas to check areinitialization code, which enables other reset sources, such as the Missing Clock Detector or Comparator, and instructions that force a Software Reset. A global search on “RESETEN” can quickly verify this.6. If the device has a high and low threshold setting for the voltage supply monitor, enable the high setting. The following sections show how to enable the voltage supply monitor, enable the voltage supply monitor as a reset source, and enable the high threshold setting where applicable using both HAL and non-HAL methods on various device families.5.1.1. SiM3Cxxx/SiM3U1xx/SiM3L1xx DevicesEnable voltage supply monitor:SI32_VMON_0->CONTROL.VMONEN = 1; // non-HALSI32_VMON_A_enable_vdd_supply_monitor(SI32_VMON_0); // HALEnable voltage supply monitor as a reset source:SI32_RSTSRC_0->RESETEN.VMONREN = 1; // non-HALSI32_RSTSRC_A_enable_vdd_monitor_reset_source(SI32_RSTSRC_0); // HAL Enable the high voltage monitor threshold:AN694SI32_VMON_0->CONTROL.VDDHITHEN = 1; // non-HALSI32_VMON_A_select_vdd_high_threshold(SI32_VMON_0); // HAL5.2. AHB Clock1. If operating from an external crystal, be advised that crystal performance is susceptible to electricalinterference and is sensitive to layout and changes in temperature. If the system is operating in anelectrically noisy environment, use one of the internal oscillators or an external CMOS clock.2. If operating from the external oscillator, switch to one of the internal oscillator during Flash write or eraseoperations. The external oscillator can continue to run, and the core can switch back to the externaloscillator after the Flash operation completes. Silicon Laboratories Inc.400 West Cesar ChavezAustin, TX 78701USASimplicity StudioOne-click access to MCU andwireless tools, documentation,software, source code libraries &more. Available for Windows,Mac and Linux!IoT Portfolio/IoT SW/HW /simplicity Quality /quality Support and CommunityDisclaimerSilicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.Trademark InformationSilicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.。
694nm调Q红宝石点阵激光联合无针水光治疗黄褐斑的疗效观察

694nm 调Q 红宝石点阵激光联合无针水光治疗黄褐斑的疗效观察王春花1,武亦阁2,毕晓东1(1.南阳市第一人民医院皮肤科,河南 南阳 473002;2.新疆医科大学(中医学院),新疆 乌鲁木齐 830000)【摘要】 目的 评价694nm 调Q 红宝石点阵激光联合无针水光治疗黄褐斑的临床疗效。
方法 选取黄褐斑患者50例,随机分为治疗组和对照组,每组各25例。
治疗组:用RubyStar 694nm 调Q 红宝石点阵激光的点阵模式(能量密度2.5~3.5J/cm 2,频率为1.5Hz ,光斑大小为7mm ×7mm )共治疗6次,每次间隔4周,激光治疗1周后采用无针水光(维生素C 注射液3.0ml ,氨甲环酸3.0ml 和玻尿酸2.0ml )共治疗6次,每次间隔4周,对照组:仅用RubyStar 694nm 调Q 红宝石点阵激光的点阵模式(治疗参数同治疗组)共治疗6次,每次间隔4周。
结果 50例黄褐斑患者经过半年的治疗,治疗组总有效率为80.0%,对照组总有效率为52.0%,两组差异有统计学意义(P <0.05),两组均未见明显不良反应。
结论 694nm 调Q 红宝石点阵激光联合无针水光治疗黄褐斑效果明显优于单用694nm 调Q 红宝石点阵激光治疗,不仅色素淡化明显,而且患者的肤质也得到了很大程度的改善。
【关键词】 694nm 激光;无针水光;黄褐斑;治疗中图分类号:R454.2;R758.4+2 文献标志码:B doi :10.3969/j.issn.1002-1310.2021.02.028【收稿日期】2020-12-26黄褐斑属于色素增加性皮肤病,好发于青中年女性,发病原因复杂及治疗效果欠佳已成为治疗本病的难点[1],但关于该病目前无明确治疗手段,常用方法主要包括口服、外用、激光、果酸等,笔者科室采用694nm 调Q 红宝石点阵激光联合无针水光的方法,临床疗效得到了病人认可,详细报告如下。
国税函[2009]694号
国家税务总局关于企业年金个人所得税征收管理有关问题的通知2009年12月10日国税函[2009]694号各省、自治区、直辖市和计划单列市地方税务局,西藏、宁夏、青海省(自治区)国家税务局:为进一步规范企业年金个人所得税的征收管理,根据《中华人民共和国个人所得税法》及其实施条例的有关规定,现将有关问题明确如下:一、企业年金的个人缴费部分,不得在个人当月工资、薪金计算个人所得税时扣除。
二、企业年金的企业缴费计入个人账户的部分(以下简称企业缴费)是个人因任职或受雇而取得的所得,属于个人所得税应税收入,在计入个人账户时,应视为个人一个月的工资、薪金(不与正常工资、薪金合并),不扣除任何费用,按照“工资、薪金所得”项目计算当期应纳个人所得税款,并由企业在缴费时代扣代缴。
对企业按季度、半年或年度缴纳企业缴费的,在计税时不得还原至所属月份,均作为一个月的工资、薪金,不扣除任何费用,按照适用税率计算扣缴个人所得税。
三、对因年金设置条件导致的已经计入个人账户的企业缴费不能归属个人的部分,其已扣缴的个人所得税应予以退还。
具体计算公式如下: 应退税款=企业缴费已纳税款×(1-实际领取企业缴费/已纳税企业缴费的累计额)参加年金计划的个人在办理退税时,应持居民身份证、企业以前月度申报的含有个人明细信息的《年金企业缴费扣缴个人所得税报告表》复印件、解缴税款的《税收缴款书》复印件等资料,以及由企业出具的个人实际可领取的年金企业缴费额与已缴纳税款的年金企业缴费额的差额证明,向主管税务机关申报,经主管税务机关核实后,予以退税。
四、设立企业年金计划的企业,应按照个人所得税法和税收征收管理法的有关规定,实行全员全额扣缴明细申报制度。
企业要加强与其受托人的信息传递,并按照主管税务机关的要求提供相关信息。
对违反有关税收法律法规规定的,按照税收征管法有关规定予以处理。
五、本通知下发前,企业已按规定对企业缴费部分依法扣缴个人所得税的,税务机关不再退税;企业未扣缴企业缴费部分个人所得税的,税务机关应限期责令企业按以下方法计算扣缴税款:以每年度未扣缴企业缴费部分为应纳税所得额,以当年每个职工月平均工资额的适用税率为所属期企业缴费的适用税率,汇总计算各年度应扣缴税款。
AD694手册
4. The output voltage compliance extends to within 2 V of the positive supply and below common. When operated with a 5 V supply, the output voltage compliance extends 30 V below common.
± 0.005 ؎0.015
± 0.001 ؎0.005 % of Span
0.8
0.8
V
3.0
2.5
3.0
2.5
V
VOLTAGE REFERENCE Output Voltage: 10 V Reference
Output Voltage: 2 V Reference TMIN to TMAX4
vs. Load, VREF = 2 V, 10 V vs. Supply, VREF = 2 V, 10 V Output Current
Model
AD694JN/AQ/AR
Min
TypBiblioteka MaxAD694BQ/BR
Min Typ
Max
Unit
INPUT CHARACTERISTICS Input Voltage Range Input Bias Current Either Input, TMIN to TMAX Offset Current, TMIN to TMAX Offset Current Drift Input Impedance
论文大纲参考模板
企业薪酬满意度管理研究——基于中国航天科工集团694厂的实证分析一、研究背景与思路(一)选题背景与意义(二)国内外相关研究综述及其评价(三)研究思路与框架(四)本文的创新与不足二、企业薪酬满意度管理的理论基础(一)薪酬满意度的内涵及其意义(二)我国企业薪酬满意度的现状(三)薪酬满意度四维理论三、企业薪酬满意度的影响因素及其管理(一)企业薪酬满意度的影响因素(二)提高企业薪酬满意度的途径四、中国航天科工集团信阳694厂薪酬状况诊断(一)694厂薪酬制度的状况(二)694厂薪酬满意度管理的具体问题与根源五、中国航天科工集团信阳694厂薪酬体系改进思路与方案(一)中国航天科工集团694厂薪酬改进的原则(二)中国航天科工集团694厂薪酬改进的策略(三)中国航天科工集团694厂薪酬改进的内容(四)中国航天科工集团694厂薪酬改进的流程六、结论与展望第一章研究背景与思路一、选题背景与意义薪酬体系在企业中肩负着巨大的使命,是建立企业和员工之间利益共同体的粘合剂。
薪酬制度的设计程序和设计结果同样重要,是员工判断薪酬是否公平、公正的依据。
在薪酬与员工积极性的激励方面,薪酬理论与激励理论密切相关。
薪酬体系的设计,基本上都是在激励理论的基础上建立起来的。
现代激励理论的发展,直接推动着薪酬理论的前进。
而且,薪酬对员工的激励,构成员工激励手段的绝大多数方面,其激励效果的好坏也立接关系到一个企业的经济效益的好坏。
员工满意度管理最早产生于西方国家企业的管理实践。
20世纪90年代,西方国家的企业普遍采用员工满意度的管理方法来提高企业竞争力和绩效,并取得良好的效果。
在员工满意度管理过程中,员工对企业薪酬的满意程度是影响企业员工满意度的核心要素之一。
哈佛大学的一项调查研究表明,员工薪酬满意度每提高3个百分点,企业客户的满意度就提高5个百分点。
因此,员工对薪酬的满意度是影响员工个人工作态度、工作绩效,以及企业经营目标实现的关键,也是现代企业人力资源管理面临的一个重要研究课题。
GE Fanuc RX3i PACSystem IC694MDL754 12 24VDC输出模块说明
Rx3i PacSystem919-535-3180*******************GE Fanuc IC694MDL754/automation/ge-fanuc/rx3i-pacsystem/IC694MDL75412/24VDC Output (0.75 amps/point)Module 32 point. IC694M IC-694MD IC694MDL7-34 PACSystems™ RX3i System Manual – October 2005 GFK-2314COutput Module, 12/24VDC,ESCP 0.75A Pos. Logic, 32 Pt: IC694MDL754The 12/24 volt DC, ESCP 0.75A Positive Logic Output module, IC694MDL754, provides 32 discrete outputs in two isolated groups of 16. Each group has its own common. The outputs are positive logic or sourcing type outputs; they switch the loads on the positive side of the power supply, and supply current to the load. The outputs can switch user loads over the range of +12 to +24 VDC (+20%, -15%) and can source a maximum current of 0.75 Amps per point.Each point has electronic overcurrent/short circuit protection and generates an individual fault if either condition exists. In addition to output driver faults being sent back to the RX3i controller, the module provides a loss of field side power fault, ESCP point failure within a group, field terminal block ON/OFF status and a DIP switch configuration mismatch fault.Each group can be used to drive different loads. For example, one groups might drive 24 VDC loads, and the other could drive 12 VDC loads. Power for the loads must be provided by the user. A DIP switch on back of the module is used to select the outputs default mode: Force Off or Hold Last State. The module must be removed from the backplane to set this switch.This module can be used with either a Box-style (IC694TBB032) or Spring-style (IC694TBS032) front Terminal Block. The Terminal Block is ordered separately.The blue bands on the label show that MDL754 is a low-voltage module.This module can be installed in any I/O slot in an RX3i system. It must be used with an RX3i CPU (release 2.90 or greater). It cannot be used with a Series 90-30 PLC CPU.GFK-2314C Chapter 7 Discrete Output Modules 7-35Specifications: MDL754Rated VoltageOutput Voltage Range 12/24 volts DC, nominal 10.2 to 30 volts DCOutputs per Module 32 (two isolated groups of 16 outputs each) Isolation:Field to Backplane (optical) and to Frame Ground 250 VAC continuous; 1500 VAC for 1 minuteGroup to Group 250 VAC continuous; 1500 VAC for 1 minute Module ID0x059hOutput Current0.75 Amps per pointPower Consumption 300 mA (maximum) from 5 volt bus on backplane; Thermal Derating No derating at 24VDC. At 30VDC, outputs are derated above 42 degrees C as shown below.External Power Supply +12 VDC to +30 VDC, 12/24 VDC nominal Output CharacteristicsInrush Current3 Amps supplied for 10ms without ESCP trip Output Voltage Drop 0.3 volt DC maximum Steady-state overcurrent trip5A typical per pointOutput Leakage Current 0.1mA maximum On Response Time0.5ms maximum Off Response Time 0.5ms maximumProtectionShort-circuit protection, overcurrent protection, overtemperature protection, all with auto recovery .Refer to Appendix A for product standards and general specifications.Output Points vs. Temperature322416810°C 20°C30°C40°C50°C60°CNumber of Outputs ONAmbient Temperature (°C)7-36 PACSystems™ RX3i System Manual – October 2005 GFK-2314CLEDs32 green/yellow LEDs on the module indicate the ON/OFF status of points 1 through 32. These LEDs are green when thecorresponding outputs are on, and yellow if the outputs are faulted. They are off when the corresponding outputs are off.Two green/yellow LEDs indicate the presence of field power to each of the isolated output groups. They are green if field power is within limits. They are yellow if a point fault exists within their group. And they are off when field power is absent or outside operating limits.The module’s red/green Terminal Block LED is green when the module’s removable terminal block is locked in place. It is red when the terminal block is not locked. The Terminal Block LED blinks if there is a non-recoverable module fault. The module also sends an Addition of Terminal Block or Loss of Terminal Block message to the RX3i CPU to report the Terminal Block status.Electronic Short-circuit ProtectionEach output point provides “self-recovering” protection against overcurrent, short circuit and overtemperature. The fault is present until the condition that caused the fault is removed or the faulted point is turned off. After the fault condition is removed the output driver automatically sets the output to the state it was in before the fault occurred.Each output point provides transient voltage protection to clamp high voltages at or below 40VDC. Reverse voltage protection is provided for field power inputs.GFK-2314C Chapter 7 Discrete Output Modules 7-37Output DefaultsThe DIP switch on back of the module selects the default operation for the module’s outputs.The module must be removed from the backplane to set this switch. Note that there are two DIP switches on the module. Only the upper switch is used for this module.Outputs Default DIP SwitchOpen (right) = Force OffNot Used for IC694MDL754With the Outputs Default switch in the right (open) position, the outputs mode is set to Force Off. In this mode, the outputs will go to zero whenever communication with the CPU is lost. When the switch is in the left position, the Outputs Default mode is set to Hold Last State. In this mode theoutputs will retain their last programmed value whenever communication with the CPU is lost, and field power is present.The Outputs Default selection made with the DIP switch must match the selection made for this feature in the module’s software configuration. If the two do not match, a fault occurs.The table below summarizes the operation of Outputs Default mode with and without backplane power and field (external) power. Backplane Power Field PowerOutputsDefaultOperationOn On Force Off or Hold Last State Normal Operation. If module fault detected, outputs areset to zero. On Off Force Off or Hold Last State Module detects loss of field power, communicates fault toCPU while setting outputs to Off state. After field power is restored, the outputs are held in Off state until the modulereceives new output data from the CPU. Point LEDs indicate desired output without field power. Force OffModule detects loss of communications and turns off the outputs within 400ms. LEDs are off.Off On Hold LastStateModule detects loss of communications and holds outputs on their last states until the CPU sends new output data. LEDs are off7-38 PACSystems™ RX3i System Manual – October 2005 GFK-2314CField Wiring: MDL754Connections Terminals Terminals Connections Output 1 1 19 Output 17 Output 2 2 20 Output 18 Output 3 3 21 Output 19 Output 4 4 22 Output 20 Output 5 5 23 Output 21 Output 6 6 24 Output 22 Output 7 7 25 Output 23 Output 8 8 26 Output 24 Output 9 9 27 Output 25 Output 10 10 28 Output 26 Output 11 11 29 Output 27 Output 1212 30 Output 28 Output 13 13 31 Output 29 Output 14 14 32 Output 30 Output 15 15 33 Output 31 Output 16 16 34 Output 32 DC+ for 1 - 16 17 35 DC+ for 17 - 32 DC- for 1 - 16 18 36 DC- for 17 - 32Field Wiring TerminalsField WiringGFK-2314C Chapter 7 Discrete Output Modules 7-39Module Data: IC694MDL754Module MDL754 uses 48 input bits and 32 output bits to exchange point status and filterinformation with the RX3i CPU.Input Data: MDL754The module uses the first 16 input bits to report its status information to the RX3i CPU. It has the following content:8 7 6 5 4 3 2 116 15 14 13 12 11 10 9 Communications Word Size: 1001 = 48 inputs and 32 outputsFault Index Catalog Number:Firmware Update Mode: 1 = module waiting for firmware updateTerminal Block Present: 1 = TB not present, 0 = TB present Field Power Group 1: 1 = below limit, 0 = at limit or aboveESCP Fault Group 1: ESCP fault, 0 = no ESCP fault Field Power Group 2: 1 = below limit, 0 = at limit or above ESCP Fault Group 2: 1 = ESCP fault, 0 = no ESCP faultHold Last State DIP Switch: 1 = Hold Last State Enabled, 0 = Default to 0The CPU uses the information contained in these input bits to uniquely identify the module, and to monitor its status.The module reports the ESCP fault status of the outputs in input bits 17 - 48.Output ESCP Status BitsOutput Group 1Output Group 217-3233 - 48Output Data: MDL754The module receives 32 bits of output data from the RX3i CPU.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级________;层次________;专业________;姓名________ 网络学院化学与仪器分析模拟题1
一、选择题
1、可用如下哪种试验方法减小分析测定中的偶然误差?( C )
a. 对照试验
b. 空白试验
C. 多次平行测定
D. 校准仪器
2、HPO42-的共轭碱是( C )
(a) H2PO4-(b) H3PO4(C) PO43-(D) OH-
3、下列物质中可用于直接配制标准溶液的是(D )
(a) 固体NaOH (G.R.);(b) 浓HCl (G.R.);
(C) 固体K2Cr2O7 (G.R.);(D) 固体Na2S2O3·5H2O (a.R.)
4、已知CaF2的Ksp=2.7×10-11,若不考虑F -的水解,则CaF2在纯水中的溶解度为( D )。
a. 5.2×10-5mol/L
b. 6.8×10-6mol/L
C. 2.6×10-3mol/L
D. 1.9×10-4mol/L
5、以KMnO4法测定H2C2O4时,需在一定酸度下进行滴定,下列酸适用的为( a )。
a. H2SO4
b. HCl
C. HNO3
D. HClO4
二、填空题
1、某定量分析结果X%=2/3×(25.00 – 1.25)×476.98 / 1.0000 ×100%的有效数字位数是 3 位。
2、标准缓冲溶液用来控制溶液酸度。
3、H2C2O4•2H2O 既可用于标定碱,也可用于标定高锰酸钾。
4、以酸碱滴定为例,滴定突跃是指的是在化学计量点前后±0.1%(滴定分析允许误差)范围内,溶液参数将发生急剧变化,这种参数(如酸碱滴定中的pH)的突然改变就是滴定突跃,指示剂的变色范围指指示剂的突跃pH范围,选择的指示剂的变色范围应该在滴定突跃的范围内或部分处于该范围内。
5、弱酸可以被准确滴定的条件是cKa≥10-8,多元酸可以被分步滴定的条件是K a1/K a2>104两步中和反应稍有交叉地进行,对一般的分析工作,准确度要求不是太高,其误差也在允许范围之内。
复习资料,自我完善,仅供参考,考完上交!。