第二章 核酸的结构与功能

合集下载

生化第二章核酸的结构和功能

生化第二章核酸的结构和功能

⽣化第⼆章核酸的结构和功能第⼆章核酸的结构与功能本章重点核酸前⾔:1.真核⽣物DNA 存在于细胞核和线粒体内,携带遗传信息,并通过复制的⽅式将遗传信息进⾏传代;真核⽣物RNA 存在于细胞质、细胞核和线粒体内。

2.在某些病毒中,RNA 也可以作为遗传信息的载体。

⼀、核酸的化学组成以及⼀级结构(⼀)、核苷酸是构成核酸的基本组成单位1.DNA 的基本组成单位是脱氧核苷酸,⽽RNA 的基本组成单位是核糖核苷酸。

2.核苷酸中的碱基成分:含氮的杂环化合物。

①DNA 中的碱基:A\T\C\G 。

②RNA 中的碱基:S\U\C\G 。

★这五种碱基的酮基或氨基受所处环境的pH 是影响可以形成酮-烯醇互变异构体或氨基-亚2.核糖①β-D-核糖:C-2’原⼦上有⼀个羟基。

②β-D-脱氧核糖:C-2’原⼦上没有羟基☆脱氧核糖的化学稳定性⽐核糖好,这使DNA成为了遗传信息的载体。

3.核苷①核苷②脱氧核苷③核糖的C-1’原⼦和嘌呤的N-9原⼦或者嘧啶的N-1原⼦通过缩合反应形成了β-N-糖苷键。

在天然条件下,由于空间位阻效应,核糖和碱基处在反式构象上。

3.核苷酸的结构与命名①核苷或脱氧核苷C-5’原⼦上的羟基可以与磷酸反应,脱⽔后形成磷酸键,⽣成核苷酸或脱氧核苷酸。

②根据连接的磷酸基团的数⽬不同,核苷酸可分为核苷⼀磷酸(NMP)、核苷⼆磷酸(NDP)、核苷三磷酸(NTP)。

③⽣物体内游离存在的多是5’核苷酸★细胞内⼀些参与物质代谢的酶分⼦的辅酶结构中都含有腺苷酸,如辅酶Ⅰ(NAD+),它们是⽣物氧化体系的重要成分,在传递质⼦或电⼦的过程中具有重要的作⽤。

(⼆)、DNA是脱氧核糖核苷酸通过3’,5’-磷酸⼆酯键连接形成的⼤分⼦1.脱氧核糖核苷三磷酸C-3’原⼦的羟基能够与另⼀个脱氧核糖核苷三磷酸的α-磷酸基团缩合,形成了⼀个含有3’,5’-磷酸⼆酯键的脱氧核苷酸分⼦。

2.脱氧核苷酸分⼦保留着C-5’原⼦的磷酸基团和C-3’原⼦的羟基。

Chapter 2 核酸的结构与功能教学教材

Chapter 2 核酸的结构与功能教学教材
第二章
核酸的结构与功能
Structures and Functions of Nucleic Acids
内容
2.1 核酸的种类与分布 2.2 核苷酸 2.3 DNA的分子结构 2.4 核酸与蛋白质的复合体 2.5 RNA的分子结构 2.6 核酸的理化性质
2
2.1 核酸(Nucleic acid) 的种类与分布
48
(四)DNA双螺旋结构的多样性
49
双螺旋DNA的类型及相关参数
类型 螺旋方向
存在条件
螺距 碱基数/螺旋 碱基倾角
A-DNA 右手
相对湿度75% 2.53 nm
11
19°
B-DNA 右手
相对湿度92% 3.54 nm
10.4

Z-DNA 左手 嘌呤-嘧啶二核 4.56 nm
12
苷酸为重复单位
N=A/U/G/C
同样,dNDP、dNTP, N=A/T/G/C
腺嘌呤 腺苷
16
核苷多磷酸的生物学功能:
§NTP和dNTP分别是RNA和DNA的直接前体。 §ATP分子的最显著特点是含有两个高能磷酸键。水
解时, ATP可以释放出大量自由能,推动生物体内 各种需能的生化反应。 §UDP、ADP、GDP在多糖合成中,可作为携带葡 萄糖基的载体;CDP在磷脂合成中可作为携带胆 碱的载体。 §GTP、CTP、UTP在某些生化反应中也具有传递能 量的作用。
11
稀 有 碱 基
大多甲基化碱基,tRNA含量丰富 (高达10%) 12
2.2.3 戊糖
β-D-核糖
β-D-脱氧核糖
13
2.2.4 核苷
碱基和核糖(或脱氧核糖)通过C-N 糖苷 键连接形成核苷(或脱氧核苷)。

第二单元 核酸的结构和功能

第二单元   核酸的结构和功能
DNA分子中出现的碱基有A、T、C和G,糖为脱氧核糖。RNA分子中所含的碱基是A、U、C和G,糖为核糖。DNA分子由2条脱氧核糖核苷酸链组成,RNA分子由1条核糖核苷酸链组成。
(1~2题共用备选答案)
A.G、C、T、U
Bቤተ መጻሕፍቲ ባይዱG、A、C、T
C.A、G、C、U
D.G、A、T、U
E.I、C、A、U
【助理】
1RNA分子中所含的碱基是
四、DNA的功能
DNA是遗传的物质基础,表现生物性状的遗传信息贮存在DNA分子的核苷酸序列中。当细胞分裂时,生物遗传信息通过复制从亲代(细胞)传递给子代(细胞),使物种得以延续。因此,DNA与细胞增生、生物体传代有关。DNA还可通过转录指导RNA(包括mRNA)合成,将遗传信息传递给mRNA;继而以mRNA为模板合成特异的蛋白质分子。蛋白质赋予生物体或细胞特异的生物表型和代谢表型,使生物性状遗传。
C.DNA双螺旋以右手螺旋的方式围绕同一轴有规律地盘旋
D.两股单链的5′至3′端走向在空间排列上相同
E.两碱基之间的氢键是维持双螺旋横向稳定的主要化学键
答案:D
三、DNA的三级结构
原核生物没有细胞核,其DNA分子在双螺旋基础上进一步扭转盘曲,形成超螺旋,使体积压缩。超螺旋结构就是DNA的三级结构。
在真核生物的染色体中,DNA的三级结构与蛋白质的结合有关。与DNA结合的蛋白质有组蛋白和非组蛋白两类。组蛋白有H1,H2A,H2B,H3和H4共5种,它们都是含有丰富的赖氨酸和精氨酸残基的碱性蛋白质。组蛋白H2A、H2B、H3和H4各两分子形成八聚体,八聚体之外绕有近1圈约140至146个碱基对的DNA,构成一个核小体。H1位于核小体与核小体之间的连接区,并与约75至100个碱基对的DNA结合,组成串珠状结构。在核小体结构基础上,DNA链进—步折叠,形成染色(单)体。人类细胞核中有46条(23对)染色体,这些染色体的DNA总长达1.7m,经过折叠压缩,46条染色体总长也仅200nm左右。

第二章 核酸的结构与功能

第二章 核酸的结构与功能
分子杂交(molecular hybridization):不同
来源的核酸经变性和复性的过程,其中一些不同 的核苷酸单链由于存在局部碱基互补片段,而在 复性时形成杂化双链(heteroduplex)的过程。
分子探针(probe):带有某种标记物的分子,如
核苷酸链片段
分子杂交和探针技术是许多分子生物学技术的基
础,有广泛的应用价值。
P53
双链DNA
AT C C
TAG G
A
AT C C
TAG G
变性
加热
AT C C
单链DNA
AT C C
TAG G
TAG G
复性 杂链DNA
AT C C TAG G
退火
AT C C
TAG G

双链DNA
加热 变性
B


复性 退火

单链DNA


杂链DNA
两种最重要的生物大分子比较
二、戊糖
RNA:D-核糖
DNA:D-2-脱 氧核糖 D-核糖的C-2 所连的-OH脱去
核 糖
D-
氧就是D-2脱氧
核糖
脱氧核糖
D-
两类核酸的基本成分
RNA
磷酸 磷酸
DNA
磷酸
戊糖
嘌呤碱
D-核糖
腺嘌呤(A) 鸟嘌呤(G) 胞嘧啶(C) 尿嘧啶(U)
D-2-脱氧核糖
腺嘌呤(A) 鸟嘌呤(G) 胞嘧啶(C) 胸腺嘧啶(T)
第二章 核酸 的结构与功能
(The structure and
function of nucleic acids)
第一节
核酸的基本概念
P26

第二章 核酸的结构与功能

第二章 核酸的结构与功能

第二章核酸的结构与功能第一部分:选择题1.核酸中核苷酸之间的连接方式是:3',5'-磷酸二酯键2.腺嘌呤的克分子数等于胸腺嘧啶的克分子数3.同种生物体不同组织中的DNA碱基组成极为相似4.DNA双螺旋中碱基对位于内侧5.二股多核苷酸链通过A与T或C与G之间的氢键连接6.维持双螺旋稳定的主要因素是氢键和碱基堆积力7.RNA和DNA彻底水解后的产物:碱基不同,核糖不同8.DNA和RNA共有的成分是:鸟嘌呤9.核酸具有紫外吸收能力的原因是:嘌呤和嘧啶环中有共轭双键10.DNA超螺旋结构中,核小体由DNA和组蛋白共同构成组蛋白的成分是H1,H2A,H2B,H3和H411.大肠杆菌的基因组的碱基数目为:4700kb12.DNA的解链温度指的是:A260nm达到最大值的50%时的温度,G+C比例越高,Tm值也越高13.热变性后相同的DNA经缓慢冷却后可复性,此过程也称作退火14.核酶是RNA分子,但具有酶的功能,可作为肿瘤和病毒的基因治疗手段15.DNA的变性是指DNA分子中碱基间氢键的断裂16.真核生物DNA的高级结构包括:核小体,环状DNA,双螺旋17.DNA双链结构中氢键形成的基础是:碱基中的酮基或氨基,与介质中的pH有关,酮式烯醇式互变18.RNA分子:主要是单链,可以有局部双链,具有功能多样性19.DNA存在于:线粒体,细胞核20.DNA双螺旋的提出依据:依据Chargaff规则,X线衍射图21.DNA结构的多样性是指:改变离子强度与温度对DNA构型有影响,不同构象的DNA在功能上有差异22.真核生物mRNA:5'端帽子结构与生物进化有关,5'端帽子结构与蛋白质合成起始有关,3'端的poly A尾结构与mRNA稳定有关23.在双股DNA的Watson-Crick结构模型中,碱基平面垂直于螺旋长轴,核糖平面平行于螺旋长轴,磷酸和核糖位于外侧,碱基位于内侧24.DNA双螺旋模型有大沟和小沟,两条链的碱基配对为T=A,G≡C,一条链是5'→3',另一条链是3'→5'方向25.核苷酸分子中核糖1'-C与嘌呤N-9或嘧啶N-1相连26.tRNA含甲基化核苷酸,三叶草形的二级结构,有局部的双链结构,含有二氢尿嘧啶环,3'末端有氨基酸臂,有假尿嘧啶核苷酸,3'端是C-C-A结构27.3 .DNA分子由两条脱氧核苷酸链组成,脱氧单核苷酸之间靠磷酸二酯键连接,碱基配对为A=T,G≡C28.原核生物核糖体RNA小亚基中是16SrRNA,小亚基中有21种蛋白质,大亚基中有5S和23SrRNA,大亚基中有31种蛋白质29.转运特异氨基酸的RNA是:tRNA,具有DHU环的RNA30.3'末端具有多聚腺苷酸结构的RNA是:mRNA,hnRNA第二部分:白皮书1.tRNA结构:3'端为CCA-OH,5'端为鸟氨酸2.mRNA更新最快3.5s-rRNA二级结构:局部双螺旋结构4.组成DNA的基本单位:dAMP,dGMP,dCMP,dTMP5.组成RNA的基本单位:AMP,GMP,CMP,UMP6.DNA与RNA:嘌呤碱基相同,嘧啶碱基不同,所含戊糖不同,功能不同,在细胞中分布不同7.DNA的基本功能是携带遗传信息并通过复制将遗传信息进行传达,它是复制和转录过程的模板,tRNA的基本功能是作为载体将氨基酸搬运运到mRNA上翻译遗传密码,rRNA的基本功能是作为蛋白质合成场所,mRNA的基本功能是转录核内DNA遗传信息的碱基排列顺序并带至细胞质,指导蛋白质合成中氨基酸排列顺序。

第二章 核酸的结构与功能

第二章 核酸的结构与功能
第二章
核酸的结构与功能
❖ 1868年,瑞士外科医生Fridrich从外科手术绷带上的脓细胞的细 胞核中分离出一种溶于碱而不溶于酸的酸性有机化合物,其分子 中含磷2.5%、含氮14%,该物质被命名为核酸。
❖ 根据核酸分子中所含戊糖的差别: (一)脱氧核糖核酸(DNA):主要存在于细胞核中(真核细胞的 线粒体中也存在不少量的DNA),携带着决定个体基因型的遗传信 息,是遗传信息的贮存和携带者; (二)核糖核酸(RNA):主要存在于细胞核和细胞质中,参与细
比DNA复制得多,这与它的功能多样化密切相关。
一、mRNA是蛋白质合成中的模板
❖ 1960年,Jacob 和 Monod 等人用放射性核素示踪实验证实: 一类大小不同的RNA才是细胞内合成蛋白质的真正模板,于 1961年首先提出了信使RNA(mRNA)这个概念。
❖ 在各种RNA分子中,mRNA约占细胞内RNA总量的2~5%,种类 最多,分子大小相差很大;
N H
❖DN生称AN物为稀体有的D碱N基A8 N和79NH。RN45 AN36分12 子N 中NH2还含有一些65含1N4 3量2N 很O 少H的3C碱基65 1,N4 32
N
O
鸟嘌呤
RNA
胞嘧啶
胸腺嘧啶

HOCH2
4´ H
OH O
H 1´
H
H


OH OH
β-D-核糖(构成RNA)

HOCH2
遗传的相对稳定性,又可发生各种重组和突变,适应环境的 变迁,为自然选R型择细提菌供:无机毒会型。肺炎球菌
S型细菌:有毒型肺炎球菌
肺炎球菌转化实验
第三节
RNA 的结构与功能
❖ RNA和蛋白质共同担负着基因的表达和表达调控功能。 ❖ RNA通常以单链形式存在,但可通过链内的碱基配对形成

第二章核酸的结构与功能

第二章核酸的结构与功能

第二章核酸的结构与功能第二章核酸的结构和功能1991。

核小体6。

核酶2。

碱基互补7。

核酸分子杂交3。

增色效应。

反码环4。

商标值9。

脱氧核糖核酸5。

核糖体2。

填空题1。

在典型的脱氧核糖核酸双螺旋结构中,由磷酸戊糖组成的主链位于双螺旋的 ________ ,碱基为____________ 2.tRNA都具有 __________ _的二级结构和 ___________ 的普通三级结构。

3.成熟基因的结构特征如下: ______________________________ 4.4的基本功能。

脱氧核糖核酸是 ________________ 和 _______________5。

Tm值与DNA的___________ 口所含碱基的___________ 正比6。

脱氧核糖核酸双螺旋结构的稳定性在水平方向由___________ 保持,在垂直方向由 _________ 保持。

7.当脱氧核苷酸或核苷酸连接时,3',5'磷酸二酯键总是由 ____________ 和 ____________ 形成。

8.嘌呤和嘧啶环都含有 ___________ ,所以它们对____________ 有很强的吸收。

9.核糖和核糖或脱氧核糖通过____________ 键形成核苷。

3。

选择题(1)键入问题1。

核酸中核苷酸之间的连接方式为a.2 ‘,3'-磷酸二酯键b.3 ‘,5'-磷酸二酯键c.2 ‘,5'-磷酸二酯键d . 糖苷键 e .氢键2。

与pCAGCT 互补的DNA 序列是_ _ _a . pagctgb . pgtcgac . pgucgad . pagcuge . paggugg |哪一个描述的DNA 双螺旋结构模型是不正确的?腺嘌呤的摩尔数等于胸腺嘧啶的摩尔数。

同一生物体内不同组织的脱氧核糖核酸的基本组成非常相似。

脱氧核糖核酸双螺旋中的碱基对位于外侧。

两条多核苷酸链在连接..维持双螺旋稳定性的主要因素是氢键和碱基堆积力。

生物化学《生物化学》

生物化学《生物化学》

第二章核酸的结构和功能一.名词解释变性和复性分子杂交增色效应和减色效应Tm cAMP Chargaff定律二.填空题1、tRNA的二级结构呈()型。

2、DNA变性后,紫外吸收()。

3、核苷由()和()组成。

4、维持DNA双螺旋稳定的作用力是()。

5、碱基当量定律: A =()、G =()。

6、 DNA的一级结构是指DNA中各种脱氧核苷酸之间的()和()。

三.判断题1、核酸变性后其分子量也发生改变。

()2、RNA主要分布于细胞核中。

()3、稀有核苷酸主要存在于tRNA中。

()4、DNA的三级结构呈倒 L 型。

()5、原核生物的mRNA是单顺反子。

()6、分子杂交只发生于不同分子的DNA之间。

()7.B-DNA是反平行双链右手螺旋。

()8、DNA链一级结构的读向是3′→ 5′()四.1、有一DNA片段是pCTGGAC,另有两条片段互补,①条对还是②条对()①pGACCTC ②pGTCCAG(因为DNA片段是5ˊ→3ˊ,互补就应该是从3ˊ→5ˊ,所以②对。

)2、如果Tm高,那么A+T的量是高还是低,Tm高说明G+C含量高,G+C三个H键熔解温度比A=T二个氢键的高。

3、DNA一个螺旋有几个碱基对?10个,若某DNA的分子量是3×107,每一对碱基的分子量是670,问这DNA的长度是多少?要计算长度先必须算碱基对一个碱基对上升高度是34A所以,3.4×44776=15.22×10-4cm,那么这一段有多少个螺旋?等于4478个螺旋.五.问答题1、某DNA样品含腺嘌呤15.1%(按摩尔碱基计),计算其余碱基的百分含量。

2、DNA双螺旋结构是什么时候,由谁提出来的?试述其结构模型。

3、tRNA的结构有何特点?有何功能?4、DNA和RNA的结构有何异同?5、嘧啶、核苷、核苷酸和核酸在分子结构上的关系6、 E.chargaff定则的内容是什么?第三章蛋白质化学一.名词解释等电点(pI)肽键和肽链肽平面及二面角一级结构二级结构三级结构四级结构超二级结构结构域蛋白质变性与复性分子病肽二.问答题和计算题1、为什麽说蛋白质是生命活动最重要的物质基础?2、试举例说明蛋白质结构与功能的关系(包括一级结构、高级结构与功能的关系)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章核酸的结构与功能Structure and Function of nucleic acid一、授课章节及主要内容:第二章核酸的结构与功能二、授课对象:临床医学、预防、法医(五年制)、临床医学(七年制)通过本章的学习让学生掌握两种核酸分子即DNA和RNA的化学组成、分子结构和功能及其理化性质的特点和应用。

三、授课学时本章共安排3学时(每个课时为45分钟)。

讲授安排如下:1学时:概述+第一节核酸的化学组成及一级结构和第二节DNA的空间结构与功能中的第一部分:DNA的二级结构——双螺旋结构模型;2学时:第二节DNA的空间结构与功能的第二部分:DNA的超螺旋结构及其在染色质中的组装和第三节RNA的空间结构与功能的第一点:信使RNA(mRNA)的结构与功能3学时:第三节RNA的空间结构与功能的第二点:转运RNA(tRNA)的结构与功能和第二点:转运RNA(tRNA)的结构与功能和第二点:核蛋白体RNA(rRNA)的结构与功能及第四节核酸的理化性质和第五节核酸酶四、教学目的与要求五、重点与难点重点:掌握核酸的分类、分布及生物学意义。

掌握DNA和RNA的化学组成。

掌握DNA 的一级结构、空间结构及其功能,RNA的一级结构以及三种RNA的功能。

掌握DNA的变性、复性、分子杂交的概念。

难点:核酸的结构(DNA的一级结构、空间结构,几种重要的RNA的结构)六、教学方法及授课大致安排以讲授为主,授课结束前作适当的小节,帮助学生消化当天所学的内容,另外课前穿插提问帮助学生复习,巩固已学的知识。

七、主要外文专业词汇八、思考题1、试比较两类核酸的化学组成、分子结构、分布及生物学功能。

2、简述DNA双螺旋结构的碱基组成的Chargaff规则。

3、简述真核细胞的mRNA的结构特点和功用。

4、简述tRNA的分子组成、结构特点和功能。

5、什么是TM值?他有何生物学意义?6、什么是核酶?他在医学发展中有何意义?7、什么是DNA变性、复性、分子杂交和增色效应?有何实际意义?九、教材与教具:人民卫生出版社《生物化学》第六版十、授课提纲(或基本内容)概述Introduction核酸(nucleic acid)是以核苷酸为基本组成单位的生物信息大分子。

核酸可以分为脱氧核糖核酸(deoxyribonucleic acid,DNA)和核糖核酸(ribonucleic acid,RNA)两大类。

第一节核酸的化学组成及一级结构Chemical constitution and primary construction of nucleic acid核酸的基本组成单位是核苷酸(nucleotide),而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。

DNA的基本组成单位是脱氧核糖核苷酸(deoxyribonucleotide或deoxynucleotide),RNA的基本组成单位是核糖核苷酸(ribonucleotide)。

一、核苷酸的结构(一)碱基的种类:构成核苷酸的五种碱基(base)分别属于嘌呤(purine)和嘧啶(pyrimidine)两类含氮杂环化合物。

DNA分子中的碱基成分为A、G、C和T四种;而RNA分子则主要由A、G、C和U四种碱基组成。

(二)戊糖与核苷:是核苷酸的另一重要成分。

脱氧核糖核苷酸中的戊糖是b–D–2–脱氧核糖;核糖核苷酸中的戊糖为b–D–核糖。

这一结构上的差异使得DNA分子较RNA分子在化学上更为稳定,从而被自然选择作为生物遗传信息的储存载体。

为区别于碱基中的碳原子编号,核糖或脱氧核糖中的碳原子标以C–1´、C–2´等。

碱基和核糖或脱氧核糖通过糖苷键(glycosidic bond)缩合形成核苷或脱氧核苷,连接位置是C–1´。

(三)核苷与磷酸通过酯键结合即构成核苷酸或脱氧核苷酸。

生物体内多数核苷酸都是5´核苷酸,即磷酸基团位于核糖的第五位碳原子C–5´上。

根据磷酸基团的数目不同,有核苷一磷酸(nucleoside monophosphate,NMP)、核苷二磷酸(nucleoside diphosphate,NDP)、核苷三磷酸(nucleoside triphosphate,NTP)的命名方式;根据碱基成分的不同,有AMP (adenosine monophosphate)、ADP(adenosine diphosphate)、ATP(adenosine triphosphate)等命名。

(四)核苷酸除了构成核酸大分子以外,还参加各种物质代谢的调控和多种蛋白质功能的调节。

例如ATP和UTP在能量代谢中均为重要的底物或中间产物;环腺苷酸(cyclic AMP,cAMP)和环鸟苷酸(cyclic GMP,cGMP)等则在细胞信号转导过程中具有重要调控作用。

二、核酸的一级结构(一)定义:核酸的一级结构是指DNA和RNA分子中核苷酸的排列顺序,也称核苷酸序列。

由于核酸分子中不同核苷酸之间的差异仅在于碱基的不同,因此也称为碱基序列。

(二)连接方式: 磷酸二酯键。

四种脱氧核苷酸按照一定的排列顺序以化学键:3′, 5′磷酸二酯键(phosphodiester linkage)相连形成的多聚脱氧核苷酸(polydeoxynucleotides)链称为DNA。

多聚核苷酸(polynucleotides)链则称为RNA。

这些脱氧核苷酸或核苷酸的连接具有严格的方向性,由前一位核苷酸的3´–OH与下一位核苷酸的5´位磷酸基之间形成3´, 5´磷酸二酯键,从而构成一个没有分支的线性大分子。

它们的两个末端分别称为5´末端(游离磷酸基)和3´末端(游离羟基)。

书写规则应从5´末端到3´末端。

(见六版教材图2-4)(三)DNA和RNA一级结构的差异:RNA是生物体内另一大类核酸。

它与DNA的差别是:①组成它的核苷酸的戊糖不是脱氧核糖而是核糖;②RNA中的嘧啶成分为胞嘧啶和尿嘧啶,而不含有胸腺嘧啶,所以构成RNA的基本四种核苷酸是AMP、GMP、CMP和UMP,其中U代替了DNA中的T。

DNA和RNA对遗传信息的携带和传递,是依靠碱基排列顺序变化而实现的。

第二节DNA的空间结构与功能Space structure and function of DNA一、DNA的二级结构——双螺旋结构模型(一)双螺旋结构的研究背景1.碱基组成的Chargaff规则:①A=T,C=G;②不同种属的DNA碱基组成不同;③同一个体不同器官、不同组织的DNA具有相同的碱基组成。

2.DNA纤维的X线图谱分析显示DNA是螺旋型分子,且为双链分子。

3.Rosalind Franklin获得了高质量的DNA的X线衍射照片,显示出DNA是螺旋形分子,而且从密度上提示DNA是双链分子。

1953年Watson和Crick总结前人的研究成果,提出了DNA的双螺旋结构模型。

(二)DNA双螺旋结构模型的要点1.DNA是一反向平行的互补双链结构: DNA分子是由两条反向平行的脱氧多核苷酸链组成,一条链的走向是5′→3′,另一条链的走向是3′→5′。

在DNA双链结构中,外侧是由亲水的脱氧核糖基和磷酸基构成的骨架,内侧是碱基,两条链的碱基之间以氢键结合即A与T配对;C与G配对。

两个配对的碱基结构几乎在一个平面上,并且此平面与线性分子的长轴相垂直(图2–5)。

2.DNA是右手螺旋结构DNA线性长分子通过初始的折叠形成一个右手螺旋式结构,螺旋直径为2nm,螺旋一周包含了10对碱基,螺距为3.4nm。

外观上,DNA双螺旋分子存在一个大沟和一个小沟,此沟状结构可能与蛋白质和DNA间的识别有关。

3.疏水力和氢键维系DNA双螺旋结构的稳定DNA双螺旋结构的稳定性横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,由以后者更为重要。

(三)DNA结构的多样性不同的环境条件下,DNA的结构不同,自然界存在的DNA有:B-DNA 右手螺旋(Watson-Crick模型结构)Z-DNA 左手螺旋A-DNA 右手螺旋体内不同构象的DNA在功能上有所差异,可能参与基因表达的调节和控制。

(见六版教材图2-6)二、DNA的超螺旋结构及其在染色质中的组装DNA是十分巨大的信息高分子,DNA的长度要求其必须形成紧密折叠扭转的方式才能够存在于很小的细胞核内。

(一)DNA的超螺旋结构DNA双螺旋链再盘绕即形成超螺旋结构(superhelix 或supercoil)。

盘绕方向与DNA 双螺旋方同相同为正超螺旋(positive supercoil);盘绕方向与DNA双螺旋方向相反则为负超螺旋(negative supercoil)。

自然界的闭合双链DNA主要是以负超螺旋形式存在。

(二)原核生物DNA的高级结构绝大部分原核生物的DNA都是共价封闭的环状双螺旋分子。

在细胞内进一步盘绕,并形成类核(nucleoid)结构,以保证其以较致密的形式存在于细胞内。

在细菌基因组中,超螺旋可以相互独立存在,形成超螺旋区,各区域间的DNA可以有不同程度的超螺旋结构。

(三)DNA在真核生物细胞核内的组装在真核生物,DNA以非常致密的形式存在于细胞核内。

在细胞周期的大部分时间里以分散存在的染色质(chromatin)形式出现,在细胞分裂期形成高度组织有序的染色体(chromosome)染色质的基本组成单位被称为核小体(nucleosome),由DNA和5种组蛋白(histone,H)共同构成。

核小体中的组蛋白分别称为H1,H2A,H2B,H3和H4。

各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋链缠绕在这一核心上形成核小体的核心颗粒(core particle)。

核小体的核心颗粒之间再由DNA(约60 bp)和组蛋白H1构成的连接区连接起来形成串珠样的结构。

核小体是DNA在核内形成致密结构的第一层次折叠,使得DNA的整体体积减少约6倍。

第二层次的折叠是核小体卷曲(每周6个核小体)形成直径30 nm、在染色质和间期染色体中都可以见到的纤维状结构和襻状结构,DNA的致密程度增加约40倍。

第三层次的折叠是30 nm纤维再折叠形成柱状结构,致密程度增加约1000倍,在分裂期染色体中增加约10 000倍,从而将约1米长的DNA分子压缩,容纳于直径只有数微米的细胞核中。

人类的基因组2.8×109bpDNA的结构特点是具有高度的复杂性和稳定性,可以满足遗传多样性和稳定性的需要。

第三节RNA的空间结构与功能Space structure and function of RNARNA在生命活动中同样具有重要作用。

它和蛋白质共同负责基因的表达和表达过程的调控。

相关文档
最新文档