多元统计分析课件(人大何晓群)第一章
多元统计分析人大何晓群第一章ppt课件

阵,其元素是 covX(i,Yj ),即 cX o , Y ) ( v c X i , ( Y j ) o ,i ) v 1 , , n ; ( j 1 , ,p( 1 . 1 ) 若covX(,Y)0,称 X和Y是不相关的。
当A、B为常数矩阵时,由定义可推出协差阵有如下性质:
后者是从概率角度上来考虑的,因而更为合理些,它是用坐标
差平方除以方差(或说乘以方差的倒数),从而化为无量纲数,
推广到多维就要乘以协方差阵∑的逆矩阵
,这1 就是马氏
x(/1)
,xp)
x(/2)
xn1 xn2
xnp
x(/n)
若无特别说明,本书所称向量均指列向量
定义1.1 设 x1,x2, ,xp为p个随机变量,由它们组成 的向量 (x1,x2, ,xp) 称为随机向量。
2021/5/24
精选课件PPT
8
目录 上页 下页 返回 结束
§1.1.2 分布函数与密度函数
在数据处理时,为了克服由于指标的量纲不同对统计分 析结果带来的影响,往往在使用某种统计分析方法之前,常 需将每个指标“标准化”,即做如下变换
X
j
X j E(X j)
(var
X
)1/ 2
j
j 1, , p
X
(
X
1
,
X
2
,,Xp)于是(1.12)
E(X) 0
D(X) corr(X) R
数,G(x)和H(y)分别为X和 Y的分布函数,则 X与 Y独立
当且仅当 F f(x (,xy ,)y ) G (g x()H x)(h y ()y)
(1.4)
多元统计分析课件 (1)

的 F 统计量。在多元统计分析中,起到相同作用的是统计量 和 分布。
(1)Wilks分布
定义:设 ~ W p ( n1 , ) 和 ~ W p ( n2 , ) ,且 , 相互独立, 和 n1 p , n2 p ,则称
|| ||
0
服从Wilks分布,记 ~ ( p, n1 , n2 ) 。
2
定理:设 x1,x2, ,xn1 是来自多元正态总体 Np (,) 的简单 随机样本,
x 2 ( x 21 , x 22 , , x 2 p ) x 1 ( x11 , x12 , , x1 p )
…
x n ( x n 1 , x n 2 , , x n p )
定理1:设X1,X2,……Xn是来自多元正态总体Np(,)
X j Xj nXX 则有 S i 1
1 1、 ~ N p ( , ) n 2、和S相互独立 3、S ~ W p (n 1, )
证明:
设 令 * * 1 n * 1 * * 2 为一正交矩阵 ij nn 1 n n 2 n ) X1 X 2 X n *
2 k
n
a 1
k
na
xa x , x ,, x
(a) 1 (a) 2
(a) na
1 k n (a) x xi n a 1 i 1 1 n (a) a x xi na i 1
a a
W E B
a 1 i 1 k na
(xi
k na
(a)
x)(x(a) i x) x )(x x )
应用多元统计分析01

• 点击饼图,在Chart Editor中,可对图 做细微改进。 • 在Elements中选Show Data Lables, 在跳 出的Properties新窗口, 将percent 和 “语种”选入Displayed, • 再在TextStyle 中的Font中选 FangSong_GB2312或FangSong等汉字 体
数据的描述
Descriptive Statistics 描述统计 -用表格、图形和数值对数据进行 直观的描述
广告投入和销售额之间的关系
例 1.1(数据ads.sav,ads.txt)显示了某企业 的广告投入和销售额之间的关系(万元)。
散点图
定量变量的图表示- 直方图、盒 形图、茎叶图和散点图
•
多变量的图表示:脸谱图
• 由美国统计学家Herman Chernoff(也称 为Chernoff图)提出。 将观测的p(1518)个变量分别用脸的某一部位的形状 和大小来表示 。 一个样品/观测可以画 成一张脸。 • 如果左右脸不对称,可以画36个变量。 • 15个变量- 1脸的范围;2脸的形状; 3鼻子的长度;4 嘴的位置;5 笑容曲线; 6 嘴的宽度;7-11眼睛的位置、分开程度、 角度、形状和宽度;13-15眼眉的位置、 角度和宽度。
R软件library(“aplpack”)中faces var1= "height of face", var2 = "width of face ", var3= "structure of face", var4 = "height of mouth ", var5 = "width of mouth", var6 = "smiling ", var7 = "height of eyes ", var8 = "width of eyes ", var9 = "height of hair ", var10 = "width of hair ", var11 = "style of hair ", var12 = "height of nose ", var13 = "width of nose ", var14 = "width of ear ", var15 = "height of ear "
多元统计分析教学大纲(何晓群版)

《多元统计分析》课程教学大纲(Mutilvariate Analysis For Economics)一、课程基本信息1、课程类别:专业限选课2、课程学时:总学时643、学分:34、适用专业:5、大纲执笔者:6、修订时间:2009.10二、课程教学目的多元统计分析引进数理统计的多元分析方法对社会经济现象进行多维度、深层次分析、刻画、综合的方法。
是以统计学方法中的综合指标法为基础,对现象用指标进行描述,然后再考虑指标的引进与删除、指标的抽象与综合、样本的聚类和类间的差异、以及回归模型的建立等问题,可以对经济问题深入剖析,纵向横向对比研究。
本课程在方法的数理推导上不作较高要求,主要弄清方法的原理和基本思路;重点是方法的适应范围、解决问题的实质是什么、各种方法之间的相互关系是什么、各种方法在计算机上怎么实现、特别在SPSS如何操作、输出结果的数学意义是什么、经济上又如何解析。
在掌握上述各基本问题以后,本课程着重培养学生的口头表述能力和书面表达能力,口头上要能针对一个问题,提出解决思路,讲述途径和分析可能性,大致判断最后结果,必需上讲台讲。
多元统计分析是高年级专业课程,要为学生写作毕业论文和参加其它科研创作活动作好准备。
三、课程教学的基本要求第一章多元正态分布学生搜集现象的多指标数据,简单验证大样本情况下绝大部分问题是可用多元正态分布来描述现象的特征的。
第二章多元正态总体均值向量和协差阵的假设检验1.了解几个常见的统计检验量服从的概率分布;2.深刻理解样本统计量和根据显著性水平查表所得值之间的比较与最终接受或拒绝原假设之间的关系;3.学生必需举例说明均值向量检验在实际经济研究中的应用和其已知与未知的意义和存在性分析,理解两总体及多总体均值向量检验的应用意义;4.理解协方差阵检验的应用意义,特别要学会两个检验结合运用。
第三章聚类分析1.理解各种距离和相似系数的意义和其各种定义计算方法下表现出来的数量特征;2.理解R型和Q型聚类的区别和联系;3.深刻理解样本间距离计算与聚类时类间距离的规定之间的关系;掌握八种系统聚类法在实际应用中各自的特点和适应范围;4.选择一个问题,每人写出一篇关于聚类问题分析的小论文,论文在5000字左右,要求有问题的提出、指标选择和数据收集,聚类分析结论等四个部分。
应用多元统计课件 (1)

3
本课程的特点与教学方式
教学方式 : 授课与实际例题相结合. 本课程的特点是将常用的多元分析方法的 介绍与在计算机上实现这些方法的软件紧 密地结合起来,不仅介绍每种多元分析方 法 的实际背景、统计思想、统计模型、数 学原理和解题的思路,并结合实例介绍应 用编程软件(Matlab)解决问题的步骤和计算 结果的分析。
的考试成绩,可对学生进行分类,如按文、理 科成绩分类,按总成绩分类等。若准备给优秀 学生发奖,那么一等奖、二等奖的比例应该是 多少?应用多元统计分析的方法可以给出公平 合理地确定。
19
教育学--
主成分分析在学生学习成绩排序中的应用
我在担任学生班主任期间,经常会遇到学 校下达的评选三好生,评选学习奖等任务.另 还有评选各种奖学金的工作;推荐研究生的 工作都要求班主任提出意见.
0.1025X 4 0.2852X12
Z1是12个变量的线性组合,且系数都是正数,
数值有大有小。显然数值大的变量对综合指标
(主成分)的贡献大;数值小的变量对综合指
标(主成分)的贡献小。
24
教育学--
主成分分析在学生学习成绩排序中的应用
12个原始变量(课程)提供的信息各为多少?用什
么量来表达?最经典的方法是用变量的方差Var(Xi)为
23
教育学--
主成分分析在学生学习成绩排序中的应用
最简单最直观地综合变量就是12门课的成绩总和
。但这个最简单的综合变量并不是最科学地代表12门
课综合成绩的指标,而用主成分分析得出的第一主成分
(原始变量的线性组合)Z1是最科学地代表12门课综合 成绩的指标。比如
Z1 0.3233X1 0.4525X 2 0.3502X 3
《多元统计分析》课件

采用L1正则化,通过惩罚项来选择最重要 的自变量,实现特征选择和模型简化。
比较
应用场景
岭回归适用于所有自变量都对因变量有影 响的情况,而套索回归更适用于特征选择 和模型压缩。
适用于数据集较大、自变量之间存在多重 共线性的情况,如生物信息学数据分析、 市场细分等。
主成分回归与偏最小二乘回归
主成分回归
适用于自变量之间存在多重 共线性的情况,同时要求高 预测精度,如金融市场预测 、化学计量学等。
06 多元数据的典型相关分析
典型相关分析的基本思想
01
典型相关分析是一种研究多个 随机变量之间相关性的多元统 计分析方法。
02
它通过寻找一对或多个线性组 合,使得这些线性组合之间的 相关性达到最大或最小,从而 揭示多个变量之间的关系。
原理
基于最小二乘法原理,通过最小化预 测值与实际值之间的平方误差来估计 回归系数。
应用场景
适用于因变量与自变量之间存在线性 关系的情况,如预测房价、股票价格 等。
注意事项
需对自变量进行筛选和多重共线性诊 断,以避免模型的不稳定性和误差。
岭回归与套索回归
岭回归
套索回归
是一种用于解决多重共线性的回归方法, 通过引入一个小的正则化项来稳定系数估 计。
层次聚类
01
步骤
02
1. 将每个数据点视为一个独立的集群。
2. 计算任意两个集群之间的距离或相似度。
03
层次聚类
01 3. 将最相近的两个集群合并为一个新的集群。 02 4. 重复步骤2和3,直到满足终止条件(如达到预
设的集群数量或最大距离阈值)。
03 应用:适用于探索性数据分析,帮助研究者了解 数据的分布和结构。
多元统计分析——基于R 语言 PPT课件-聚类分析

——基于R语言
中国人民大学:何晓群
苏州大学:马学俊
03
聚类分析
➢学习目标:
1.了解适合用聚类分析解决的问题;
2.理解对象之间的相似性是如何测量的;
3.区别不同的距离;
4.区分不同的聚类方法及其相应的应用;
5.理解如何选择类的个数;
6.简述聚类分析的局限。
3.1 聚类分析的基本思想
3.1.1 目的
的关系越密切; 的绝对值越接近0,表示指标和指标的关系越疏远。对于间隔尺度,常用的
相似系数有夹角余弦和相关系数。
(1)夹角余弦:指标向量 1 , 2 , … , 和 1 , 2 , … , 之间的夹角余弦
ij 1 =
间隔尺度定义
σ=1
+ )个样品,它们的重心用ത , ത , ത 表示,则
1
ത = ( ത + ത )
某一类 的中心为ത ,它与新类 的距离为2 (, ) = (ത − ത )’ (ത −ത ),经证明重心法的递推
公式为:
聚类分析不仅可以用来对样品进行分类,而且可以用来对变量进行分类。对样品的分类
常称为型聚类分析,对变量的分类常称为型聚类分析。与多元分析的其他方法相比,
聚类分析的方法还是比较粗糙的,理论上也不算完善,但由于它能解决许多实际问题,所
以很受实际研究者重视,同回归分析、判别分析一起称为多元分析的三大方法。
和ഥ
间距离。
(5)离差平方和法: = σ∈ ( −ത )′ ( − ത ) , = σ∈ ( −ത )′ ( − ത ) ,
′
+ = σ∈ ⊔ ( −)ҧ ( − ),
多元统计分析 第1章 多元分析概述

多元统计分析的应用举例
反映城镇居民消费水平的八项指标:
➢人均粮食支出、人均副食支出、 ➢人均烟酒茶支出、人均衣着商品支出、 ➢人均日用品支出、人均燃料支出、 ➢人均非商品支出、人均出行支出
为什么要多元、多指标? 指标归并聚类分析
多元统计分析的应用
第一章 多元统计分析概述
多元统计分析--ቤተ መጻሕፍቲ ባይዱ言
多元统计分析是运用数理统计方法来研究 解决多指标问题的理论和方法。
一元(单变量)到多变量? 大数据时代的需要 多变量带来的问题?
多元统计分析--历史
1928年Wishart发表论文《多元正态总体样 本协差阵的精确分布》
R. A. Fisher 、H. Hotelling、S. N. Roy、许 宝騄……
上世纪50年代中期,随着电子计算机的出 现和发展,使多元分析方法得到广泛应用
多元统计分析—核心内容
基于多元正态总体
➢参数估计 ➢假设检验 ➢判别分析 ➢聚类分析 ➢主成分分析 ➢因子分析 ➢对应分析 ➢典型相关分析 ➢多维标度法等
应用背景
统计学的生命力在于应用 多元统计分析方法的应用
Application Driven (Data Driven)
评价企业经济效益
➢百元固定资产原值实现产值、 ➢百元固定资产原值实现利税、 ➢百元资金实现利税、 ➢……
指标太多、错综复杂主成分分析或因子 分析
多元统计分析的应用
考察两个部门工作效率是否有显著差异
➢多元正态总体均值向量和协差阵的假设检验
有100种酒,品尝家可以对每两种酒进行品 尝对比,给出一种相近程度的得分以分析 这100种酒之间的结构关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
2
μ
E ( X P )
P
是一个p维向量,称为均值向量.
1.6
当 A、B为常数矩阵时,由定义可立即推出如下性质:
( 1 )E (A ) X A (X ) E
1 .7
( 2 )E (A) X A (X B ) E B
2019/12/8
F (x ) x 1 x p f(t1 , tp)d t1 dp,t
(1.2)
对一切xRp 成立,则称 X(或 FX )有分布
密度 f 并称 X为连续型随机向量。
一个p维变量的函数f(·)能作为R P 中某个随机向
量的分布密度,当且仅当
(i) f(x)0 xRp
2019/12/8
4
目录 上页 下页 返回 结束
§1.1多元分布的基本概念
§1.1.1 随机向量 §1.1.2 分布函数与密度函数 §1.1.3 多元变量的独立性 §1.1.4 随机向量的数字特征
2019/12/8
5
目录 上页 下页 返回 结束
§1.1.1 随机向量
假定所讨论的是多个变量的总体,所研究的数
§1.1.2 分布函数与密度函数
描述随机变量的最基本工具是分布函数,类似地描述 随机向量的最基本工具还是分布函数。
定义1.2 设 X(x1,x2, ,xp)是以随机向量,它的多元分布
函数是
F ( X ) F ( x 1 , x 2 , , x p ) P ( X 1 x 1 , , X p x p ) 1 . 1
2019/12/8
11
目录 上页 下页 返回 结束
§1.1.4 随机向量的数字特征
1、随机向量 X的均值
设 X(X1,X2, ,Xp)有P个分量。若 E(Xi)i (i1,2, p)
存在,我们定义随机向量X的均值为:
E ( X1 ) 1
E
(
X )p E
(
X2
式中:
x (x 1 ,x 2 , ,x p ) R P , 并 记 为 X F 。
多元分布函数的有关性质此处从略。
2019/12/8
9
目录 上页 下页 返回 结束
§1.1.2 分布函数与密度函数
定义1.3:设 X~F(X)= F(x1,x2,,xp),若存在一个 非负的函数 f ,使得
多元统计分析
何晓群
中国人民大学出版社
2019/12/8
1
第一章 多元正态分布
§1.1 多元分布的基本概念 §1.2 统计距离和马氏距离 §1.3 多元正态分布 §1.4 均值向量和协方差阵的估计 §1.5 常用分布及抽样分布
2019/12/8
2
目录 上页 下页 返回 结束
第一章 多元正态分布
• 一元正态分布在统计学的理论和实际应 用中都有着重要的地位。同样,在多变 量统计学中,多元正态分布也占有相当 重要的位置。原因是:
• 许多随机向量确实遵从正态分布,或近 似遵从正态分布;
• 对于多元正态分布,已有一整套统计推 断方法,并且得到了许多完整的结果。
2019/12/8
3
目录 上页 下页 返回 结束
第一章 多元正态分布
多元正态分布是最常用的一种多元 概率分布。除此之外,还有多元对数正 态分布,多项式分布,多元超几何分布, 多元 分χ布2 、多元 分布 、多元指数 分布等。本章从多维变量及多元分布的 基本概念开始,着重介绍多元正态分布 的定义及一些重要性质。
数,G(x)和H(y)分别为X和 Y的分布函数,则 X与 Y独立
当且仅当 F f(x (,xy ,)y ) G (g x()x H )(h y ()y)
(1.4)
若 (X , Y)有密度 f (x,y),用g(x)和h(y)分别表示 X和 Y
的分布密度,则X和Y 独立当且仅当 (1.5)
注意:在上述定义中,X和 Y的维数一般是不同的。
( 1 .8 )
12
目录 上页 下页 返回 结束
§1.1.4 随机向量的数字特征
2、随机向量X自协方差阵
Σ C ( X , O X ) E ( X V E X )X (E X ) / D ( X )
D(X1)
CO(VX1,X2) CO(VX1,XP)
CO(VX2,X1) D(X2)
(x1,x2,
x(/1)
,xp)
x(/2)
xn1 xn2
xnp
x(/n)
若无特别说明,本书所称向量均指列向量
定义1.1 设 x1,x2, ,xp为p个随机变量,由它们组成 的向量 (x1,x2, ,xp) 称为随机向量。
2019/12/8
8
目录 上页 下页 返回 结束
j
序号
变量
X1
X2
…
Xp
1
x x np 11
x12
…
x1 p
2
x 21
x22
…
x2 p
n
x n1xn2…源自x np2019/12/8
7
目录 上页 下页 返回 结束
§1.1.1 随机向量
• 因此,样本资料矩阵可用矩阵语言表示为:
x11 x12 Xx21 x22
x1p
x2p
据是同时观测 p个指标(即变量),又进行了 n次
观测得到的,把这 p个指标表示为 X1,X2,,Xp常 用向量
X(X1,X2, ,Xp)'
表示对同一个体观测的 p个变量。若观测了 n
个个体,则可得到如下表1-1的数据,称每一个个
体的 p个变量为一个样品,而全体 n个样品形成一
个样本。
2019/12/8
(ii) f(x)dx1 Rp 2019/12/8
10
目录 上页 下页 返回 结束
§1.1.3 多元变量的独立性
定义1.4:两个随机向量 X和 Y称为是相互独立的,若
P (X x ,Y y ) P (X x )P ( Y y ) (1.3
对一切(X , Y)成立。若 F(x, y)为(X , Y)的联合分布函
6
目录 上页 下页 返回 结束
§1.1.1 随机向量
横看表1-1,记 X ()(x1,x2, ,xp)', 1,2,n
它表示第 个样品的观测值。竖看表1-1,第 j 列的元素
X j(x1j,x2j, ,xn)j ', j 1,2,p
表示对
j 第个变量
x
的n次观测数值。下面为表1-1