第三章 函数

合集下载

离散数学 第三章 函数

离散数学 第三章  函数

下面先规定几个标准集合的基数: 1) 空集的基数为0。 2) 设n为一自然数,Nn为从1到n的连贯的自然数集合, Nn={1,2,3,…,n},Nn的基数为n,|Nn|=n 。 3) 设N为自然数的全体,N={1,2,3,…},N的基数为ℵ0(读成 阿列夫零, ℵ是希伯莱文的第一个字母)。 4) 设R为实数的全体,R的基数为ℵ ,|R|= ℵ 。 • • 以上四项规定,对于空集及Nn的基数,实际上就是集 合中元素的个数,关于ℵ0及ℵ,下面将予探讨。 有了标准基数之后,我们可以对各种集合测量其基数。 测量的手段是以双射函数为主体的等价关系一等势。 比如说,一个集合与N等势,那么这个集合的基数为 ℵ0 。
定理6 设A及B为两个可数集,那么A×B为一可数集。 定理 推论1 推论 设A1,A2,A3,…,An为n个可数集,那么 × A是可数集。
i=1 i n
定理7 (0,1)开区间上的实数不是可数集。 定理 定理8 设A为一集Y的函数,若f 是双射函数,则f 的逆关系 f –1是从Y到X的双射函数。 定理2 定理 设f 是从X到Y的函数,g 是从Y到Z的函数,则复合关 系f οg是从 X到Z的函数,将f ο g记为g ο f 。 定理3 定理 设f 是从X到Y的函数,g 是从Y到Z的函数。 1)若f 和g是满射函数,则g ο f 是满射函数; 2)若f 和g是单射函数,则g ο f 是单射函数; 3)若f 和g是双射函数,则g ο f 是双射函数。 定理4 定理 设f 是从X到Y的双射函数, f –1是f 的逆函数,则 1) (f –1) –1 = f 2) f –1 ο f = IX 3) f ο f –1 = IY
定义3 定义 设 |X|=n,P是从X到X的双射函数,称P为X上的置 换,称n为置换的阶。 • 在n个元素的集合中,不同的n阶置换的个数为n!。 • 通常用下面的方法表示置换。 x1 x2 x3 … xn P = p(x ) p(x ) p(x ) … p(x ) 1 2 3 n • 若∀xi∈X 有 p(xi) = xi ,则称P是恒等置换。 • P的逆函数P-1可表示为 p(x1) p(x2) p(x3) … p(xn) P-1 = x1 x2 x3 … xn • 置换的复合与关系的复合相同。 1 2 3 1 2 3 1 2 3 3 2 1 2 1 3 3 1 2

高中数学新教材必修一第三章 《函数的概念与性质》全套课件

高中数学新教材必修一第三章 《函数的概念与性质》全套课件
根据问题的条件,我们不能判断列车以 350 km/h 运行半小时后的情况,所以上述说法不正确、显
然,其原因是没有关注到 t 的变化范圈。 下面用更精确的语言表示问题 1 中 S 与 t 的对应 关系。列车行进的路程 S 与运行时间 t 的对应关 系是列车行进的路程 S 与运行时间/的对应关系是 S=350t. ①,
4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2.函数的三要素
定义域 值域 对应法则f
定义域
决定
值域
对应法则
3.会求简单函数的定义域和函数值
4.理解区间是表示数集的一种方法,会把不等式转化为区间。
3.1.2函数的表示法
复习引入
函数的定义:设A、B是非空的实数集,如果
对于集合A中的任意一个数x,按照某种确定的对 应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A
x叫做自变量,x的取值范围A叫做函数的定 义域;与x的值相对应的y的值叫做函数值,函 数值的集合{f(x)|x∈A}叫做函数的值域。
显然值域是集合B的子集
复习引入
(1)如果y=f (x)是整式,则定义域是 实数集R (2)如果y=f (x)是分式,则定义域是
使分母不等于0的实数的集合
(3)如果y=f (x)是偶次根式,则定义域是

高一第三章函数问题知识点

高一第三章函数问题知识点

高一第三章函数问题知识点函数是数学中一种重要的概念,是研究数量关系的基础工具。

在高一的第三章函数问题中,我们要学习各种函数的性质和运算规则。

本文将详细介绍高一第三章函数问题的知识点。

一、函数的定义与表示方法函数是数学中的一种映射关系,可以表示为y=f(x),其中x为自变量,y为因变量,f(x)为函数的表达式。

函数可以通过函数图像、函数表、解析式等多种方式表示。

二、函数的性质1. 定义域与值域:函数的定义域是自变量可能的取值范围,值域是函数取得的所有可能的值。

2. 奇偶性:函数在对称中心点具有对称性的称为偶函数,对称中心点为原点的称为奇函数。

3. 单调性:函数在定义域上的取值随自变量的增减而增减的性质。

4. 最值与极值:函数的最值是函数取得的最大值和最小值,极值是函数在某一区间内的最大值和最小值。

5. 周期性:函数在一定的区间内有规律地重复出现的性质。

三、函数的基本运算1. 函数的四则运算:函数之间可以进行加减乘除的四则运算,结果仍为函数。

2. 函数的复合:将一个函数的输出作为另一个函数的输入,形成新的函数。

3. 函数的反函数:满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数之间称为互为反函数。

4. 函数的平移与伸缩:通过平移和伸缩可以改变函数的位置和形状。

四、常见函数的性质与图像1. 线性函数:y=kx+b,其中k为斜率,b为截距,图像为一条直线。

2. 幂函数:y=x^n,其中n为常数,图像形状由n的正负以及大小决定。

3. 指数函数:y=a^x,其中a为底数,大于1时为增长函数,小于1时为衰减函数。

4. 对数函数:y=log_a(x),其中a为底数,反映a的x次幂等于y,常见的对数函数为以10为底的常用对数函数log(x)和以e为底的自然对数函数ln(x)。

5. 三角函数:包括正弦函数、余弦函数、正切函数等,图像为周期性波动的曲线。

五、函数的应用函数在现实生活中有着广泛的应用,例如物体自由落体运动的高度与时间的关系、经济学中的供需曲线、生物学中的种群增长模型等等。

高中数学必修一-第三章-3.1 函数的概念及其表示

高中数学必修一-第三章-3.1 函数的概念及其表示

第三章函数3.1 函数的概念及其表示知识点一:函数的概念1.函数的有关概念2.函数的三要素一个函数的构成要素:定义域、对应关系和值域.因为值域是由定义域和对应关系决定的,所以两个函数的定义域和对应关系相同时,它们是同一个函数.3.区间的概念:设a,b∈R,a<b.实数集R可以用区间表示为(-∞,+∞).知识点二:函数的表示法1.函数的三种表示法2.分段函数已知函数y=f(x),x∈A,如果自变量x在不同的取值范围内,函数有着不同的对应关系,那么我们称这样的函数为分段函数.【思考】1.函数的定义域和值域是否一定是无限集?2.区间是数集的另一种表示方法,是否任何数集都能用区间表示?3.根据函数的定义,任何一个自变量x是否都有唯一的函数值y与之对应?任何一个函数值y 是否都有唯一的自变量x与之对应?4.如何确定分段函数的定义域和值域?【解析】1.不一定.函数的定义域和值域也可能是有限集,如f(x)=1,x∈{1,2,3}.2.不是.如集合{0,1}就不能用区间表示.3.任何一个自变量x都有唯一的函数值y与之对应,但是函数值y不一定有唯一的自变量x 与之对应。

如f(x)=x2中,函数值4有两个自变量2、-2与之对应。

函数中x,y的对应关系是“一对一”或“多对一”,不能“一对多”.4.分段函数的定义域是每一段自变量取值范围的并集,值域也是每一段函数值取值范围的并集.3.1.1 函数的概念基础练一函数的概念1.(多选题)下面选项中,变量y是变量x的函数的是()A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP(国内生产总值)C.x表示某地区学生的某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税2.下列四组函数中,表示同一个函数的是()3A.y=|x|与y=√x3B.y=√x2与s=(√t)2C.y=2t+1与y=2u+1D.y=1与y=x03.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示以集合M为定义域,集合N为值域的函数关系的有()A.①②③④B.①②③C.②③D.②④二函数的定义域4.函数f(x)=√x−1的定义域为() x−2A.[1,+∞)B.[1,2)C.[1,2)∪(2,+∞)D.(1,2)∪(2,+∞)5.已知某矩形的周长为定值a,若该矩形的面积S是这个矩形的一边长x的函数,则这个函数的定义域是.6.已知函数y=f(x)的定义域为[-2,3],则函数y=f(2x+1)的定义域为.x+1三函数值及函数的值域7.已知集合P={x|y=√x−1},集合Q={y|y=√x−1},则()A.P=QB.P⫋QC.Q⫋PD.P∩Q=⌀8.函数y=√x2−2x+3的值域为.,则f(x)的值域为.9.已知函数f(x)=1x2−2x10.已知函数f(x)的定义域是[0,1],值域是[1,2],则这样的函数可以是f(x)=.11.已知函数f(x)=x2+x-1.);(1)求f(2), f(1x(2)若f(x)=5,求x的值.3.1.2 函数的表示法基础练一 函数的表示法及其应用 1.函数y =x x+1的图象大致是 ( )A B C D2.某同学从家里到学校,为了不迟到,先匀速跑一段时间,跑累了再匀速走余下的路,设在途中花费的时间为t ,离开家的距离为d ,则下面图象中,能正确表示d 与t 的关系的是( )A B C D3.已知函数y =f (x )的对应关系如表,函数y =g (x )的图象为如图所示的曲线ABC ,则g (f (3))的值为 .二 函数解析式的求法5.已知函数f (x +2)=x 2+6x +8,则函数f (x )的解析式为( ) A.f (x )=x 2+2x B.f (x )=x 2+6x +8 C.f (x )=x 2+4x D.f (x )=x 2+8x +66.函数f (x )满足f (1-2x )=-1x ,则f (2)=( )A.2B.-2C.12 D.-12 7.已知函数f (2x -1)=3x -5,若f (x 0)=4,则x 0= .8.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )= .9.(1)已知函数g (√x +1)=2x +1,求g (x )的解析式;(2)已知f (x )为二次函数,且f (0)=2, f (2)=f (-1)=0,求f (x )的解析式.三 分段函数问题10.已知函数f (x )={√x,x >0,|x +1|,x ≤0,则f (f (-3))=( )A.√3B.1C.2D.√2 11.已知f (x )={x +2,x ≤−1,x 2,−1<x <2,2x,x ≥2,若f (x )=3,则x 的值是( )A.1B.1或32C.1,32或±√3 D.√312.函数f (x )=x +|x |x 的图象是( )A B C D13.(2022山西大同期中)已知函数f (x )={x 2,x ≤0,4−2x,x >0.(1)画出函数f (x )的图象;(2)当f (x )≥2时,求实数x 的取值范围.。

数学必修一第三章知识点总结

数学必修一第三章知识点总结

数学必修一第三章知识点总结第三章是关于函数的知识点总结。

1. 函数的概念:函数是一个特殊的关系,将一个数集的每个元素与另一个数集的元素对应起来。

函数可以用一个公式、图像或者表格来表示。

2. 定义域和值域:函数的定义域是指能够使函数有意义的所有输入值的集合,值域是所有函数可能的输出值的集合。

3. 函数的图像:函数的图像是将函数的输入和输出对应起来的一种形象表示。

在平面直角坐标系中,函数的图像是一条曲线或者直线。

4. 函数的性质:函数可以是奇函数、偶函数或者普通函数。

奇函数满足 f(-x) = -f(x);偶函数满足 f(-x) = f(x);普通函数不满足奇偶性质。

5. 函数的性质:函数可以是单调递增函数、单调递减函数、增函数或者减函数。

单调递增函数满足 f(x1) < f(x2) 当且仅当 x1 < x2;单调递减函数满足 f(x1) > f(x2) 当且仅当 x1 < x2;增函数在定义域上满足 f(x1) < f(x2) 当且仅当 x1 < x2;减函数在定义域上满足 f(x1) > f(x2) 当且仅当 x1 < x2。

6. 反函数:函数的反函数将函数的输入和输出颠倒过来,即输入变为输出,输出变为输入。

反函数的定义域和值域与原函数相反。

7. 复合函数:复合函数是两个或多个函数的组合。

复合函数的定义域是能够使复合函数有意义的所有值的集合。

8. 基本初等函数:基本初等函数包括常函数、一次函数、幂函数、指数函数、对数函数和三角函数等。

这些函数具有特定的性质和图像特征。

9. 函数的运算:函数之间可以进行加减乘除和求导等运算。

函数的运算结果仍然是一个函数,具有相应的性质和图像特征。

以上是第三章关于函数的知识点总结。

在学习函数时,需要理解函数的概念和性质,掌握常见的函数类型和图像特征,以及函数的运算和组合等操作。

同时,还需要通过练习题和实例来巩固和应用所学知识。

高中数学新教材必修一第三章 《函数的概念与性质》全套课件

高中数学新教材必修一第三章 《函数的概念与性质》全套课件

4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2x
0y 2
x
2
D
0
2x
学习新知
初中我们已知接触过函数的三种表示方法:解析法、列表法和图 象法
问题 2 某电气维修公司一个工人的工资关于天数 d 的函数 w=350d. ②定义域{1,2,3,4,5,6}
学习新知 这里的实数a与b都叫做相应区间的端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷 大”。满足x≥ a,x>a ,x ≤b, x<b的实数的集合分别表示 为[a, +∞)、(a, +∞)、(-∞,b]、(-∞,b).
集合表示 区间表示 数轴表示
{x a<x<b} (a , b)
我国某省城镇居民恩格尔系数变化情况
时间(年)y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔系数r(%) 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
请仿照前面的方法描述恩格尔系数r和时间(年)y的关系。
对于集合A中的任意一个数x,按照某种确定的对
应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A

第三章 函数

第三章 函数

⑶ 在函数的定义中,如果集合 A 和 B 都是通常的数集, 则这里定义的函数就是数学中的函数,其中“自变量”、 “定义域”、“值域”等概念与数学中的函数一致。因此, 离散数学中的函数概念是通常函数概念的推广。 ⑷ 谈到函数,必须涉及两个集合:定义域 A、值域包 B。 在证明题中,需首先明确定义域 A 和值域包集合 B
成为一种特殊的“关系”。函数主要涉及把一个有限集合变换成
另一个有限集合的离散函数。例如,编译程序把一组高级语言命 令的集合变成机器语言指令的集合。
§3.1 函数的概念
一,基本概念
函数:设有集合 Biblioteka 、B,f 是一个由 A 到B 的关系,如果对于每
个 a∈A,存在唯一的 b∈B 使得 af b(或 f (a) = b),则
练习
有关习题:
12
作业
p112 习题 1、2、3
作业
有关习题:
13
二,函数相等
函数相等:设有函数 f:A→B 和 g:C→D,如果 A=C 和B =D , 并且对所有的 a∈A(或 a∈C )都有 f (a)= g (a), 则称函数 f 和 g 是相等 的,记为 f =g
思考:设有函数 f :A→B ,S A, 等式 f (A)-f (S) = f (A -S) 成立吗?为什么?
有关习题:
基本概念
4
我们从反面来理解函数,看什么样的关系 不是函数?
⑴ 在关系 f :A→B 中,若对于某个 a∈A,不存在 b∈B,
使得 a f b ,则 f 不是函数 例: f = {(n1,n2)︱n1,n2∈N,n2=小于 n1 的素数的个数} ⑵ 在关系 f :A→B 中,若对于某个 a∈A,存在 b1∈B 和 b2∈B ,且 b1≠b2,使得 af b1 和 af b2 同 时成立,则

第三章 函数的概念与性质(课堂笔记)

第三章 函数的概念与性质(课堂笔记)

第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念1.概念的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合f x x ∈A }叫做函数的值域.2.函数三要素:定义域、对应关系、值域。

3.区间若a ,b ∈R ,且a <b ,则(1)x |a ≤x ≤b =a ,b 闭区间(2)x |a <x <b =a ,b 开区间(3)x |a ≤x <b =a ,b ) 半开半闭区间x |a <x ≤b =(a ,b ]半开半闭区间∞表示无穷大,R =-∞,+∞(4)x |x <a =-∞,a x |x ≤a =-∞,a ] (5)x |x >a =(a ,+∞)x |x ≥a =[a ,+∞)4.常见求函数定义域方法(1)分式的分母不等于零;(2)偶次根号下被开方数大于等于零;(3)零的零次方无意义;a 0=1,a ≠0(4)对数式的真数大于零;(5)定义域多个取值范围同时满足,求交集。

例:函数f (x )=-x 2+4x +12+1x -4的定义域是.解:要使函数有意义,需满足-x 2+4x +12≥0x -4≠0,即-2≤x ≤6x ≠4 .即-2≤x <4或4<x ≤6,故函数的定义域为[-2,4)⋃4,6 .5.判断函数为同一函数如果两个函数的定义域相同,并且对应关系也完全一致,那么这两个函数是同一个函数。

3.1.2函数的表示方法1.函数的表示方法:表格法、图像法、解析式法2.分段函数如果一个函数,在其定义域内,对于自变量x 的不同取值区间,有不同的对应关系,则称其为分段函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8
• 函数概念的第五次扩张,提出了“近代函数定义”。 • 美国数学家维布伦的函数定义,这个定义是建立在重新定 义变量、变域和常量的基础上的。 • 所谓变量,是代表某集合中任意一个“元素”的记号,由 变量所表示的任一元素,称为该变量的值。变量x代表的 “元素”的集合,为该变量的变域,而常量是上述集合中只 包含一个“元素”情况下的特殊变量。这样的变量与常量 的定义,比原来的定义更趋一般化了,而且克服了以往变 量定义的缺陷,变量“变动”改进为变量在变域(集合) 中代表一个个元素。 • 利用这一变量的定义,维布伦给出了近代函数定义:“设 集合X、Y,如果X中每一个元素x都有Y中唯一确定的元素 y与之对应,那么我们就把此对应叫做从集合X到集合Y的 映射,记作f:XY,y=f(x)”。 • 从“数集”到“集”仅一字之差,但含意却大不相同。从 而使函数概念摆脱了数的束缚,使得函数概念能广泛地应 用于数学的各个分支及其它学科中。
(2) f2={(3, 6),(1, 8),(2, 6),(4, 7)}
(3) f3={(3, 6),(2, 9),(1, 9),(4, 9),(5, 9)}

N )
( Y )
N )
(4) f4={(2, 9),(3, 8),(1, 7),(2, 6),(4, 7),(5, 10)} (
23
2.对下列每一函数,确定是否内射,是否 满射,是否双射。分别将“内”、“满”或 “双”填入相应的括号内。 i i是偶数 2 (1) f : I I ( 满 ) f 1 1 i 1 i是奇数 2
函数function
总之,函数实质是:量与量之间的某种关系 它不再局限于数与数之间的对应关系
11
3.1
一、 函数的概念
1.函数


例1.设A={1, 2, 3, 4},B={2, 3, 4, 5, 6}, A到B的 关 系 ={(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4)} 定义3-1 设有集合A、B, f 是一由 A 到 B 的关系,如果 对于每一个 a∈A ,均存在唯 一的 b∈B ,使得 afb (或 (a , b)∈f),则称关系f是由A到B 的一个函数。记作 f : A→B 。
的值域满足Rf B.但对于函数f,常将Rf记作f(A)。
即f(A)=Rf ={b|b∈B且存在a∈A使f (a)=b}
例如 例2中f (2)=6, f (4)=4, g (1)=3, g (3)= 6
Df =Dg=A
f(A)=Rf={2, 4, 6} g (A)=Rg={2, 3, 5, 6}
14
• • • • • • • • • • • • • • Not one-to-one • • • • • • • • • • • • • Not even a function!
One-to-one
Illustration of Onto
• Some functions that are, or are not, onto their codomains:
第三章
主要内容如下: 3.1 3.3 3.5 函数 逆函数 置换


3.2 3.4 3.6
函数的复合运算 集合的基数 数学归纳法
1
函数概念的产生与发展
• 函数概念的起源 函数概念的萌芽,可以追溯到古代对图形轨迹 的研究,随着社会的发展,人们开始逐渐发现, 在所有已经建立起来的数的运算中,某些量之 间存在着一种规律:一个或几个量的变化,会 引起另一个量的变化,这种从数学本身的运算 中反映出来的量与量之间的相互依赖关系,就 是函数概念的萌芽。在代数学的方程理论中, 对不定方程的求解,使得人们对函数概念逐步 由模糊趋向清晰。
7
• 函数概念的第四次扩张,可称为“科学函数定义”进入精确 化阶段。 • 德国数学家狄利克雷于1837年给出了函数定义:“若对 x(a≤x≤b)的每一个值,y总有完全确定的值与之对应,不 管建立起这种对应的法则的方式如何,都称y是x的函数”。 • 这一定义彻底地抛弃了前面一些定义中解析式的束缚,强调 和突出函数概念的本质,即对应思想,使之具有更加丰富的 内涵。因而,此定义才真正可以称得上是函数的科学定义, 为理论研究和实际应用提供了方便。 • 为使函数概念适用范围更加广泛,人们对函数定义作了如下 补充:“函数y=f(x)的自变量,可以不必取[a,b]中的一切值, 而可以仅取其任一部分”,换句话说就是x的取值可以是任 意数集,这个集合中可以有有限个数、也可以有无限多个数, 可以是连续的、也可以是离散的。这样就使函数成了一个非 常广泛的概念。
(a)是内射,但不是满射; (b)是满射, 但不是内射; (c)既不是内射,也不是满射; (d)既是内射,又是满射,因此是双射。
19
One-to-One Illustration
• Bipartite (2-part) graph representations of functions that are (or not) one-to-one:
• • • • • • • • • • • • • • • • • • Not Onto (or 1-1) • • • • • • • • Both 1-1 and onto • • • •
• • • • • 1-1 but not onto
Onto (but not 1-1)
两个有用的、特殊的函数介绍
12
例2 对例1中关系的序偶进行调整或修改,使
f={(1,2),(2,6),(3,6),(4,4)} 或g={(1,3),(2,2),(3,6),(4,5)}
则f和g都是由A到B的函数。 若f是一由A到B的函数,且(a,b)∈f,则常记 作f(a)=b。
13
2. 函数的定义域和值域
函数的定义域Df=A,而不会是A的真子集。 函数
5
• 函数概念的第二次扩张是从几何方而的扩张,提出了 “几何的函数概念”。
• 十八世纪中期的一些数学家发展了莱布尼兹将函数看 作几何量的观点,而把曲线称为函数(因为解析表达式 在几何上表示为曲线)。 • 达朗贝尔在1746年研究弦振动问题时,提出了用单独 的解析表达式给出的曲线是函数,后来欧拉发现有些 曲线不一定是由单个解析式给出的,因此提出了一个 新的定义,函数是:“ 平面上随手画出来的曲线所表 示的x与y的关系”。即把函数定义为由单个解析式表 达出的连续函数,也包括由若干个解析式表达出的不 连续函数(不连续函数的名称是由欧拉提出的)。
16
例3 设A={a, b, c}, B={1, 2}, 构造出
所有由A到B的函数,并验证#(BA)=(#B)#A
解: 由A到B的函数如下: f1={(a,1),(b,1),(c,1)} f2={(a,1),(b,2),(c,1)} f3={(a,1),(b,1),(c,2)} f5={(a,2),(b,1),(c,1)} f6={(a,2),(b,2),(c,1)}
者说当f (ai)=f (aj) 时, 有ai = aj)则称f是由A
到 B的内射( one-to-one)。 ( 2 )若对任意b∈B,必存在a∈A, 使f(a)=b,则称f是A到B的满射 (onto)。 (3)若f既是内射,又是满射,则称 f是由A到B的双射 (bijection)。 18
例4
9
• 函数概念的第六次扩张,提出了“现代函数定 义”。
• 19世纪康托尔创建了集合论,函数概念进入了 集合论的范畴,使函数概念纯粹地使用集合论 语言进行定义。 • 在这种情形下,函数、映射又归结为一种更为 广泛的概念——关系。 • 这就是现代的函数定义,它在形式上回避了 “对应”术语,使用的全部是集合论的语言, 一扫原来定义中关于“对应”的含义存在着的 模糊性,而使函数念更为清晰、正确,应用范 围更加广泛了。 10
注意
• • • • f要是集合A到B的函数, 必须满足以下条件: 1. A中的每个元素都要有像 2. A中的一个元不可以有两个不同的像 3. A中不同的元素可关系 • 学生举例: 不是函数的关系的例子,并说明为什么 不是. 15
3.函数的相等
定义3-2 设f和g都是由集合A到B的函数,如果对于 所有的a∈A , 均有 f(a)=g(a), 则称函数 f 和 g 相等 , 记作 f=g 。 根据定义3-2,若在A中有一个元素a,使得 f(a) ≠g (a) , 则f≠g 。 设 A 和 B 都 是 有 限 集 , # A = n , # B = m , 设 A={a1, a2, …, an}, B={b1, b2, …, bm}。 A中n个元素的取值方式是 m m m 种, 因 此由A到B的函数有m n个, n个 记BA={f|f: A→B}, 则#(BA)=(#B)#A 问题:从R到R的函数f(x)=2x,与从I到I的函数g(x)=2x相等吗?为 什么?
• • • • 顶函数(ceiling function) 底函数(floor function) 恒等函数(identity function) 不动点函数( fix point)
22
练习
3 -1
B={6, 7, 8, 9,
1 . 设 A = {1, 2, 3, 4, 5} ,
10}, 判断下列由A到B的关系哪些是函数,哪些不是函 数。在相应的括号中键入“Y”或“N”。 (1) f1={(1, 10),(2, 9),(3, 8),(4, 7),(5, 6)} ( Y )
3
函数概念的扩张
• 函数概念被提出后,由于微积分学的发展,函 数概念也不断进行扩张,日趋深化。致使函数 概念日趋精确化、科学化。函数概念在发展过 程中,大致经过了以下六个阶段的扩张。
4
• 第一次扩张主要是解析扩张,提出了“解析的 函数概念”。 • 瑞士数学家约翰.伯努利于1698年给出了函数 新的定义:由变量x和常量用任何方式构成的 量都可以叫做x的函数。这里的“任何方式” 包括了代数式子和超越式子。 • 1748年欧拉在《无穷小分析引论》中给出的 函数定义是:“变量的函数是一个解析表达 式,它是由这个变量和一些常量以任何方式 组成的”。1734年欧拉还曾引入了函数符号 , 并区分了显函数和隐函数、单值函数和多值 函数、一元函数和多元函数等。
相关文档
最新文档