热力学·统计物理期末考试卷讲解学习

合集下载

热力学与统计物理期末试题(杭师大)

热力学与统计物理期末试题(杭师大)

一、填空(每小题1分,共20分)1.热力学和统计物理学的任务相同,但研究的方法是不同的。

热力学是热运动的 理论,统计物理学是热运动的 理论。

2.热力学第二定律揭示了自然界中与热现象有关的实际过程都是 。

3.定域系统和满足经典极限条件的玻色(费米)系统都遵从 玻耳兹曼 分布。

4.能量均分定理:对于处在温度为T 的平衡状态的经典系统,粒子能量中每一个平方项平均值等于 。

5.不满足12232>>)(hm kT N V π条件的气体称为 简并 气体,如果系统是由费米子构成,需要用 费米—狄拉克 分布处理。

6.光子是属于 玻色子 粒子,达到平衡后遵从 玻色—爱因斯坦 分布。

7.对粒子运动状态的描述可分为 经典 描述和 量子 描述, 经典 描述认为粒子运动遵从经典力学运动规律,粒子在任一时刻的力学运动状态由粒子的 广义坐标 和与之共轭的 广义动量 在该时刻的数值确定。

在不考虑外场的情况下,粒子的能量是其 广义坐标 和 广义动量 的函数。

量子 描述认为粒子的运动遵从量子力学的运动规律,从原则上说微观粒子是遵从 量子力学 运动规律的。

8.统计物理学从宏观物质系统是由大量微观粒子组成这一事实出发,认为物质的宏观特性是 大量微观粒子 行为的集体表现,宏观物理量是 微观物理量 的统计平均值。

9.电子是费米子粒子,强简并的费米子粒子构成的系统遵从费米分布,费米子系统的巨配分函数定义为l l l a e ωβε∏--+=Ξ]1[,其对数为∑--+la l l e )1ln(βεω10.在经典描述中,三维自由粒子的能量为)(21222z y x p p p m++=ε(其中x x m p v =,y y m p v =,z z m p v =),在量子描述中三维自由粒子的能量为)(21222z y x p p p m ++=ε(其中x x n L p π2=,y y n L p π2=,z z n Lp π2=,)或),2,1,,(2222222L h ±±=++=z y x z y x n n n Ln n n m πε。

(完整word版)热力学与统计物理期末复习题

(完整word版)热力学与统计物理期末复习题

热力学统计物理1、请给出熵、焓、自由能和吉布斯函数的定义和物理意义解:熵的定义:S B−S A=∫dQT ⟹B A dS=dQT沿可逆过程的热温比的积分,只取决于始、末状态,而与过程无关,与保守力作功类似。

因而可认为存在一个态函数,定义为熵。

焓的定义:H=U+pV焓的变化是系统在等压可逆过程中所吸收的热量的度量。

自由能的定义:F=U−TS自由能的减小是在等温过程中从系统所获得的最大功。

吉布斯函数的定义:G =F+pV= U – TS + pV在等温等压过程中,系统的吉布斯函数永不增加。

也就是说,在等温等压条件下,系统中发生的不可逆过程总是朝着吉布斯函数减少的方向进行的。

2、请给出热力学第零、第一、第二、第三定律的完整表述解:热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。

热力学第二定律:克氏表述:不可能把热量从低温物体传到高温物体而不引起其他变化;开氏表述:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化。

热力学第三定律:能氏定理:凝聚系的熵在等温过程中的改变随热力学温度趋于零,即limT→0(∆S)T=0绝对零度不能达到原理:不肯能通过有限的步骤使一个物体冷却到热力学温度的零度。

通常认为,能氏定理和绝对零度不能达到原理是热力学第三定律的两种表述。

3、请给出定压热容与定容热容的定义,并推导出理想气体的定压热容与定容热容关系式:C p−C V=nR解:定容热容: C V=(ðUðT )V表示在体积不变的条件下内能随温度的变化率;定压热容:C p=(ðUðT )p−p(ðVðT)P=(ðHðT)P表示在压强不变的情况下的熵增;对于理想气体,定容热容C V的偏导数可以写为导数,即C V=dUdT(1)定压热容C p的偏导数可以写为导数,即C P=dHdT(2)理想气体的熵为 H=U+pV=U+nRT(3)由(1)(2)(3)式可得理想气体的定压热容与定容热容关系式:C p−C V=nR4、分别给出体涨系数α,压强系数β和等温压缩系数κT的定义,并证明三者之间的关系:α=κTβp解:体涨系数:α=1V (ðVðT)P,α 给出在压强不变的条件下,温度升高1 K所引起的物体的体积的相对变化;压强系数:β=1p (ðp ðT )v ,β 给出在体积不变的条件下,温度升高1 K 所引起的物体的体积的相对变化;等温压缩系数:κT =−1V (ðV ðp )T ,κT 给出在温度不变的条件下,增加单位压强所引起的物体的体积的相对变化;由于p 、V 、T 三个变量之间存在函数关系f (p ,T ,V )=0,其偏导数存在以下关系:(ðV ðp )T (ðp ðT )v (ðT ðV )P =−1 因此α, β, κT 满足α=κT βp5、分别给出内能,焓,自由能,吉布斯函数四个热力学基本方程及其对应的麦克斯韦关系式解:内能的热力学基本方程:dU =TdS −pdV对应的麦克斯韦关系式:(ðT ðV )S =−(ðp ðS )V 焓的热力学基本方程:dH =TdS +Vdp对应的麦克斯韦关系式:(ðT ðp )s =(ðV ðS )p 自由能的热力学基本方程:dF =−SdT +Vdp对应的麦克斯韦关系式:(ðS ðV )T =(ðp ðT )V 吉布斯函数的热力学基本方程:dG =−SdT −pdV对应的麦克斯韦关系式: (ðS ðp )T =−(ðV ðT )p 6、选择T ,V 为独立变量,证明:C V =T (ðS ðT )V ,(ðU ðV )T = T (ðp ðT )V −p 证明:选择T ,V 为独立变量,内能U 的全微分为dU =(ðU ðT )V dT +(ðU ðV )T dV (1) 又已知内能的热力学基本方程 dU =TdS −pdV (2)以T ,V 为自变量时,熵S 的全微分为dS =(ðS ðT )V dT +(ðS ðV )T dV (3) 将(3)式代入(2)式可得dU =T (ðS ðT )V dT +[T (ðS ðV )T −P]dV (4) 将(4)式与(1)式比较可得C V =(ðU ðT )V =T (ðS ðT )V (5) (ðU ðV )T = T (ðp ðT )V −p (6) 7、简述节流过程制冷,气体绝热膨胀制冷,磁致冷却法的原理和优缺点解:节流过程制冷:原理:让被压缩的气体通过一绝热管,管子的中间放置一多孔塞或颈缩管。

统计物理期末试题及答案

统计物理期末试题及答案

统计物理期末试题及答案一、选择题(每题3分,共30分)1. 在统计物理中,描述粒子分布的函数是:A. 波函数B. 配分函数C. 统计权重D. 状态方程2. 温度的微观解释是:A. 粒子的平均动能B. 粒子的总动能C. 粒子的势能D. 粒子的动量3. 以下哪个量不是热力学系统的宏观状态量?A. 温度B. 体积C. 粒子数D. 动量4. 理想气体的熵变只与温度变化有关,这是因为:A. 理想气体分子间无相互作用B. 理想气体分子间有相互作用C. 理想气体分子间相互作用可以忽略D. 理想气体分子间相互作用对熵变有影响5. 根据玻尔兹曼统计,一个粒子在能量为E的态上的统计权重是:A. e^(-E/kT)B. e^(E/kT)C. e^(-E/kBT)D. e^(E/kBT)6. 一个系统从状态A到状态B的自由能变化等于:A. ΔF = ΔH - TΔSB. ΔF = ΔU - TΔSC. ΔF = ΔH + TΔSD. ΔF = ΔU + TΔS7. 热力学第二定律表明:A. 能量守恒B. 熵增原理C. 能量转换效率D. 热机效率8. 绝对零度是:A. 温度的下限B. 温度的上限C. 粒子动能的最小值D. 粒子动能的最大值9. 以下哪个过程是不可逆的?A. 理想气体的等温膨胀B. 理想气体的绝热膨胀C. 理想气体的等压膨胀D. 理想气体的等容膨胀10. 根据吉布斯自由能,一个化学反应在恒温恒压下自发进行的条件是:A. ΔG < 0B. ΔG > 0C. ΔG = 0D. ΔG ≠ 0二、填空题(每题2分,共20分)1. 在统计物理中,配分函数Z的定义是:Z = Σ e^(-E_i/kT),其中E_i是第i个能级的_________。

2. 一个系统从状态A到状态B的熵变可以通过公式ΔS = _________来计算。

3. 热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的完美晶体的_________趋于一个常数。

大学热力学与统计物理期末复习笔记1

大学热力学与统计物理期末复习笔记1

《热力学统计物理》期末复习一、简答题1、写出焓、自由能、吉布斯函数的定义式及微分表达式(只考虑体积变化功)答:焓的定义H=U+PV,焓的全微分dH=TdS+VdP;自由能的定义F=U-TS,自由能的全微分dF=-SdT-PdV;吉布斯函数的定义G=U-TS+PV,吉布斯函数的全微分dG=-SdT+VdP。

2、什么是近独立粒子和全同粒子?描写近独立子系统平衡态分布有哪几种?答:近独立子系统指的是粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可以忽略粒子之间的相互作用。

全同粒子组成的系统就是由具有完全相同的属性(相同的质量、电荷、自旋等)的同类粒子组成的系统。

描写近独立子系统平衡态分布有费米-狄拉克分布、玻色-爱因斯坦分布、玻耳兹曼分布。

3、简述平衡态统计物理的基本假设。

答:平衡态统计物理的基本假设是等概率原理。

等概率原理认为,对于处于平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的。

它是统计物理的基本假设,它的正确性由它的种种推论都与客观实际相符而得到肯定。

4、什么叫特性函数?请写出简单系统的特性函数。

答:马休在1869年证明,如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。

这个热力学函数称为特性函数。

简单系统的特性函数有内能U=U (S 、V ),焓H=H (S 、P ),自由能F=F (T 、V ),吉布斯函数G=G (T 、P )。

5、什么是μ空间?并简单介绍粒子运动状态的经典描述。

答:为了形象的描述粒子的运动状态,用r r p p q q ,,,,11 ;共2r 个变量为直角坐标,构成一个2r 维空间,称为μ空间。

粒子在某一时刻的力学运动状态()r r p p q q ,,,,11 ;可用μ空间的一个点表示。

6、试说明应用经典能量均分定理求得的理想气体的内能和热容量中哪些结论与实验不符(至少例举三项)。

热力学和统计物理的答案解析第二章

热力学和统计物理的答案解析第二章

第二章 均匀物质的热力学性质2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.解:根据题设,气体的压强可表为(),p f V T = (1)式中()f V 是体积V 的函数. 由自由能的全微分 dF SdT pdV =--得麦氏关系.T VS p V T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将式(1)代入,有().T VS p p f V V T T ∂∂⎛⎫⎛⎫=== ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 由于0,0p T >>,故有0T S V ∂⎛⎫>⎪∂⎝⎭. 这意味着,在温度保持不变时,该气体的熵随体积而增加.2.2 设一物质的物态方程具有以下形式:(),p f V T =试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式:(),p f V T = (1)故有().Vp f V T ∂⎛⎫= ⎪∂⎝⎭ (2) 但根据式(2.2.7),有,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以()0.TU Tf V p V ∂⎛⎫=-= ⎪∂⎝⎭ (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数.2.3 求证: ()0;HS a p ⎛⎫∂< ⎪∂⎝⎭ ()0.U S b V ∂⎛⎫> ⎪∂⎝⎭解:焓的全微分为.dH TdS Vdp =+ (1)令0dH =,得0.HS Vp T ⎛⎫∂=-< ⎪∂⎝⎭ (2) 内能的全微分为.dU TdS pdV =- (3)令0dU =,得0.U S p V T∂⎛⎫=> ⎪∂⎝⎭ (4)2.4 已知0T UV ∂⎛⎫= ⎪∂⎝⎭,求证0.TU p ⎛⎫∂= ⎪∂⎝⎭ 解:对复合函数(,)(,(,))U T P U T V T p = (1)求偏导数,有.T T TU U V p V p ⎛⎫⎛⎫∂∂∂⎛⎫= ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (2) 如果0TU V ∂⎛⎫=⎪∂⎝⎭,即有0.TU p ⎛⎫∂= ⎪∂⎝⎭ (3) 式(2)也可以用雅可比行列式证明:(,)(,)(,)(,)(,)(,)T U U T p p T U T V T V T p T ⎛⎫∂∂= ⎪∂∂⎝⎭∂∂=∂∂.T TU V V p ⎛⎫∂∂⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭ (2)2.5 试证明一个均匀物体的在准静态等压过程中熵随体积的增减取决于等压下温度随体积的增减.解:热力学用偏导数pS V ∂⎛⎫⎪∂⎝⎭描述等压过程中的熵随体积的变化率,用pT V ∂⎛⎫⎪∂⎝⎭描述等压下温度随体积的变化率. 为求出这两个偏导数的关系,对复合函数(,)(,(,))S S p V S p T p V == (1)求偏导数,有.p p p p pC S S T T V T V T V ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 因为0,0p C T >>,所以p S V ∂⎛⎫⎪∂⎝⎭的正负取决于pT V ∂⎛⎫⎪∂⎝⎭的正负. 式(2)也可以用雅可经行列式证明:(,)(,)(,)(,)(,)(,)P S S p V V p S p T p T p V p ∂∂⎛⎫= ⎪∂∂⎝⎭∂∂=∂∂P PS T T V ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2)2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落.解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数S T p ⎛⎫∂ ⎪∂⎝⎭和HT p ⎛⎫∂ ⎪∂⎝⎭描述. 熵函数(,)S T p 的全微分为 .P TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在可逆绝热过程中0dS =,故有.T P p SPS V T p T T Sp C T ⎛⎫∂∂⎛⎫⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (1) 最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓(,)H T p 的全微分为.P TH H dH dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在节流过程中0dH =,故有.T PpH PH V T V p T T H p C T ⎛⎫∂∂⎛⎫- ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (2) 最后一步用了式(2.2.10)和式(1.6.6). 将式(1)和式(2)相减,得0.pSH T T V p p C ⎛⎫⎛⎫∂∂-=> ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.2.7 实验发现,一气体的压强p 与体积V 的乘积以及内能U 都只是温度的函数,即(),().pV f T U U T ==试根据热力学理论,讨论该气体的物态方程可能具有什么形式.解:根据题设,气体具有下述特性:(),pV f T = (1)().U U T = (2)由式(2.2.7)和式(2),有0.T VU p T p V T ∂∂⎛⎫⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 而由式(1)可得.Vp T df T T V dT ∂⎛⎫= ⎪∂⎝⎭ (4) 将式(4)代入式(3),有,dfTf dT= 或.df dT f T= (5) 积分得ln ln ln ,f T C =+或,pV CT = (6)式中C 是常量. 因此,如果气体具有式(1),(2)所表达的特性,由热力学理论知其物态方程必具有式(6)的形式. 确定常量C 需要进一步的实验结果.2.8 证明2222,,p V T Vp TC C p V T T V T p T ∂⎛⎫⎛⎫⎛⎫∂∂∂⎛⎫==- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭并由此导出0020222,.VV VV Vp p p p pp C C T dV T p C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎛⎫∂=- ⎪∂⎝⎭⎰⎰根据以上两式证明,理想气体的定容热容量和定压热容呈只是温度T 的函数.解:式(2.2.5)给出.V VS C T T ∂⎛⎫= ⎪∂⎝⎭ (1) 以T ,V 为状态参量,将上式求对V 的偏导数,有2222,V T VC S S S T T T V V T T VT ⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫===⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 其中第二步交换了偏导数的求导次序,第三步应用了麦氏关系(2.2.3). 由理想气体的物态方程pV nRT =知,在V 不变时,p 是T 的线性函数,即220.Vp T ⎛⎫∂= ⎪∂⎝⎭ 所以 0.V TC V ∂⎛⎫= ⎪∂⎝⎭这意味着,理想气体的定容热容量只是温度T 的函数. 在恒定温度下将式(2)积分,得0202.VV VV Vp C C T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3) 式(3)表明,只要测得系统在体积为0V 时的定容热容量,任意体积下的定容热容量都可根据物态方程计算出来.同理,式(2.2.8)给出.p pS C T T ∂⎛⎫= ⎪∂⎝⎭ (4)以,T p 为状态参量,将上式再求对p 的偏导数,有2222.p p TC S S S T T T p p T T p T ∂⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂===- ⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (5)其中第二步交换了求偏导数的次序,第三步应用了麦氏关系(2.2.4). 由理想气体的物态方程pV nRT =知,在p 不变时V 是T 的线性函数,即220.pV T ⎛⎫∂= ⎪∂⎝⎭ 所以0.p TC p ∂⎛⎫= ⎪∂⎝⎭ 这意味着理想气体的定压热容量也只是温度T 的函数. 在恒定温度下将式(5)积分,得0202.pp pp pV C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎰ 式(6)表明,只要测得系统在压强为0p 时的定压热容量,任意压强下的定压热容量都可根据物态方程计算出来.2.9 证明范氏气体的定容热容量只是温度T 的函数,与比体积无关.解:根据习题2.8式(2)22,V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 范氏方程(式(1.3.12))可以表为22.nRT n a p V nb V=-- (2) 由于在V 不变时范氏方程的p 是T 的线性函数,所以范氏气体的定容热容量只是T 的函数,与比体积无关.不仅如此,根据2.8题式(3)0202(,)(,),VV V V Vp C T V C T V T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3)我们知道,V →∞时范氏气体趋于理想气体. 令上式的0V →∞,式中的0(,)V C T V 就是理想气体的热容量. 由此可知,范氏气体和理想气体的定容热容量是相同的.顺便提及,在压强不变时范氏方程的体积V 与温度T 不呈线性关系. 根据2.8题式(5)22,V T VC p V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这意味着范氏气体的定压热容量是,T p 的函数.2.10 证明理想气体的摩尔自由能可以表为,,00,002ln ln V m m V m m m m V m m m mC F C dT U T dT RT V TS TdTT C dT U TS RT V T=⎰+-⎰--=-⎰⎰+--解:式(2.4.13)和(2.4.14)给出了理想气体的摩尔吉布斯函数作为其自然变量,T p 的函数的积分表达式. 本题要求出理想气体的摩尔自由能作为其自然变量,m T V 的函数的积分表达式. 根据自由能的定义(式(1.18.3)),摩尔自由能为,m m m F U TS =- (1)其中m U 和m S 是摩尔内能和摩尔熵. 根据式(1.7.4)和(1.15.2),理想气体的摩尔内能和摩尔熵为,0,m V m m U C dT U =+⎰ (2),0ln ,V m m m m C S dT R V S T=++⎰(3)所以,,00ln .V m m V m m m m C F C dT T dT RT V U TS T=--+-⎰⎰(4)利用分部积分公式 ,xdy xy ydx =-⎰⎰令,1,,V m x Ty C dT ==⎰可将式(4)右方头两项合并而将式(4)改写为,002ln .m V mm m m dTF T C dT RT V U TS T=--+-⎰⎰ (5)2.11 求范氏气体的特性函数m F ,并导出其他的热力学函数. 解:考虑1mol 的范氏气体. 根据自由能全微分的表达式(2.1.3),摩尔自由能的全微分为,m m m dF S dT pdV =-- (1)故2,m m m m TF RT ap V V b V ⎛⎫∂=-=-+ ⎪∂-⎝⎭ (2) 积分得()(),ln ().m m m maF T V RT V b f T V =---+ (3) 由于式(2)左方是偏导数,其积分可以含有温度的任意函数()f T . 我们利用V →∞时范氏气体趋于理想气体的极限条件定出函数()f T . 根据习题2.11式(4),理想气体的摩尔自由能为,,00ln .V m m V m m m m C F C dT dT RT V U TS T=--+-⎰⎰(4)将式(3)在m V →∞时的极限与式(4)加以比较,知,,00().V m V m m m C f T C dT T dT U TS T=-+-⎰⎰(5)所以范氏气体的摩尔自由能为 ()(),,00,ln .V m m m V m m m m mC aF T V C dT T dT RT V b U TS TV =----+-⎰⎰(6) 式(6)的(),m m F T V 是特性函数范氏气体的摩尔熵为(),0ln .V m mm m m C F S dT R V b S T T∂=-=+-+∂⎰ (7)摩尔内能为,0.m m m V m m maU F TS C dT U V =+=-+⎰ (8)2.12 一弹簧在恒温下的恢复力X 与其伸长x 成正比,即X Ax =-,比例系数A 是温度的函数. 今忽略弹簧的热膨胀,试证明弹簧的自由能F ,熵S 和内能U 的表达式分别为()()()()()()2221,,0,2,,0,21,,0.2F T x F T Ax x dAS T x S T dT dA U T x U T A T x dT =+=-⎛⎫=+- ⎪⎝⎭ 解:在准静态过程中,对弹簧施加的外力与弹簧的恢复力大小相等,方向相反. 当弹簧的长度有dx 的改变时,外力所做的功为.dW Xdx =- (1)根据式(1.14.7),弹簧的热力学基本方程为.dU TdS Xdx =- (2)弹簧的自由能定义为,F U TS =-其全微分为.dF SdT Xdx =--将胡克定律X Ax =-代入,有,dF SdT Axdx =-+ (3)因此.TF Ax x ∂⎛⎫= ⎪∂⎝⎭ 在固定温度下将上式积分,得()()0,,0xF T x F T Axdx =+⎰()21,0,2F T Ax =+(4) 其中(),0F T 是温度为T ,伸长为零时弹簧的自由能.弹簧的熵为()21,0.2F dAS S T x T dT∂=-=-∂ (5) 弹簧的内能为()21,0.2dA U F TS U T A T x dT ⎛⎫=+=+- ⎪⎝⎭(6) 在力学中通常将弹簧的势能记为21,2U Ax =力学 没有考虑A 是温度的函数. 根据热力学,U 力学是在等温过程中外界所做的功,是自由能.2.13 X 射线衍射实验发现,橡皮带未被拉紧时具有无定形结构;当受张力而被拉伸时,具有晶形结构. 这一事实表明,橡皮带具有大的分子链.(a )试讨论橡皮带在等温过程中被拉伸时,它的熵是增加还是减少;(b )试证明它的膨胀系数1ST L L α∂⎛⎫= ⎪∂⎝⎭是负的.解:(a )熵是系统无序程度的量度.橡皮带经等温拉伸过程后由无定形结构转变为晶形结构,说明过程后其无序度减少,即熵减少了,所以有0.TS L ∂⎛⎫< ⎪∂⎝⎭ (1) (b )由橡皮带自由能的全微分dF SdT JdL =-+可得麦氏关系.T LS J L T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 综合式(1)和式(2),知0.LJ T ∂⎛⎫> ⎪∂⎝⎭ (3)由橡皮带的物态方程(),,0F J L T =知偏导数间存在链式关系1,L J TJ T L T L J ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 即.J L TL J L T T J ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (4) 在温度不变时橡皮带随张力而伸长说明0.TL J ∂⎛⎫> ⎪∂⎝⎭ (5) 综合式(3)-(5)知0,JL T ∂⎛⎫< ⎪∂⎝⎭ 所以橡皮带的膨胀系数是负的,即10.JL L T α∂⎛⎫=< ⎪∂⎝⎭ (6)2.14 假设太阳是黑体,根据下列数据求太阳表面的温度;单位时间内投射到地球大气层外单位面积上的太阳辐射能量为3211.3510J m s --⨯⋅⋅(该值称为太阳常量),太阳的半径为86.95510m ⨯,太阳与地球的平均距离为111.49510m ⨯.解:以s R 表示太阳的半径. 顶点在球心的立体角d Ω在太阳表面所张的面积为2s R d Ω. 假设太阳是黑体,根据斯特藩-玻耳兹曼定律(式(2.6.8)),单位时间内在立体角d Ω内辐射的太阳辐射能量为42.s T R d Ωσ (1)单位时间内,在以太阳为中心,太阳与地球的平均距离se R 为半径的球面上接受到的在立体角d Ω内辐射的太阳辐射能量为321.3510.se R d Ω⨯令两式相等,即得132421.3510.ses R T R σ⎛⎫⨯⨯= ⎪⎝⎭(3)将,s R σ和se R 的数值代入,得5760.T K ≈2.15 计算热辐射在等温过程中体积由1V 变到2V 时所吸收的热量. 解:根据式(1.14.3),在可逆等温过程中系统吸收的热量为.Q T S =∆ (1)式(2.6.4)给出了热辐射的熵函数表达式34.3S aT V =(2) 所以热辐射在可逆等温过程中体积由1V 变到2V 时所吸收的热量为()4214.3Q aT V V =- (3)2.16 试讨论以平衡辐射为工作物质的卡诺循环,计算其效率. 解:根据式(2.6.1)和(2.6.3),平衡辐射的压强可表为41,3p aT = (1) 因此对于平衡辐射等温过程也是等压过程. 式(2.6.5)给出了平衡辐射在可逆绝热过程(等熵过程)中温度T 与体积V 的关系3().T V C =常量 (2)将式(1)与式(2)联立,消去温度T ,可得平衡辐射在可逆绝热过程中压强p 与体积V 的关系43pV C '=(常量). (3)下图是平衡辐射可逆卡诺循环的p V -图,其中等温线和绝热线的方程分别为式(1)和式(3).下图是相应的T S -图. 计算效率时应用T S -图更为方便.在由状态A 等温(温度为1T )膨胀至状态B 的过程中,平衡辐射吸收的热量为()1121.Q T S S =- (4)在由状态C 等温(温度为2T )压缩为状态D 的过程中,平衡辐射放出的热量为()2221.Q T S S =- (5) 循环过程的效率为()()2212211211111.T S S Q TQ T S S T η-=-=-=-- (6)2.17 如图所示,电介质的介电常量()DT Eε=与温度有关. 试求电路为闭路时电介质的热容量与充电后再令电路断开后的热容量之差.解:根据式(1.4.5),当介质的电位移有dD 的改变时,外界所做的功是đ,W VEdD = (1)式中E 是电场强度,V 是介质的体积. 本题不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换,p E V VD →-→ (2)下,简单系统的热力学关系同样适用于电介质.式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有,E D D EE D C C VT T T ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (4) 式中E C 是电场强度不变时介质的热容量,D C 是电位移不变时介质的热容量. 电路为闭路时,电容器两极的电位差恒定,因而介质中的电场恒定,所以D C 也就是电路为闭路时介质的热容量. 充电后再令电路断开,电容器两极有恒定的电荷,因而介质中的电位移恒定,所以D C 也就是充电后再令电路断开时介质的热容量.电介质的介电常量()DT Eε=与温度有关,所以 ,ED dE E T dT ∂⎛⎫= ⎪∂⎝⎭2,DE D d T dT εε∂⎛⎫=- ⎪∂⎝⎭ (5) 代入式(4),有2E D D d d C C VT EdT dTεεε⎛⎫⎛⎫-=-- ⎪⎪⎝⎭⎝⎭223.D d VT dT εε⎛⎫= ⎪⎝⎭(6)2.18 试证明磁介质H C 与M C 之差等于20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭解:当磁介质的磁化强度有dM 的改变时,外界所做的功是0đ,W V HdM μ= (1)式中H 是电场强度,V 是介质的体积.不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换0p H,V VM μ→-→ (2)下,简单系统的热力学关系同样适用于磁介质. 式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有0H M M HH M C C T T T μ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (4)式中H C 是磁场强度不变时介质的热容量,M C 是磁化强度不变时介质的热容量. 考虑到1H M TM T H T H M ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (5) (5)式解出HM T ∂⎛⎫⎪∂⎝⎭,代入(4)式,得 20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭2.19 已知顺磁物质遵从居里定律:().CM H T=居里定律 若维物质的温度不变,使磁场由0增至H ,求磁化热.解:式(1.14.3)给出,系统在可逆等温过程中吸收的热量Q 与其在过程中的熵增加值∆S 满足.Q T S =∆ (1)在可逆等温过程中磁介质的熵随磁场的变化率为(式(2.7.7))0.T HS m H T μ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 如果磁介质遵从居里定律(),CVm H C T=是常量 (3)易知2Hm CV H T T ∂⎛⎫=- ⎪∂⎝⎭, (4) 所以0.TCV H S H T μ∂⎛⎫=- ⎪∂⎝⎭2(5) 在可逆等温过程中磁场由0增至H 时,磁介质的熵变为202.2HTCV H S S dH H T μ∂⎛⎫∆==- ⎪∂⎝⎭⎰(6) 吸收的热量为20.2CV H Q T S Tμ=∆=- (7)2.20 已知超导体的磁感强度0()0B H M μ=+=,求证: (a )M C 与M 无关,只是T 的函数,其中M C 是磁化强度M 保持不变时的热容量.(b )200.2M M U C dT U μ=-+⎰(c )0.MC S dT S T=+⎰解:先对超导体的基本电磁学性质作一粗浅的介绍.1911年昂尼斯(Onnes )发现水银的电阻在4.2K 左右突然降低为零,如图所示. 这种在低温下发生的零电阻现象称为超导电性. 具有超导电性质的材料称为超导体. 电阻突然消失的温度称为超导体的临界温度. 开始人们将超导体单纯地理解为具有无穷电导率的导体. 在导体中电流密度e J 与电场强度E 满足欧姆定律.e JE σ= (1)如果电导率σ→∞,导体内的电场强度将为零. 根据法拉第定律,有,BV E t∂⨯=-∂ (2) 因此对于具有无穷电导率的导体,恒有0.Bt∂=∂ (3) 下图(a )显示具有无穷电导率的导体的特性,如果先将样品降温到临界温度以下,使之转变为具有无穷电导率的导体,然后加上磁场,根据式(3)样品内的B 不发生变化,即仍有0B =但如果先加上磁场,然后再降温到临界温度以下,根据式(3)样品内的B 也不应发生变化,即0.B ≠这样一来,样品的状态就与其经历的历史有关,不是热力学平衡状态了. 但是应用热力学理论对超导体进行分析,其结果与实验是符合的. 这种情况促使人们进行进一步的实验研究.1933年迈斯纳(Meissner )将一圆柱形样品放置在垂置于其轴线的磁场中,降低到临界温度以下,使样品转变为超导体,发现磁通量完全被排斥于样品之外,即超导体中的B 恒为零:()00.B H M μ=+= (4)这一性质称为完全抗磁性. 上图(b )画出了具有完全抗磁性的样品在先冷却后加上磁场和先加上磁场后冷却的状态变化,显示具有完全抗磁性的超导体,其状态与历史无关.1953年弗·伦敦(F.London )和赫·伦敦(H.London )兄弟二人提出了一个唯象理论,从统一的观点概括了零电阻和迈斯纳效应,相当成功地预言了超导体的一些电磁学性质.他们认为,与一般导体遵从欧姆定律不同,由于零电阻效应,超导体中电场对电荷的作用将使超导电子加速. 根据牛顿定律,有,m qE =v (5)式中m 和q 分别是超导电子的质量和电荷,v 是其加速度. 以s n 表示超导电子的密度,超导电流密度s J 为.=s s n q v J (6)综合式(5)和式(6),有1,s t Λ∂=∂J E (7) 其中2.s mΛn q=(8) 将式(7)代入法拉第定律(2),有,s Λt t ∂∂⎡⎤∇⨯=-⎢⎥∂∂⎣⎦B J或[]()0.s Λt∂∇⨯+=∂J B (9) 式(9)意味着()s Λ∇⨯+J B 不随时间变化,如果在某一时刻,有(),s Λ∇⨯=-J B (10)则在任何时刻式(10)都将成立. 伦敦假设超导体满足式(10). 下面证明,在恒定电磁场的情形下,根据电磁学的基本规律和式(10)可以得到迈斯纳效应. 在恒定电磁场情形下,超导体内的电场强度显然等于零,否则s J 将无限增长,因此安培定律给出0.s μ∇⨯=B J (11)对上式取旋度,有0(),s Λμμ∇⨯∇⨯∇⨯=-B J B (12)其中最后一步用了式(10). 由于2()().∇⨯∇⨯=∇∇⋅-∇B B B而0∇⋅=B ,因此式(12)给出20μΛ∇=B B (13) 式(13)要求超导体中B 从表面随浓度很快地减少. 为简单起见,我们讨论一维情形. 式(13)的一维解是e≈B (14)式(14)表明超导体中B 随深度x 按指数衰减.如果2310cm s n ≈,可以得到6210cm .-≈⨯这样伦敦理论不仅说明了迈斯纳效应,而且预言磁屏蔽需要一个有限的厚度,磁场的穿透浓度是-610cm 的量级. 实验证实了这一预言. 综上所述,伦敦理论用式(7)和式(10)s ,()s tΛΛ∂=∂∇⨯=-J B J B(15) 来概括零电阻和迈斯纳效应,以式(15)作为决定超导体电磁性质的基本方程. 迈斯纳效应的实质是,磁场中的超导体会在表面产生适当的超导电流分布,使超导体内部0.=B 由于零电阻,这超导电流是永久电流,不会衰减. 在外磁场改变时,表面超导电流才会相应地改变.伦敦理论是一个唯象理论. 1957年巴丁、库柏和徐瑞佛(Bardeen ,Cooper ,Schriffer )发展了超导的微观理论,阐明了低温超导的微观机制,并对超导体的宏观特性给予统计的解释.下面回到本题的求解. 由式(3)知,在超导体内部恒有,M H =- (16)这是超导体独特的磁物态方程. 通常的磁物态方程(,,)0f H M T =对超导体约化为式(16).根据式(16),有0,0.HMM T H T ∂⎛⎫= ⎪∂⎝⎭∂⎛⎫= ⎪∂⎝⎭ (17)(a ) 考虑单位体积的超导体. 式(2.7.2)给出准静态过程中的微功为0đ.W HdM μ= (18) 与简单系统的微功đW pdV =-比较知在代换0,p H V M μ→→下,简单系统得到的热力学关系同样适用于超导体. 2.9题式(2)给出22.V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ 超导体相应的热力学关系为2020.M T MC H T ΜT μ⎛⎫∂∂⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭ (19) 最后一步用了式(17). 由式(19)可知,M C 与M 无关,只是T 的函数.(b )相应于简单系统的(2.2.7)式,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 超导体有000,T MU ΗT H M ΜT μμμ∂∂⎛⎫⎛⎫=-+=- ⎪ ⎪∂∂⎝⎭⎝⎭ (20) 其中第二步用了式(17).以,T M 为自变量,内能的全微分为0.M T M U U dU dT dMT M C dT MdM μ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭=- 积分得超导体内能的积分表达式为200.2M M U C dT U μ=-+⎰ (21)第一项是不存在磁场时超导体的内能,第二项代表外磁场使超导体表面感生超导电流的能量. 第二项是负的,这是式(16)的结果,因此处在外磁场中超导体的内能低于无磁场时的内能. (c )相应于简单系统的(2.4.5)式0,V V C p S dT dV S T T ⎡⎤∂⎛⎫=++ ⎪⎢⎥∂⎝⎭⎣⎦⎰超导体有00M MC ΗS dT dM S T T μ∂⎛⎫=-+ ⎪∂⎝⎭⎰0,MC dT S T=+⎰(22) 第二步用了式(17). 这意味着,处在外磁场中超导体表面的感生超导电流对熵(无序度)没有贡献.补充题1 温度维持为25C ,压强在0至1000n p 之间,测得水的实验数据如下:()363114.510 1.410cm mol K .pV p T ----∂⎛⎫=⨯+⨯⋅⋅ ⎪∂⎝⎭ 若在25C 的恒温下将水从1n p 加压至1000n p ,求水的熵增加值和从外界吸收的热量.解:将题给的pV T ∂⎛⎫⎪∂⎝⎭记为.pV a bp T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 由吉布斯函数的全微分dG SdT Vdp =-+得麦氏关系.p TV S T p ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 因此水在过程中的熵增加值为()212121p P T p p pp p S S dpP V dp T a bp dp∂⎛⎫∆= ⎪∂⎝⎭∂⎛⎫=- ⎪∂⎝⎭=-+⎰⎰⎰()()222121.2b a p p p p ⎡⎤=--+-⎢⎥⎣⎦(3)将11,1000n n n p p p p ==代入,得110.527J mol K .S --∆=-⋅⋅根据式(1.14.4),在等温过程中水从外界吸收的热量Q 为 ()112980.527J mol 157J mol .Q T S--=∆=⨯-⋅=-⋅补充题2 试证明范氏气体的摩尔定压热容量与摩尔定容热容量之差为(),,23.21p m V m m m R C C a V b V RT-=--解:根据式(2.2.11),有,,.m m p m V m V pV p C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 由范氏方程2m mRT a p V b V =-- 易得,m V m p R T V b∂⎛⎫= ⎪∂-⎝⎭()232.m m Tm p RT aV V V b ⎛⎫∂=-+ ⎪∂-⎝⎭ (2) 但1,m m V m Tp V p T T V p ⎛⎫⎛⎫∂∂∂⎛⎫=-⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭所以m V m pm Tp T V T p V ∂⎛⎫ ⎪∂⎝⎭∂⎛⎫=- ⎪∂⎛⎫∂⎝⎭ ⎪∂⎝⎭()()323,2m m mm RV V b RTV a V b -=-- (3)代入式(1),得(),,23.21p m V m m mR C C a V b RTV -=--(4)补充题3 承前1.6和第一章补充题3,试求将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量和内能的变化.解:式(2.4.4)给出,以,T V 为自变量的简单系统,熵的全微分为.V VC p dS dT dV T T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 对于本题的情形,作代换,,V L p →→-J (2)即有.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (3) 将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量Q 为002.L L LQ TdS T dL T ∂⎛⎫==- ⎪∂⎝⎭⎰⎰J (4) 由2020L L J bT L L ⎛⎫=- ⎪⎝⎭可得220002200021,L L L dL J L L b bT T L L L L L dT⎛⎫⎛⎫∂⎛⎫=--+ ⎪ ⎪⎪∂⎝⎭⎝⎭⎝⎭ (5) 代入式(4)可得0002222200022002L L L L L L L L Q bT dL bT a dL L L L L ⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 0051,2bTL a T ⎛⎫=-- ⎪⎝⎭ (6)其中0001.dL L dTα=过程中外界所做的功为002220020,L L L L L L W JdL bT dL bTL L L ⎛⎫==-= ⎪⎝⎭⎰⎰(7) 故弹性体内能的改变为2005.2U W Q bT L α∆=+= (8)补充题4 承上题. 试求该弹性体在可逆绝热过程中温度随长度的变化率.解:上题式(3)已给出.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (1)在可逆绝热过程中0dS =,故有.S L L T T J L C T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将习题2.15式(5)求得的LJ T ∂⎛⎫⎪∂⎝⎭代入,可得 2200022002.S L L L T bT L L T L C L L L L α⎡⎤⎛⎫⎛⎫∂⎛⎫=--+⎢⎥ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎣⎦(3)补充题5 实验测得顺磁介质的磁化率()T χ. 如果忽略其体积变化,试求特性函数(,)f M T ,并导出内能和熵.解:在磁介质的体积变化可以忽略时,单位体积磁介质的磁化功为(式(2.7.2))0đ.W HdM μ= (1) 其自由能的全微分为0.df SdT MdM μ=-+将()χ=T M H 代入,可将上式表为.Mdf SdT dM μχ=-+ (2)在固定温度下将上式对M 积分,得20(,)(,0).2()M f T M f T T μχ=+ (3)(,)f T M 是特性函数. 单位体积磁介质的熵为(),MS f T M T ∂⎡⎤=-⎢⎥∂⎣⎦221(,0).2d M S T dTμχχ=+ (4) 单位体积的内能为220002.22M d U f TS M T U dTμμχχχ=+=++ (5) 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。

云南师范大学《热力学与统计物理》期末试卷 ABC卷及答案 (优选.)

云南师范大学《热力学与统计物理》期末试卷 ABC卷及答案 (优选.)
2、谈谈电子气体的费米简并压强的来源和特点;简述恒星、中子星和 白矮星内部的力学平衡机制。
四 计算题(共44分) 积分公式: ,
1、定量证明理想气体绝热线比等温线陡。(8分)
2、已知简单热力学系统的特性函数,求系统的(1)焓;(2)自由 能;(3)吉布斯函数。(12分)
3、表面活性物质的分子在液面上作二维自由运动,可以看作二维气 体。已知二维气体的麦克斯韦速率概率分布为。试求(1)速率分布函 数;(2)气体速率的涨落。(12分)
条件为

6、玻耳兹曼的墓志铭用数学关系表示为
。玻耳兹曼分
布表示为

7、绝对零度下自由电子气体中每一个自由电子的平均内能与费米能量
μ(0)之间的数学关系为 。
8、在绝对零度时,费米能级以下的所有能级的一个量子态上的平均粒
子数为

三 简述题(每小题8分,共16分) 1、简述热力学第一定律和热力学第二定律,谈谈你对节约能源、低碳 生活以及可持续发展的认识。
(2分) (2分)
(2分) (2分) (2分)
分)
3.解:(1) (4分) (2) (4分) (3) (4分)
4.解: (4分) (4分)
(4分)
云南师范大学课程考试 试卷参考答案及评分标准 课程名称:《热力学统计物理》 考试班级:
08物理类 试卷编号: B卷 命题教师签名:
年月日
1. 判断题(每小题2分,共20分,请在括号内 打“√”或“×”)
米子间出现等效的吸引作用。 9、( )出现玻色-爱因斯坦凝聚现象时,玻色系统的内能、动量、压强
和熵均为零。 10、( )费米气体处在绝对零度时的费米能量、费米动量和费米简并压
强和熵均为零。
二 填空题(每空2分,共20分)

云南师范大学《热力学与统计物理》期末试卷 ABC卷及答案

云南师范大学《热力学与统计物理》期末试卷 ABC卷及答案

云南师范大学2010——2011学年上学期统一考试《热力学统计物理》试卷学院物电学院专业物理类班级学号姓名考试方式:闭卷考试时量:120分钟试卷编号:A卷题号一二三四总分评卷人得分一判断题(每小题2分,共20分,请在括号内打“√”或打“×”)1、()热力学是研究热运动的微观理论,统计物理学是研究热运动的宏观理论。

2、()热力学平衡态与孤立系统的熵最小、微观粒子混乱度最小以及微观状态数最少的分布对应。

3、()在等温等压系统中自由能永不减小,可逆过程自由能不变,不可逆过程自由能增加。

4、()对平衡辐射而言,物体在任何频率处的面辐射强度与吸收因数之比对所有物体相同,是频率和温度的普适函数。

5、()处于孤立状态的单元二相系,如果两相热平衡条件未能满足,能量将从高温相传到低温相去。

6、()在准静态过程中外界对系统所作的功等于粒子分布不变时由于能级改变而引起的的内能变化。

7、()玻耳兹曼分布是玻耳兹曼系统中微观状态数最多的分布,出现的概率最大,称为最概然分布。

8、()在弱简并情况下,费米气体的附加内能为负,量子统计关联使费米子间出现等效的吸引作用。

9、()出现玻色-爱因斯坦凝聚现象时,玻色系统的内能、动量、压强和熵均为零。

10、()费米气体处在绝对零度时的费米能量、费米动量和费米简并压强和熵均为零。

二填空题(每空2分,共20分)1、发生二级相变时两相化学势、化学势的一级偏导数,但化学势的级偏导数发生突变。

2、普适气体常数R与阿伏伽德罗常数N0和玻耳兹曼k之间的数学关系为。

3、孤立系统平衡的稳定性条件表示为和。

4、如果采用对比变量,则范氏对比方程表示为。

5、玻耳兹曼的墓志铭用数学关系表示为。

费米分布表示为。

6、绝对零度下自由电子气体的内能U(0)与费米能量μ(0)之间的数学关系为。

7、公式在低频段与普朗克辐射曲线相符合。

三简述题(每小题8分,共16分)1、简述热力学第一定律和热力学第二定律;谈谈你对节约能源、低碳生活以及可持续发展的认识。

热力学统计物理期末复习试题.doc

热力学统计物理期末复习试题.doc

一. 填空题1.设一多元复相系冇个0相,每相有个乞组元,组元Z 间不起化学反应。

此系统平衡时必同时满足 条件.T a= T fi=•- - 、P 、p"=..・=p®、(i = i,2,・・・k)2. 热力学第三定律的两种表述分别叫做:能特斯定律和绝对零度不能达到定律。

3. 假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。

则系统可能的微观态数为:10。

4. 均匀系的平衡条件是丁 5 月.P = U .平衡稳定性条件是_ 5 > ° R (黔)「°_ 3 £ _ 3 »5玻色分布表为八八"-丨;衣米分布表为心+1 ;玻耳兹曼分布表为6热力学系统的四个状态量S 、V 、P 、T 所满足的麦克斯韦关系为(fH = (fH (IH =(料 (fH =- (IH (誇),=-(鬥。

-------------- ? ---------------- ? ---------------- ? ----------------- °u = - N ° 5 Z .7. 玻耳兹曼系统粒子配分函数用乙表示,内能统计表达式为 ____________ 广义力统计表达式为丫 = . .v a in z , S = Nk(\n Z.- /3C in Z)一卩°『,爛的统计表达式为 ______________________ ,自由能的统计表达式为 F = -NkT In Z 1 ___ o8. _______________________________________________________ 单元开系的内能、自由能、熔和吉布斯函数所满足的全微分是: __________________________________ , —, _________ , _____ o 9. 均匀开系的克劳修斯方程纟fl 包含如下四个微分方程:dU=TdS-pdV+/Ldn 薊=亦+划?+妙 dG=-SdT+Vdp+/jdn dF=-SdT-pdV+pdn, _________________ 9 ______________________ 9 ______________________10. 等温等容条件下系统屮发牛的自发过程,总是朝着自市能减小方向进行,当自市能减小到极小值 时,系统达到平衡态;处在等温等压条件下的系统中发生的自发过程,总是朝着吉布斯函数减小的方 向进行,当吉布斯函数减小到极小值时,系统达到平衡态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州大学2010—2011学年第二学期考试试卷 B热力学与统计物理注意事项:1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。

2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。

3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。

4. 满分100分,考试时间为120分钟。

一、选择题(共18分,每小题3分)1. 下列关于状态函数的定义正确的是( )。

A .系统的吉布斯函数是:pV TS U G +-=B .系统的自由能是:TS U F +=C .系统的焓是:pV U H -=D .系统的熵函数是:TQ S = 2. 以T 、p 为独立变量,特征函数为( )。

A .内能;B .焓;C .自由能;D .吉布斯函数。

3. 下列说法中正确的是( )。

A .不可能把热量从高温物体传给低温物体而不引起其他变化;B .功不可能全部转化为热而不引起其他变化;C .不可能制造一部机器,在循环过程中把一重物升高而同时使一热库冷却;D .可以从一热源吸收热量使它全部变成有用的功而不产生其他影响。

4. 要使一般气体满足经典极限条件,下面措施可行的是( )。

A .减小气体分子数密度; B .降低温度;C .选用分子质量小的气体分子;D .减小分子之间的距离。

5. 下列说法中正确的是( )。

A .由费米子组成的费米系统,粒子分布不受泡利不相容原理约束;B .由玻色子组成的玻色系统,粒子分布遵从泡利不相容原理;C .系统宏观物理量是相应微观量的统计平均值;D .系统各个可能的微观运动状态出现的概率是不相等的。

6. 正则分布是具有确定的( )的系统的分布函数。

A .内能、体积、温度; B .体积、粒子数、温度; C .内能、体积、粒子数; D .以上都不对。

二、填空题(共20分,每空2分)1. 对于理想气体,在温度不变时,内能随体积的变化关系为=⎪⎭⎫⎝⎛∂∂TV U 。

2. 在S 、V 不变的情形下,稳定平衡态的U 。

3. 在可逆准静态绝热过程中,孤立系统的熵变ΔS = 。

4. 连续相变的特点是 。

5. 在等温等压条件下,单相化学反应0=∑ii iA ν达到化学平衡的条件为 。

6. 在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满 足关系 。

7. 玻色-爱因斯坦凝聚现象是指 。

8. 在低温下,如果计及电子和离子振动的话,金属的定容热容量可表为 。

9. 按费米分布,处在能量为s ε的量子态s 上的平均粒子数为=s f 。

10.刘维尔定理表明,如果随着一个代表点沿正则方程所确定的轨道在相空间中运动,其邻域的 是不随时间改变的常数。

三、简答题(共20分,每小题4分)1. 什么是热力学系统的强度量?什么是广延量?2. 什么是特性函数?若吉布斯函数为特性函数,其自然变量是什么?3. 证明在F 、T 不变的情形下,平衡态的V 最小。

4. 写出玻耳兹曼关系,并说明熵的统计意义。

5. 请分别写出正则分布配分函数的量子表达式和经典表达式?四、(12 分)设有1mol 的理想气体,其状态参量由(111,,T V p )变化到(222,,T V p ),假设此过程为一等温膨胀过程)(21T T T ==,求理想气体内能的改变U ∆,外界对理想气体所作的功W ,理想气体从外界吸收的热量Q ,以及理想气体的熵变ΔS 。

五、(10分)定域系统含有N 个近独立粒子,每个粒子有两个非简并能级1ε和2ε,假设21εε<。

求在温度为T 的热平衡状态下系统的内能和熵。

六、(10分)目前由于分子束外延技术的发展,可以制成几个原子层厚的薄膜材料,薄膜中的电子可视为在平面内做自由运动,电子面密度为n 。

试求0K 时二维电子气的费米能量和内能。

七、(10分)试应用正则分布求单原子分子理想气体的物态方程、内能和熵。

(提示: ⎰∞+∞--=adx e ax π2)贵州大学2010-2011学年第二学期考试试卷 B热力学与统计物理参考答案一、选择题(共18分,每小题3分) 1.A 2.D 3.C 4.A 5.C 6.B 二、填空题(共20分,每空2分)1.0。

2. 最小。

3.0。

4. 在临界点μ及μ的一阶偏导数连续 5.0=∑iii νμ。

6. !...N BM D F E B Ω≈Ω≈Ω。

7. 在C T T <时,有宏观量级的粒子在能级0=ε凝聚。

8. 3AT T C V +=γ。

9.11++seβεα。

10. 代表点密度。

三、简答题(共20分,每小题4分)1.热力学系统的强度量是指与系统的质量或物质的量无关的热力学量(2分)。

热力学系统的广延量是指与系统的质量或物质的量成正比的热力学量(2分)。

2.如果适当选择独立变量,只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。

这个热力学函数即称为特性函数。

(2分)吉布斯函数的自然变量是:温度T 和体积p 。

(2分)3.假设系统发生一虚变动,在虚变动中,有V p T S F δδδ--<。

在F ,T 不变的情形下, 有0,0==T F δδ,因此必有0<V δ(2分)。

如果系统达到了V 为极小的状态,它的体积 不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此在F ,T 不变的情形下,稳定平衡态的V 最小。

(2分) 4.Ω=ln k S (2分)。

熵是系统混乱程度的量度,某个宏观状态对应的微观状态数愈多, 它的混乱程度就愈大,熵也愈大(2分)。

5.量子表达式:∑-=SE SeZ β 或 ∑-Ω=lE l leZ β (2分)经典表达式:⎰Ω=-d e hN Z p q E Nr ),(!1β (2分)四、(12分)解:等温膨胀过程,由于温度不变,理想气体内能仅是温度的函数,所以0=∆U (3分)12ln 21V V RT V dVRT pdV W V V BA-=-=-=⎰⎰ (3分) 根据热力学第一定律,12lnV V RT W Q =-= (3分) 等温膨胀过程引起的系统的熵变:12ln V V R T QS ==∆ (3分)五、(10分)解:定域系统可以用玻尔兹曼分布处理。

系统的配分函数为∑------+=+==ll e e e e e Z l ]1[)(112121εεββεβεβεβεω (2分)得系统的内能为 kTeN N e N N Z N U )(121)(121112121)(1)(ln εεεεβεεεεεεβ--+-+=+-+=∂∂-= (4分) 系统的熵为)ln (ln 11Z Z Nk S ββ∂∂-=}1)(]1{ln[)(12)(1212εεβεεβεεβ---+-++=e e Nk })1()(]1{ln[)(12)(1212kTkTekT eNk εεεεεε---+-++= (4分)六、(10分)解:在面积A 内,在εεεd +→的能量范围内,二维自由电子的量子态数为 επεεmd hAd D 24)(= (2分) 0K 下自由电子的分布为 ⎩⎨⎧>≤=)0( ,0)0(,1)(μεμεεf (2分)费米能量)0(μ由下式确定:)0(44)()(2)0(020μπεπεεεμm hAd m h A d D f N ===⎰⎰∞即 n mh A N m h ππμ44)0(22==(3分) 0K 下二维自由电子气体的内能为)0(2)0(244)()(22)0(020μμπεεπεεεεμNm h A d m h A d D f U ====⎰⎰∞(3分)七、(10分)解:由N 个单原子分子组成的理想气体,其能量为∑==Ni i mp E 3122 (1分)配分函数⎰⋅⋅⋅⋅⋅⋅∑==-NN m p N dp dp dq dq eh N Z Ni i 313123312!1β232)2(!N N hmN V βπ= (3分)物态方程 V NkTV V N Z V p =∂∂=∂∂=ln ln 1ββ (2分) 内能 kT NN Z U 231ln 23ln =∂∂-=∂∂-=βββ (2分) 熵 )(ln )ln (ln U Z k Z Z k S βββ+=∂∂-= ⎥⎦⎤⎢⎣⎡+++=25)2ln(ln23232h mk Nk N V Nk NkT π (2分)。

相关文档
最新文档