射频同轴连接器电压驻波比测量

射频同轴连接器电压驻波比测量
射频同轴连接器电压驻波比测量

常见射频同轴连接器

常见射频同轴连接器大全 射频信号有自己的特点,所以传输信号需要特别的媒介,而相应连接器也很特殊,这里主要介绍常见的射频同轴连接器(RF COAXIAL CONNECTOR),符合标准GB11316-89、IEC169、MIL-C-31012等标准。 一、常见的同轴连接器及主要性能对照表: 除上述连接器以外,还有MINI BNC、SL16、C3、CC4(1.0/2.3)、SMZ(BT-43)、MIM等连接器,但主要是一些公司的型号。 二、常见同轴连接器的选择: BNC是卡口式,多用于低于4GHz的射频连接,广泛用于仪器仪表及计算机互联 TNC是螺纹连接,尺寸等方面类似BNC,工作频率可达11GHz,螺纹式适合振动环境 SMA是螺纹连接,应用最广泛,阻抗有50和75欧姆两种,50欧姆时配软电缆使用频率低于12.4Ghz,配半刚性电缆最高到26.5GHz SMB体积小于SMA,为插入自锁结构,用于快速连接,常用于数字通讯,是L9的换代品,50欧姆可到4GHz,75欧姆到2GHz SMC为螺纹连接,其他类似SMB,有更宽的频率范围,常用于军事或高振动环境 N型连接器为螺纹式,以空气为绝缘材料,造价低,频率可达11GHz,常用于测试仪器上,有50和75欧姆两种 MCX和MMCX连接器体积小,用于密集型连接 BMA用于频率达18GHz的低功率微波系统的盲插连接 每种连接器都有军标和商业标准,军标按MIL-C-39012制造,全铜零件、聚四氟乙烯绝缘、内外镀金,性能最可靠,但造价较高。 商业标准设计则使用廉价材料,如黄铜铸体、聚丙烯绝缘、银镀层等,可靠性就差一些。 连接器材料有黄铜、铍铜和不锈钢,中心导体一般镀金,保证低电阻和耐腐蚀。军标要求在SMA 和SMB上镀金,在N、TNC及BNC上镀银,因为银易氧化,用户更喜欢镀镍。 绝缘材料有聚四氟乙烯、聚丙烯及韧化聚苯乙烯,其中聚四氟乙烯绝缘性能最好,但成本较高。 三、常用连接器的性能列表: 1.L29(7/16) 标准:IEC169-4、CECC22190、DIN47223 特点:较大型螺纹式中高能量传输 温度范围:-40~+85 耐久性:500次 PLUG内径/JACK内径:21mm/22.5mm 电气性能: 特性阻抗:50欧姆 工作电压:2700Vrms 频率范围:0-7.5GHz 介质耐压:4000Vrms 接触电阻:内导体<0.4mOhm,外导体<1.5mOhm 绝缘电阻:>10000兆欧 VSWR:<1.30 ??? 材料: 壳体:黄铜镀镍或银

驻波测量线的调整与电压驻波比测量

实验一驻波测量线的调整 一、实验目的 1、熟悉测量线的使用及探针的调谐。 2、了解波到波导波长的测量方法。 二、实验原理 1、微波测量系统的组成 微波测量一般都必须在一个测试系统上进行。测试系统包括微波信号源,若干波导元件和指示仪表三部分。图1是小功率微波测试系统组成的典型例子。 图1 小功率波导测试系统示意图 进行微波测量,首先必须正确连接与调整微波测试系统。信号源通常位于左侧,待测元件接在右侧,以便于操作。连接系统平稳,各元件接头对准,晶体检波器输出引线应远离电源和输入线路,以免干扰。如果连接不当,将会影响测量精度,产生误差。 微波信号源的工作状态有连续波、方波调制和锯齿波调制三种信号通过同轴—波导转换接头进入波导系统(以后测试图中都省略画出同轴—波导转换接头)。隔离器起去耦作用,即防止反射波返回信号源影响其输出功率和频率的稳定。可变衰减器用来控制进入测试系统的功率电平。频率计用来测量信号源的频率。驻波测量线用来测量波导中驻波的分布。波导的输出功率是通过检波器进行检波送往指示器。

若信号为连续波,指示器用光点检流计或直流微安表。若信号输出是调制波,检波得到的低频信号可通过高灵敏度的选频放大器或测量放大器进行放大,或由示波器数字电压表、功率计等来指示。后一种测量方法的测量精度较高,姑经常采用调制波作被测信号,测试系统的组成应当根据波测对象作灵活变动。 系统调整主要指信号源和测量线的调整,以及晶体检波器的校准。信号源的调整包括振谐频率、功率电平及调谐方式等。本实验讨论驻波测量线的调整和晶体检波器的校准。 2、测量线的调整及波长测量 (1)驻波测量线的调整 驻波测量线是微波系统的一个常用测量仪器,它在微波测量中用处很广,如测驻波、阻抗、相位、波长等。 测量线通常由一端开槽传输线,探头(耦合探针,探针的调谐腔体和输出指示)、传动装置三部分组成,由于耦合探针深入传输线而引起不均匀性,其作用相当于在线上并联一个导纳,从而影响系统的工作状态(详见第二部分二)。为了减小影响,测试前必须仔细调整测量线。 实验中测量线的调整一般包括选择合适的探针穿深度,调谐探头和晶体检波特性。 探针电路的调谐方法:先使探针的穿深度适当,通常取~,然后测量线终端接匹配负载,移动探针至测量线中间部分,调节探头活塞,直至输出指示最大。 (2)波长测量 测量波长常见的方法有谐振法和驻波分析法。前者用谐振式波长计(为使用方便,直接以频率刻度,故也称直读式频率计)测量。后者是用驻波测量线测量,当测量线终端短路时,传输线上形成纯驻线,移动测量线探针,测出两个相临驻波最小点之间的距离,即可求得波导波长。 在传输电磁波的同轴系统中,按上述方法测出的波导波长就是工作波长,即λg=λ;而在波导系统中,测量线册出的波长是波导波长λg,根据波导波长和工作波长的关系式:

电压驻波比

电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比是否接近1:1, 如果接近1:1,当然好。常常听到这样的问题:但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表? VSWR及标称阻抗 发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。如果发射机的阻抗不同,要求天线的阻抗也不同。在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗的同轴电缆还没有得到推广,流行的是特性阻抗为几百欧的平行馈线,因此发射机的输出阻抗多为几百欧姆。而现代商品固态无线电通信机的天线标称阻抗则多为50欧姆,因此商品VSWR表也是按50欧姆设计标度的。 如果你拥有一台输出阻抗为600欧姆的老电台,那就大可不必费心血用50欧姆的VSWR计来修理你的天线,因为那样反而帮倒忙。只要设法调到你的天线电流最大就可以了。 VSWR不是1时,比较VSWR的值没有意义 正因为VSWR除了1以外的数值不值得那么精确地认定(除非有特殊需要),所以多数VSWR表并没有象电压表、电阻表那样认真标定,甚至很少有VSWR给出它的误差等级数据。由于表内射频耦合元件的相频特性和二极管非线性的影响,多数VSWR表在不同频率、不同功率下的误差并不均匀。 VSWR都=1不等于都是好天线 影响天线效果的最重要因素:谐振 让我们用弦乐器的弦来加以说明。无论是提琴还是古筝,它的每一根弦在特定的长度和张力下,都会有自己的固有频率。当弦以固有频率振动时,两端被固定不能移动,但振动方向的张力最大。中间摆动最大,但振动张力最松弛。这相当于自由谐振的总长度为1/2波长的天线,两端没有电流(电流波谷)而电压幅度最大(电压波腹),中间电流最大(电流波腹)而相邻两点的电压最小(电压波谷)。 我们要使这根弦发出最强的声音,一是所要的声音只能是弦的固有频率,二是驱动点的张力与摆幅之比要恰当,即驱动源要和弦上驱动点的阻抗相匹配。具体表现就是拉弦的琴弓或者弹拨的手指要选在弦的适当位置上。我们在实际中不难发现,拉弓或者拨弦位置错误会影响弦的发声强度,但稍有不当还不至于影响太多,而要发出与琴弦固有频率不同的声响却是十分困难的,此时弦上各点的振动状态十分复杂、混乱,即使振动起来,各点对空气的推动不是齐心合力的,发声效率很低。

实验五天线的输入阻抗与驻波比测量

实验五天线的输入阻抗与驻波比测量 一、实验目的 1.了解单极子的阻抗特性,知道单极子阻抗的测量方法。 2.了解半波振子的阻抗特性,知道半波振子阻抗与驻波比的测量方法。 3.了解全波振子的阻抗特性,知道全波振子阻抗与驻波比的测量方法。 4.了解偶极子的阻抗特性,知道偶极子阻抗与驻波比的测量方法。 二、实验器材 PNA3621及其全套附件,作地用的铝板一块,待测单极子3个,分别为Φ1,Φ3,Φ9,长度相同。短路器一只,待测半波振子天线一个,待测全波振子天线一个,待测偶极子天线一个。 三、实验步骤 1.仪器按测回损连接,按【执行】键校开路; 2.接上短路器,按【执行】键校短路; 3.拔下短路器,插上待测振子即可测出输入阻抗轨迹。 4.拔下短路器,接上待测半波振子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.184m,再将光标上移到【矢量】处,按【执行】键。 5.拔下短路器,接上待测全波振子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.133m,再将光标上移到【矢量】处,按【执行】键。 6.拔下短路器,接上待测偶极子天线,按菜单键将光标移到【移+0.000m】处,设置移参数据约0.074m,再将光标上移到【矢量】处,按【执行】键。 四、实验记录

单极子?3: 单极子?2: 单极子?1: 偶极子: 半波振子: 全波振子: 五、实验仿真 以下为实验仿真及其结果: 六、实验扩展分析 单极子天线是在偶极子天线的基础上发展而来的。最初偶极子天线有两个臂,每个臂长四分之一波长,方向图类似面包圈;研究人员利用镜像原理,在单臂下面加一块金属板,变得到了单极子天线。单极子天线很容易做成超宽带。至于其他方面的电性能,基本与偶极子天线相似。 上图左边为单极子,右边为偶极子。虚线根据地面作为等势面镜像而来,单极子是从中心馈电点处切去一半并相对于地面馈电的偶极子。单极子是从中心馈电点处切去一半并相对于地面馈电的偶极子。因此可以理解为:上半个偶极子+对称面作为接地=单极子。由于单极子接地面就是偶极子的对称面,因此单极子馈电部分输入端的缝隙宽度只有偶极子的一半,根据电压等于电场的线积分,这导致输入电压只有偶极子的一半。又因为对称性,单极子和偶极子的电流大小相同,因此单极子的输入阻抗是偶极子的一半。同理,辐射电阻或辐射功率也是偶极子的一半。 由于单极子只辐射上半空间,而偶极子辐射整个空间,因此单极子的方向性是偶极子的

射频同轴连接器分类及说明

频段划分_射频同轴连接器分类及说用 一.频段的字母表示: 自第二次世界大战以来,雷达系统工程师就使用简短的字母来描述雷达工作的波段。并且这种使用方法一直沿用到今天,而且对于从事相关行业人来说已经成为一个常识。使用这种字母来表示频段的主要原因是:方便、保密和直观(根据字母就可知系统相关特性)。根据IEEE 521-2002标准,雷达频段字母命名和ITU(国际电信联盟)命名对比如下表所示:

二.同轴连接器发展概况及相关标准 1射频连接器的发展概况: 1.1.1939年出现的UHF连接器是最早的RF连接器; 1.2.二战期间随着雷达、电台和微波通信的发展产生了N,C,BNC,TNC等中型系; 1.3.1958年后,随着整机设备的小型化,出出现了SMA,SMB,SMC等小型化产品; 1.4.1964年制定了美国军用标准MIL-C-39012《射频同轴连接器总规范》; 1.5.七十年代末,毫米波连接器出现; 1.6.九十年代初,HP公司推出频率高达110GHz的1.0mm连接器,并用于其仪器设备中; 1.7.九十年代出现表面贴装射频同轴连接器并大量用于手机产品中; 2我国射频同轴连连接器的发展: 2.1我国从五十年代开始由整机厂研制RF连接器; 2.2六十年代末组建专业工厂,开始了专业化生产; 2.3一九七二年国家组织集中设计,使国产的RF连接器是自成系统,只能在国内使用, 产品标准水平低,且不能与国际通用产品对接互换; 2.4八十年代起开始采用国际标准,根据IEC169和MIL-C-39012,颁布了GB11313和 GJB681,使射频同轴连接器的生产和使用逐步与国际接轨; 2.5经过几十年的努力,目前通用RF连接器的整体水平与国外差距不大,但精密连接器 的设计和生产与国外仍有较大差距; 3射频连接器的标准体系; 3.1美军标及其他它先进标准: 美国是世界上最大的通用型RF连接器制造和消费国,其水平也是一流的,因此美国军用标准MIL-C-39012被认为是RF连接器的最高标准; 3.2IEC标准: IEC是指导性标准,不是强制性标准,因此很少被直接应用; 4其它先进标准: 德国的DIN、英国BS,日本JIS; 这些国家的标准大都是参照或等同美军标制订的有些国家甚至直接应用美军标,而不再另行制订标准;值得一提的是,德国在某些专用新型连接器方面也有一些优势,例如:DIN47223的7/16(L29)系列、DIN47297的SAA系列及DIN41626的DSA系列等。这些系列产品在通信领域应用较广泛,德国的标准和产品已得到全世界的认可,但美国尚未相应标准出现。

常见射频同轴连接器大全

常见射频同轴连接器大全

常见射频同轴连接器大全 射频信号有自己的特点,所以传输信号需要特别的媒介,而相应连接器也很特殊,这里主要介绍常见的射频同轴连接器(RF COAXIAL CONNECTOR),符合标准GB11316-89、IEC169、MIL-C-31012等标准。 一、常见的同轴连接器及主要性能对照表: 除上述连接器以外,还有MINI BNC、SL16、C3、CC4(1.0/2.3)、SMZ(BT-43)、MIM等连接器,但主要是一些公司的型号。 二、常见同轴连接器的选择: BNC是卡口式,多用于低于4GHz的射频连接,广泛用于仪器仪表及计算机互联 TNC是螺纹连接,尺寸等方面类似BNC,工作频率可达11GHz,螺纹式适合振动环境 SMA是螺纹连接,应用最广泛,阻抗有50和75欧姆两种,50欧姆时配软电缆使用频率低于12.4Ghz,配半刚性电缆最高到26.5GHz SMB体积小于SMA,为插入自锁结构,用于快速连接,常用于数字通讯,是L9的换代品,50欧姆可到4GHz,75欧姆到2GHz SMC为螺纹连接,其他类似SMB,有更宽的频率范围,常用于军事或高振动环境 N型连接器为螺纹式,以空气为绝缘材料,造价低,频率可达11GHz,常用于测试仪器上,有50和75欧姆两种 MCX和MMCX连接器体积小,用于密集型连接 BMA用于频率达18GHz的低功率微波系统的盲插连接 每种连接器都有军标和商业标准,军标按MIL-C-39012制造,全铜零件、聚四氟乙烯绝缘、内外镀金,性能最可靠,但造价较高。 商业标准设计则使用廉价材料,如黄铜铸体、聚丙烯绝缘、银镀层等,可靠性就差一些。 连接器材料有黄铜、铍铜和不锈钢,中心导体一般镀金,保证低电阻和耐腐蚀。军标要求在SMA和SMB 上镀金,在N、TNC及BNC上镀银,因为银易氧化,用户更喜欢镀镍。 绝缘材料有聚四氟乙烯、聚丙烯及韧化聚苯乙烯,其中聚四氟乙烯绝缘性能最好,但成本较高。 三、常用连接器的性能列表:

驻波比的测量 微波原理

电子信息工程系实验报告课程名称:微波原理 实验项目名称:驻波比的测量实验时间:2010-5-27 班级:通信072 姓名:学号:710705229 实验目的: 掌握测量驻波比的原理和常用方法 【实验内容】 在测量线系统中,选用合适的方法测量给定器件的电压驻波系数。 【实验框图与仪器】 网络分析仪信号源被测件频谱仪 b. c. 图1 驻波比测量系统图 【实验原理】 测试微波传输系统内电磁场的驻波分布情况,包括场强的最大点、最小点的幅度及其位置,从而得到驻波比(或反射系数)和波导波长。通过驻波测量可以测出阻抗、波长、相位和Q值等其它参量。 测量电压驻波系数:

可直接由测量线探针分别处于波腹及波节位置时的电流表读出Imax 和Imin ,求出驻波比。 若驻波腹点和节点处电表读数分别为m ax I ,m in I 则电压驻波系数ρ: min max min max I I E E == ρ (1-2) 当电压驻波系数在1.05<ρ<1.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可采用节点偏移法。 节点偏移法测量驻波比的测试系统如图5示。 测量方法:逐点改变短路活塞的位置(读数S ),在测量线上用交叉读数法跟踪测得某一波节点的位置(读数为D ),作出S 和(D+S )+KS 的关系曲线,其中12 1 -= λλK ,1λ是取下待测元件,固定短路活塞位置,移动测量线探针测得的测量线中的波长;2λ是固定测量探针,移动短路活塞,用交叉读数法在短路活塞上测得的波长。由所得实验曲线求得最大偏移量?,按下式求出驻波比 ) sin(1)sin( 1 1πλπρ?-?+= (1-18) 当?很小时,可近似为1 21λπρ? +≈ (1-19) 中等驻波比测量(6≤ρ),可采用直接测量沿线驻波最大点和最小点场强的直接法来测量。为了提高 精确度,可以测量多个最大点和最小点,然后按下式求得驻波比 其中m ax I 和m in I 为指示器上对应的最大值和最小值(直线律检波)或其方根值(平方律检波)。 2、等指示度法(大驻波比 5>ρ) 当被测器件的驻波系数大于5时,驻波腹点和节点的电平相差很大,如果在最小点检波晶体的输出能使仪表有足够的指示读数,则在最大点上检波晶体的特性从平方律转向直线律,因而无法在同一情况下测得最大点和最小点,按直接法求取大驻波系数会带来较大的误差,因此采用等指示度法,也就是通过测量驻波图形中波节点附近场的分布规律的间接方法,求出驻波系数,如图6。 ??? ? ?????? ??-= g g n W W k λπλπρsin cos 2/2 (1.2.4) 式中 min min I kI k 最小点读数测量点读数= n 为晶体检波律,一般n=2,' h h l l W -==2d ,g λ为测量线上的 波长即波导波长 3、 功率衰减法 方法是:改变测量电路中可变衰减器的衰减量,使探针位于驻波腹点和节点时指示电表的读数相同, 图5 节点偏移法测量驻波比的测试系统

已交!3-1 微波系统中电压驻波比的测量第9周三 5-8节

3-1 微波系统中电压驻波比的测量 微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波不同. 从图3-1-1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者. 与无线电波相比,微波有下述几个主要特点. 图3-1-1 电磁波的分类 1.波长短(1m ~1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用. 2.频率高:微波的电磁振荡周期(10-9~10-12s)很短,已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟,甚至还小,因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替. 另外,微波在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替. 3.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV ,而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内. 人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟、原子钟. 4.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯、宇宙通讯和射电天文学的研究和发展提供了广阔的前景. 综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同. 微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量. 微波实验是近代物理实验的重要组成部分. 国外发达国家的微波中继通信在长途通信网中所占的比例高达50%以上. 据统计美国为66%,日本为50%,法国为54%. 我国自1956年从东德引进第一套微波通信设备以来,经过仿制和自发研制过程,已经取得了很大的成就,在1976年的唐山大地震中,在京津之 λ/m 3 6 109 1012 1015 1018 10-9 10-11 10-6 10-3 100 103 106 f /Hz 广播 电视 红外 可见光 紫外 电波 无线电波 光波 X 射线 微波

实验五--微波电压驻波比与反射系数的测量

实验五--微波电压驻波比与反射系数的测量

实验五微波电压驻波比与反射系数的测量、分析与计算 一、实验目的 (1)学会驻波比的测量、分析和计算; (2)通过驻波比及驻波波节点测量数据,学 会分析和计算反射系数。 二、实验原理 在任何的微波传输系统中,为了保证传输效率,减少传输损耗和避免大功率击穿,必须实现阻抗的匹配。描述系统匹配程度的参数有电压驻波比和反射系数。 驻波比测量是微波测量中最基本和最重要的内容之一。在传输线中若存在驻波,将使能量不能有效地传给负载,因而增加损耗。在大功率情况下由于驻波存在可能发生击穿现象。因此驻波测量是非常重要的内容。在测量时,通常是测量电压驻波比,即波导中电场(电压) 最大值与最小值之比,即: 测量驻波比的方法与仪器有多种。驻波比的各种测量方法如表5-1 所示。 表5-1 驻波比的各种测量方法 测量方法适用范围特点

直接法 中、小驻波比 (ρ<6) 测量方法简便,测量误差除与信号源和测量线的系统有关外,主要决定于指示器的读数误差 等指示度法 大驻波比 (ρ>6) 测量方法简单,ρ 值测量时需要确定晶体检波律。测量误差决定于等指示度宽带 w 的读数误差,探针导纳对测量精度影响较小 功率衰减法 任意驻波比(常用于测量大驻波比) 测量方法复杂,标准衰减器两端匹配良好(ρ<1.02)时可得到较高 精度 移动终端法 小驻波比 (ρ<1.1) 能分离两个混合在一起的小反射波,测量精度与直接法相同,由于已将两种反射分离开,所以准确度大大提高 S 曲线法(即 节点偏移法) 任意驻波比(常用于测量小驻波比) 测量方法复杂,测量准确度较高,但测量精度受到信号源的频率 漂移影响较大 本实验仅介绍直接法和等指示度法。 1. 直接法 直接测量沿线驻波的最大点和最小点场强,由式(5-1)直接求出电压驻波比的方法称为直接法。此方法适用于中小电压驻波比 (ρ<6) 的测量。 若驻波波腹点和波节点处电表指示读数分别为 I max 、I min ,对于小驻波比,晶体二极管为平方律(n =2)检波时,则上式驻波比为: min max min max I I E = = E ρ (5-2) 当电压驻波比在 1.05<ρ<1.5 时,驻波的最大值和最小值相差不大,且不尖锐,不易测量准。

射频同轴连接器结构及选择

射频同轴连接器结构及选择 射频同轴连接器的选择既要考虑性能要求又要考虑经济因素,性能必须满足系统电气设备的要求经济上须符合价值工程要求。在选择连接器原则上应考虑以下四方面连接器接口(SMA、SMB、BNC等) 电气性能、电缆及电缆装接端接形式(PC板、电缆、面板等) 机械构造及镀层(军用、商用) 1、连接器接口连接器接口通常由它的应用所决定,但同时要满足电气和机械性能要求。BMA型连接器用于频率达18GHz的低功率微波系统的盲插连接。 BNC型连接器采用卡口式连接多用于频率低于4GHz的射频连接,广泛用于网络系统、仪器仪表及电脑互连领域。 TNC除了螺口外其界面与BNC相仿在11GHz仍能使用在振动条件下性能优良。 SMA螺口连接器广泛应用于航空、雷达、微波通讯、数字通信等军用民用领域。其阻抗有50配用软电缆时使用频率低于12.4GHz 配用半刚性电缆时最高使用频率达26.5GHz,75在数字通信上应用前景广阔。 SMB体积小于SMA,为插入自锁结构,便于快速连接,最典型的应用是数字通信是L9的换代产品商业50N满足4GHz,75用于2GHz。 SMC与SMB相仿因有螺口保证了更强的机械性能及更宽的频率范围主要用于军事或高振动环境。 N型螺口连接器用空气作绝缘材料造价低,阻抗为50及75,频率可达11GHz通常用于区域网络,媒体传播和测试仪器上。 RFCN提供的MCX、MMCX系列连接器体积小,接触可靠,是满足密集型、小型化的首选产品,有其广泛的应用前景。 2、电气性能、电缆及电缆装接A.阻抗: 连接器应与系统及电缆的阻抗相匹配,应注意到不是所有连接器接口都符合50或75的阻抗,阻抗不匹配会导致系统性能下降。 B.电压:

一种射频同轴连接器回波损耗的测试方法

一种射频同轴连接器回波损耗的测试方法 【摘要】回波损耗是射频同轴连接器重要的电气性能指标,是保证射频同轴连接器能够正常使用的关键检测项目。文章较详细地阐述了单个射频同轴连接器回波损耗的测试原理、参数设定以及测试操作步骤。 【关键词】射频同轴连接器;回波损耗;时域;测试方法 1.引言 电压驻波比(VSWR)是射频同轴连接器重要的电气性能指标,是衡量同轴连接器指标好坏的主要依据。如果两个带有相同幅度和频率的电磁波以相反方向在同一电缆中传播,它们将以相同相位和相反相位交替叠加,这样就产生了驻波,电压驻波比就是表征均匀同轴传输线的这种射频传输特性,用来衡量射频传输性能的优劣,回波损耗(Return Loss,简写为RL)是其另一种形式的表征,它们之间的关系如下: RL=20logρ=20log[(VSWR-1)/(VSWR +1)](dB) 其中:ρ—反射系数;VSWR—电压驻波比。 射频同轴连接器回波损耗的考核是在网络分析仪上进行测试的,具体做法是在射频同轴电缆两端配接被测射频同轴连接器,做成一根射频电缆组件,然后引入网络分析仪上进行测试,测试结果实际上是整根的射频电缆组件的回波损耗,长期以来,我们都是以这根射频电缆组件的回波损耗测试值来表征射频同轴连接器的回波损耗。近年来,随着行业内国际交流的增强,我们发现国际上一些客户在测试射频同轴连接器回波损耗时,就是对单个射频同轴连接器的回波损耗测试,显而易见,两种测试方法得到的测试数据是不同的,在连接器不变的情况下,单个射频同轴连接器回波损耗测试结果优于整根的射频电缆组件的回波损耗测试结果。很显然,我们长期以来用射频电缆组件的回波损耗测试值来表征射频同轴连接器的回波损耗的测试方法,在参与国际市场竞争中,对我们是极为不利的。 为了在相同的测试方法下得到对射频同轴连接器回波损耗客观的质量评价,下面介绍另一种射频同轴连接器回波损耗的测试原理及方法。 2.测试原理 我们知道,网络分析仪有频域和时域模式,当我们将射频同轴连接器安装到射频同轴电缆上引入网络分析仪进行测试时,选择不同的模式会得到不同的响应,下面的图1和图2说明了同一电缆的频域和时域响应。频域反射测量(图1)是在整个被测频率范围内由电缆中存在的不连续性反射的所有信号的组合,不能得到单个连接器的回波损耗数据;时域测量(图2)表示出了作为时间函数的每个不连续性的影响,从图中很容易地看出两个连接器的引入所带来的失配位置和

电压驻波比

电压驻波比(Voltage Standing Wave Ratio,VSWR)是用于描述电路阻抗失配程度的参数。差的VSWR可能引起RF电路中的许多问题。VSWR引起的最坏情况是RF/微波高功率放大器(HPA)的永久性损坏,这通常被称为VSWR故障 什么是电压驻波比(VSWR)? 传输在线的电压和电流由特定的比率联系在一起,该比率关系就是通常所 说的特征阻抗(Z O )。如果信号源加在阻抗大小为特征阻抗的负载上,那么所有资用功率均施加到该负载上。传输在线的任何失配会使负载阻抗发生变化,从而引起传输在线的反射电流和电压,由此产生了驻波。入射波和反射波发生相长干 涉和相消干涉,导致了图1中示出的最大值(V max )和最小值(V min )。电压驻波 比即是描述该失配的参数,被定义为V max 和V min 的比值V max /V min 。 高VSWR的影响 理想的阻抗匹配(VSWR=1:1)可以使功率无损传输,而严重的阻抗失配(高VSWR)将导致传输到负载的功率减少。高VSWR可能引起多种系统问题,其中对VSWR最为敏感的组件是功率放大器,一般在天线之前。高VSWR可能造成无线电装置的工作范围缩小、发射信号使接收部分饱和、或者使无线电装置过热。更为严重的影响是损坏发射机并且击穿传输电介质。由于天线上反射回的信号在功率放大器处再次反射,然后重新发射出去,导致了类似多径现象,因此高VSWR可能引起电视广播系统的遮蔽衰落。 使用定向耦合器和RF对数检波器检测VSWR定向耦合器 如式(1)和图1所示,当已知反射系数时,可以计算VSWR。因此接下来的问题是如何检测反射系数。图2所示安置在电源和负载之间的定向耦合器,用于

射频同轴连接器基本知识

射频同轴连接器基本知识 1、单位换算和一些常数: 1.1 1GHz=103MHz =106KHz =109Hz 1.2 1Kg = 9.8N 1.3 1in = 25.4mm 1.4 1bf.in = 0.112985N.m 1.5 1标准大气压= 101325 Pa 1.6 电磁波真空中的速度Co=3×108m/s 1.7 空气介质的相对介电常数εr空=1 1.8 聚四氟乙烯的相对介电常数:国内用εr= 2.05IEC常用εr=2.01 1.9 空气介质的导磁率μ空= 1 1.10 常用铅黄铜(Hpb59-1)的密度= 8.4g/cm3 2、请写出下面名词的定义: 2.1电接触——各个导电件处于紧密地机械接触状态,对两个方向的电流能提供低电阻通路; 2.2接触件——元件内的导电体,它与对应的导电件相插合提供电通路(提供电接触): 2.3弹性接触件——能对插合的零件产生压力具有弹性的接触件; 2.4连接器——通常装接在电缆或设备上,供传输线系统电连接可分离元件(转接器除外) 2.5转接器——连接两根带有不能直接插合连接器传输线的两端口装置;

2.6无极性连接器——能与本身等同的连接器相插合的连接器; 2.7类型——表征连接器对的与结构和尺寸有关的具体插合面和锁紧机构的术语; 2.8品种——表示同一类型的具体型式、形状以及组合。例如:自由端连接器和固定连接器,直式连接器和直角连接器,同类型内直角和直角转换器; 2.9规格——表示品种在特定细节方面的变化,如电缆入口处尺寸的变化; 2.10等级——连接器在机械和电气精密度方面特别是在规定的反射系数方面的水平。 3、产品基本知识和性能: 3.1请分别写出7/16型、N型和SMA型连接器的连接螺纹,并解释螺纹标识中每个字母及数学所表示的含义(对于公制螺纹请说明是粗牙普通螺纹还是细牙普通螺纹) 7/16型——M29×1.5表示标称直径为29mm(1.141in),螺距为1.5mm(0.059in)的公制螺纹,该螺纹为细牙普通螺纹。 N型——5/8-24UNEF-2,表示该螺纹标称直径为5/8英寸,每英寸牙数为24,UNEF表示为超细压螺纹系列。2为精度等级,A为外螺纹,B为内螺纹。 SMA型——1/4-36UNS-2,表示该螺纹标称直径为1/4英寸,每英寸牙数为36,UNS表示为特种螺纹系列。2为精度等级,A为外螺纹,B为内螺纹。 3.2请分别写出7/16型、N型、SMA型三种产品的工作频率范围、并写出他们所有用到的特性阻抗和工作温度范围:

天线驻波比测试方法

天线驻波比测试方法 SX-400驻波比功率计是日本第一电波工业株式会社的“ 钻石天线” 系列产品,它是一种无源驻波比功率计,将它连接在电台与天线之间,通过简单的操作可测量电台发射功率、天 线馈线与电台不匹配引起的反射功率及驻波比,此外在单边 带通信中本功率计还可作为峰值包络功率监视器。本仪表作 为电信、军队、铁路(无线检修所)等无线通信部门的常用仪表被广泛使用,由于使用说明书为日文,阅读不便,为便于现 场人员正确使用,现将使用方法和注意事项介绍如下。 1 仪表表头、开关、端口功能 仪表表头、开关、端口位置见图 1 ①表头:用于指示发射功率、反射功率、驻波比及单边带应 用时峰值包络功率的数值。 表头上共有5道刻度。从上往下,第 1、 2道刻度为驻波比刻度值,第一道刻度右侧标有“ H” ,当电台输出功率大于5W时,应从该刻度上读取驻波比值;第二道刻度右侧标有“ L” ,当电台输出功率小于5W时,应从该刻度上读取驻波比值;第 3、4、5道刻度为功率值刻度,分别对应功率值满量程200W、20W、5 W档位。 ②RANGE(量程开关 选择功率测量量程,共三档,分别为200W、 20W、 5W。 ③FUNCTION(测量功能选择开关 置于“ POWER” 时,进行发射功率(FWD)、反射功率(REF)测量。' 置于“ CAL” 时,进行驻波比(SWR)测量前的校准。 置于“ SWR” 时,进行驻波比(SWR)测量 ④CAL(校准旋钮) 进行驻波比(SWR)测量前(被测电台处于发射状态下),用此旋钮进行校准,应将指针调到表头第一道刻度右侧标有“ ” 处。

⑤POWER(功率测量选择开关 置于“ FWD” 时,进行电台发射功率测量。 置于“ REF” 时,进行反射波功率测量。 置于“ OFF” 时,停止对电台各种功率的测量。 ⑥AVG、PEP MONI(平均值或峰值包络功率测量选择开关) 测发射功率、反射波功率、驻波比时,该开关应弹起,呈“ ■” 状态,此时表头所指示的是功率的平均值(AVG)。 作为单边带峰值包络功率(PEP MONI)监视器时,该开关应按下,呈“ ━” 状态。 ⑦零点调整螺钉 用于表头指针的机械调零,测量前调整该螺钉可使指针指 示到零位。 ⑧TX(与电台发射机相连端口)可同时参见图1及图 用50Ω 同轴电缆将该端口与电台天线端(ANT)相连。 ⑨ANT(与电台使用的天馈线连接端口) 将电台实际使用天馈线的馈线(50Ω )端口(或50Ω 阻性的标准 负债)与该端口相连。 ⑩DC13 8V(表头照明直流电源输入端口) 表头照明直流电源输入端口,直流电源电压范围为11~15V,红线接电源“ +” ,黑线接电源“ -” ,主要是用于夜间的野外场合。

射频同轴连接器失效机理

正文 本文主要对射频同轴连接器、电缆组件的失效模式和机理进行了分析,并对如何提高射频同轴连接器、电缆组件的可靠性进行了较详细的讨论。 一.引言 随着科学技术的迅猛发展,电子设备的应用范围也日益广泛,几乎渗透到国民经济的各个部门,其中包括军事、公安、通讯、医疗等各个领域,所以电子设备的可靠性越来越引起人们的关心和重视。而接插件、继电器等电接触元件是电子设备中使用最多的元件之一。据不完全统计,一台电子计算机、雷达或一架飞机,其接点数都数以万计,而电子设备的可靠性与所用元件的数量、质量有着极为密切的关系。特别是在串联结构的电子设备中,任何一个元件、器件或节点的失效都有可能导致局部或各个系统的失效。本文侧重对射频同轴连接器、电缆组件的失效模式和机理进行了分析,并对如何提高其可靠性进行了较详细的讨论。 二.射频同轴连接器、电缆组件的失效模式及机理 目前国内、外使用的射频同轴连接器的品种虽很多,但从连接类型来分主要有以下三种: (1)螺纹连接型:如:APC-7、N、TNC、SMA、SMC、L27、L16、L12、L8、L6等射频同轴连接器。这种连接形式的连接器具有可靠性高、屏蔽效果好等特点,所以应用也最为广泛。 (2)卡口连接型:如:BNC、C、Q9、Q6等射频同轴连接器。这种连接器具有连接方便、快捷等特点,也是国际上应用最早的射频连接器连接形式。 (3)推入连接型:如:SMB、SSMB、MCX等,这种连接形式的连接器具有结构简单、紧凑、体积小、易于小型化等特点。 虽然连接器品种很多,但是从可靠性的角度来分析,许多问题是相同的。本文侧重对目前应用最广泛、品种最多螺纹连接型的射频同轴连接器的失效模式和机理进行分析。根据我们十余年的实践,常见的主要失效模式有以下几种。 2.1连接失效 (1)连接螺母脱落 在日常生活中,部分用户反映有时出现连接螺母脱落现象,致使影响正常工作,特别是小型连接器,如SM A、SMC、L6出现会更多些,经我们分析大致有下列原因造成: a.设计人员选材不当,为降低成本,误用非弹性的黄铜座卡环材料,使螺母易脱落。 b.加工时,螺母安装卡环的沟槽槽深不够,所以连接时稍加力矩螺母即脱落。

射频同轴连接器特性阻抗的计算

射频同轴连接器特性阻抗的计算 文章介绍了射频同轴连接器特性阻抗的计算方法之一,快速简便的获得阻抗值,方便采购与检验等环节。 标签:同轴连接器;射频转接器;特性阻抗;阻抗匹配 1 前言 微波技术在新世纪得到更广泛的发展,作为微波技术的重要器件射频同轴连接器显得至关重要,选择匹配的连接器可以提高系统的性能。而作为选择连接器的重要因素,阻抗匹配显得很重要,了解和掌握阻抗的计算方法可以一定程度的保证器件选择、产品进货检验等。 2 射频同轴连接器简介 用于射频同轴馈线系统的连接器通称为射频同轴连接器。 射频同轴连接器按连接方式分类为:螺纹式连接器,卡口式连接器,推入式连接器,推入锁紧式连接器。 常用的射频同轴连接器有SMA型、SMB型、SSMB型、N型、BNC型、TNC型等。 射频同轴连接器电气性能方面包括特性阻抗、耐压、最高工作频率等因素,特性阻抗是连接器与传输系统及电缆的阻抗匹配,是选择射频同轴连接器的主要指标,阻抗不匹配会导致系统性能的很大下降。通过计算的阻抗来选择匹配的连接器,方便采购、检验及设计。利用射频同轴连接器的结构尺寸计算其阻抗值的方法,快速简便。 3 射频同轴连接器特性阻抗的计算 射频同轴连接器的特性阻抗主要依据其外导体的内直径和内导体的外直径以及和填充的介质共同决定的。如图1所示 3.3 实例2 BNC 型连接器的特性阻抗: BNC 型连接器使用于低功率,按特性阻抗分为50Ω和75Ω两种。不同于其它类型连接器的特点是50Ω与75Ω的内导体与外导体的尺寸一样,构成特性阻抗不同的区别在是否填充介质,也就是说有一种阻抗的连接器的填充是空气。75Ω特性阻抗的连接器没有填充介质,即空气介质(εr=1)。50Ω特性阻抗的在

反射系数(电压驻波比)的测量

实验二 反射系数(电压驻波比)的测量 驻波系数测量是微波测量中最基本的测量,通过驻波测量,不仅可以了解传输线上的场分布,而且可以测量阻抗、波长、相位移、衰减、Q 值等其它参量,传输线上存在驻波时,能量不能有效地传到负载,这就增加了损耗;大功率传输时,由于驻波的存在,驻波电场的最大点处可能产生击穿打火,因而驻波的测量以及调配是十分重要的。 根据驻波系数定义,可知ρ的取值范围为1≤ρ<∞,通常按ρ的大小可分三类:ρ<3为小驻波比;3≤ρ≤10为中驻波比;ρ>10为大驻波比。 驻波系数的测量方法很多,用测量线进行测量的主要方法及应用条件如下: 表Ⅰ 用测量线测驻波系数的方法及应用条件 (1)直接法:测试方框如图1。将测量线探头沿线移动,测出相应各点的驻波场强分布,找到驻波电场的最大点与最小点,直接代入公式就可以得到驻波比,如测量线上的晶体检波律为n ,则: n a a 1 min max ??? ? ??=ρ a 为输出电表指示。 通常实验室条件下检波功率电平较小,可认为基本特性为平方律,即n =2。 为提高测量精度,必须尽量使电表指针偏在满刻度12以上。当驻波系数在1.05<ρ<1.5时,由于驻波场的最大与最小值相差不大,且变化不尖锐,不易测准。为提高测量准确度,可移动探针到几个波腹与波节点,记录数据,然后取其平均值。直接法的测试范围受限于晶体的噪声电平及平方律检波范围。 (2)等指示度法(二倍最小法):当被测器件的驻波系数大于10时,由于驻波最大与最小处的电压相差很大,若在驻波最小点处使晶体输出的指示电表上得到明显的偏转,那么在驻波最大点时由于电压较大,往往使晶体的检波特性偏离平方律,这样用直接法测量就会引入较大的误差。 等指示度法是通过测量驻波图形在最小点附近场强的分布规律,从而计算出驻波系数,如图三所示。若最小点处的电表指示为min a ,在最小电两边取等指示点1a ,两等指示度点之间的距离为W ,有min 1Ka a =,设晶体检波律为n ,由驻波场的分布公式可以推出:

常见射频同轴连接器

常见射频同轴连接器 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

常见射频同轴连接器大全 射频信号有自己的特点,所以传输信号需要特别的媒介,而相应连接器也很特殊,这里主要介绍常见的射频同轴连接器(RF COAXIAL CONNECTOR),符合标准GB11316- 89、IEC169、MIL-C-31012等标准。 一、常见的同轴连接器及主要性能对照表: 除上述连接器以外,还有MINI BNC、SL16、C3、CC4、SMZ(BT-43)、MIM等连接器,但主要是一些公司的型号。 二、常见同轴连接器的选择: BNC是卡口式,多用于低于4GHz的射频连接,广泛用于仪器仪表及计算机互联 TNC是螺纹连接,尺寸等方面类似BNC,工作频率可达11GHz,螺纹式适合振动环境SMA是螺纹连接,应用最广泛,阻抗有50和75欧姆两种,50欧姆时配软电缆使用频率低于,配半刚性电缆最高到 SMB体积小于SMA,为插入自锁结构,用于快速连接,常用于数字通讯,是L9的换代品,50欧姆可到4GHz,75欧姆到2GHz SMC为螺纹连接,其他类似SMB,有更宽的频率范围,常用于军事或高振动环境 N型连接器为螺纹式,以空气为绝缘材料,造价低,频率可达11GHz,常用于测试仪器上,有50和75欧姆两种 MCX和MMCX连接器体积小,用于密集型连接 BMA用于频率达18GHz的低功率微波系统的盲插连接 每种连接器都有军标和商业标准,军标按MIL-C-39012制造,全铜零件、聚四氟乙烯绝缘、内外镀金,性能最可靠,但造价较高。

射频同轴连接器技术简介

射频同轴连接器技术简介 一、射频连接器发展概况·1939年出现的UHF连接器是最早的RF连接器;·二战期 间,随着雷达、电台和微波通信的发展,产生了N、C、BNC、TNC等中型系列;·1958年后,随着整机设备的小型化,出现了SMA、SMB、SMC等小型化产品;·1964年制定了美国军用标准MIL-C-39012《射频同轴连接器总规范》·七十年代末,毫米波连接器出现;·九十年代初,HP公司推出频率高达110GHz的1.0mm连接器,并用于其仪器设备中;·九十年代出现表现贴装射频同轴连接器,并大量用于手机产品中。我国射频同轴连接器的发展·我国从五十年代开始由整机厂研制RF连接器;·六十年代组建专业工厂,开始了专业化生产;·一九七二年国家组织集中设计,使国产的RF连接器自成体系,只能在国内使用,产品标准水平低,且不能与国际通用产品对接互换;·八十年代起开始采用国际标准,根据IEC169和MIL-C-39012,颁布了GB11313和GJB681,使射频同轴连接器的生产和使用逐步与国际接轨;·经过十几年的努力,目前通用R连接器的整 体水平与国外差距不大,但精密连接器的设计与生产跟国外仍有较大差距。二、射频连接器的标准体系美军标美国是世界上最大的通用型RF连接器制造和消费国, 其技术水平也是一流的因此美国军用标准MLC39012被认为是RF连接器的最高标准。其它先进国家的标准有德国DIN、英国BS、日本JIS和IEC标准等。这些国家或国际标准大都是参照或等同美军标制订的,有些国家或公司甚至直接应用美军标。IEC标准IEC标准是指导性标准,不是强制性标准,因此很少被直接引用;值得一提的是德国在某些专用新型连接器方面也有一些优势,例如:DIN47223、7/16(L29)系列、DIN47297、SAA系列、DIN41626、DSA系列,这些系列产品在通信领域应用较广泛,德国的标准和产品已得到全世界认可,但美国尚无这些标准出现。我国现行标准我国现行通用RF同轴连接器标准分两部分,一部分是军用标准(GJB681、GB680、GJB976及其详细规范)。另一部分是民用产品标准,按IEC169-1制定的GB11313。·不论是国军标还是国标,基本上都是照搬国外先进标准制订的,主要指标不折不扣搬过来,因此,可 以说我们现行标准与国际接轨,且指标和技术水平与国际先进水平同步。三、射频连接器基本概念及技术特点1、RF连接器的定义通常装接在电缆上或安装在仪 器上的一种元件,作为实现传输线电气连接或分离的元件。它属于机电一体化产品。简单地讲它主要起桥梁作用。 2、连接器的分类连接器种类繁多,根据技术特性的不同,按频率划分为音频(Audio)、视频(Vidio)、射频(Radio)、光纤( fribre optic)四大类。频率范围如下:Audio---20KHz 以下Vidio----30MHz~500MHz以下Radio----500MHz ~300GHzFibre-----167THz ~375THz 其中应用在Radio波段的连接器称作RF连接器。工程中常用的波段划分如下(单位 GHz):3、RF连接器的分类1)按端接方式分为连接器MIL-C-39012(GJB681)转接器MIL-A-55339(GJB680)微带与带状线ML-C-83517(GJB976) 2)按连接方式分为:卡口式(内卡口、外卡口)螺纹式(右旋螺纹、左旋螺纹)推入式(直插式、带止动式、自锁式)3)按功能分为:通用型(2级)精密型(0级、1级)专用型(耐辐照、耐高压、防水等)多功能型(含有滤波、调相位、混频、衰减、检波、限幅等)

相关文档
最新文档