九年级数学解一元二次方程公式法
人教版九年级上册数学课件:解一元二次方程--公式法

解:a=5,b=-4,c=-1
解:a=1,b=-8,c=17
∆=(-4)2-4×5×(-1) =36 > 0
1 ∴x1=1 或x2= - 5 .
∆=(-8)2-4×1×17 =-4<0
∴方程无实数根.
巩固练习
1.一元二次方程 ax2 + bx + c = 0(a≠0)的求根公式
是 x b
b2 4ac
问题2 我们知道,任何一个一元二次方程都可以 转化为一般情势
ax2 + bx + c = 0 (a≠0) (1) 我们能否也用配方法得出它的解?
我们可以根据用配方法解一元二次方程的经验来解 决这个问题。
推导求根公式
解:因为a≠0,方程两边都除以a,得
移项,得
x2 b x c 0 aa
x2 + b x=- c aa
∴方程有两个不相 等的实数根.
化简,得2x2-8x +10=0
∵∆=64-4×2×10 =-16<0
∴方程无实数根.
本节课应掌握: 1、请大家思考并回答以下问题: (1)本节课学了哪些内容? (2)我们是用什么方法推导求根公式的? (3)你认为判别式有哪些作用? (4)应用公式法解一元二次方程的步骤是什么?
(2)求出b2-4ac的值,当∆>0时,方程有两个不等的实 数根;当∆=0时,方程有两个相等的实数根,当∆<0时, 方程无实数根.
(3)在b2-4ac≥0的前提下,把a,b,c的值代入公式进 行计算,最后写出方程的根.
自主探究
例2 用公式法解下列方程: (1) x 2 - 4x - 7 = 0;
解:a=1,b=-4,c=-7 ∆=(-4)2-4×1×(-7)=44>0
人教九年级数学上册《解一元二次方程——公式法》课件

(3)化为一般形式为2x2+5x-2=0,∵a=2,b=5,c=-2, ∴Δ=52-4×2×(-2)=41>0, ∴此方程有两个不相等的实数根
知识点2:用公式法解一元二次方程
14.当x满足条件
x+1<3x-3, 12(x-4)<31(x-4)
时,求出方程x2-2x
-4=0的根.
解:解不等式组得2<x<4,解方程得x1=1+ 5,x2=1- 5, ∴x=1+ 5
15.(2014·梅州)已知关于x的方程x2+ax+a-2=0. (1)若该方程的一个根为1,求a的值及该方程的另一根; (2)求证:不论a取何实数,该方程都有两个不相等的实数根. 解:(1)a=12,另一个根为x=-32
知识点1:根的判别式
1.下列关于x的方程有实数根的是( B )
A.x2-x+1=0
B.x2+x+1=0
C.(x-1)(x+2)=0
D.(x-1)2+1=0
2.(2014·兰州)一元二次方程ax2+bx+c=0(a≠0)有两个不相等的
实数根,下列选项中正确的是( C )
A.b2-4ac=0
B.b2-4ac>0
C.b2-4ac<0
D.b2-4ac≥0
3.一元二次方程x2-4x+5=0的根的情况是( D )
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根
4.利用判别式判断下列方程的根的情况: (1)9x2-6x+1=0; (2)8x2+4x=-3; (3)2(x2-1)+5x=0. 解:(1)∵a=9,b=-6,c=1,∴Δ=(-6)2-4×9×1=0, ∴此方程有两个相等的实数根
解一元二次方程公式法

公式法是这样生产的
你能用公式法解方程 2x2-9x+8=0 吗?
解 : a 2 ,b 9 ,c 8 .1.变形:化已知方程为一般形式;
b 2 4 a c 9 2 4 2 8 1 7 0 .
x b b 2 4 ac 2a
9 17
22 9 17 .
4
2.确定系数:用a,b,c写出各项系数;
九年级数学(上)第二章 一 元二次方程
3.公式法(1) 一元二次方程解法
配方法
回顾与复习 1
我们通过配成完全平方式的方法,得到了一元 二次方程的根,这种解一元二次方程的方法称为 配方法(solving by completing the square)
助手 用配方法解一元二次方程的方法的
:
平方根的意义:
公式法将从这里诞生
你能用配方法解方程 2x2-9x+8=0 吗?
解:x29x40.
2
x2 9 x 4.
x29x292924.
x
2 9
2417
.
4
4 16
1.化1:把二次项系数化为1;
2.移项:把常数项移到方程的右边;
3.配方:方程两边都加上一次项系数绝对值 一半的平方;
4.变形:方程左分解因式,右边合并 同类;
8.x1909..xx2714x;3;xx139 .43.273. 16x2+8x=3 ;
1
1 参 考 答 案 :2 12
2
ቤተ መጻሕፍቲ ባይዱ
12
1
2
解:设这三个 一个连 直角续 三角偶 的 形三数 一 边的中 个 长x为间 ,为 根 三个据 连续题 偶 意得
x2 x 数 ,求2 这2 个三x角 形2 的2 .三边长.
九年级数学上册-用公式法解一元二次方程

-1 且 k≠0,综上,k 的取值范围为 k≥-1.
7. 已知关于 x 的方程 x2-(2m+1)x+m(m+1)=0. (1)求证:方程总有两个不相等的实数根; (2)已知方程的一个根为 x=0,求代数式(2m-1)2 +(3+m)(3-m)+7m-5 的值(要求先化简再求值).
解:设AB为xm,则BC为(50-2x)m, 根据题意得方程:x(50-2x)=300, 2x2-50x+300=0, 解得;x1=10,x2=15, 当x1=10时50-2x=30>25(不合题意,舍去), 当x2=15时50-2x=20<25(符合题意). 答:当砌墙宽为15米,长为20米时,花园面积为300 平方米
故当矩形温室的长为 28 m,宽为 14 m 时,蔬菜种 植区域的面积是 288 m2.
◎拓展提升
6. (2017·齐齐哈尔)若关于 x 的方程 kx2-3x-94 = 0 有实数根,则实数 k 的取值范围是( C )
A.k=0
B.k≥-1 且 k≠0
C.k≥-1
D.k>-1
【解析】当 k=0 时,方程为-3x-49=0,解得 x=
老师提示:在检验时,方 程的根一定要符合问题 的实际意义.否则,舍去.
12m
探究2 我—小亮,我的设计我做主!
我的设计方案如图所示.其中花园每个角上的扇形都 相同你能通过解方程,帮我得到扇形的半径x是多少吗?
16m
12m xm
探究2 我—小颖 ,我的设计我做主!
我的设计方案如图所示.其中花园是两条互相垂直
②当 b2-4ac____<_0________时,一元二次方程 ax2 +bx+c=0(a≠0)无实数根.
九年级数学 怎样求解一元二次方程(四种)

怎样求解一元二次方程(四种)怎样求一元二次方程aX²+bX+c=0(a≠0)的在实数域上的解(即实根)?我提供四种方法一、公式法二、配方法三、直接开平方法四、因式分解法下面我一一讲解!•一元二次方程aX²+bX+c=0(a≠0)1.1先判断△=b²-4ac,若△<0原方程无实根;2. 2 若△=0,原方程有两个相同的解为:X=-b/(2a);3. 3 若△>0,原方程的解为:X=((-b)±√(△))/(2a)。
END1.1先把常数c移到方程右边得:aX²+bX=-c2. 2将二次项系数化为1得:X²+(b/a)X=- c/a3. 3方程两边分别加上(b/a)的一半的平方得:X²+(b/a)X +(b/(2a))²=- c/a +(b/(2a))²4. 4方程化为:(b+(2a))²=- c/a +(b/(2a))²5. 5①、若- c/a +(b/(2a))²<0,原方程无实根;②、若- c/a +(b/(2a))² =0,原方程有两个相同的解为X=-b/(2a);③、若- c/a +(b/(2a))²>0,原方程的解为X=(-b)±√((b²-4ac))/(2a)。
END1.1形如(X-m)²=n(n≥0)一元二次方程可以直接开平方法求得解为X=m±√nEND1.1将一元二次方程aX²+bX+c=0化为如(mX-n)(dX-e)=0的形式可以直接求得解为X=n/m,或X=e/d。
END•方法中“√”字样为开根号。
•公式法和配方法具有通用性,直接开平方法和因式分解法适用于特殊的一元二次方程。
一元二次方程详细的解法方法1:配方法(可解全部一元二次方程)如:解方程:x^2-4x+3=0 把常数项移项得:x^2-4x=-3 等式两边同时加1(构成完全平方式)得:x^2-4x+4=1 因式分解得:(x-2)^2=1 解得:x1=3,x2=1小口诀:二次系数化为一常数要往右边移一次系数一半方两边加上最相当方法2:公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根 1.当Δ=b^2-4ac0时x有两个不相同的实数根当判断完成后,若方程有根可根属于第2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a 来求得方程的根3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”. 如:解方程:x^2+2x+1=0 利用完全平方公式因式分解得:(x+1﹚^2=0 解得:x1=x2=-14.直接开平方法5.代数法。
人教版初三数学公式法解一元二次方程

一元二次方程
ax2 bx c 0
a 0, b
的求根公式
2
4ac 0
x
b
b 2 4ac 2a
a 0
用这种方法解一元二次方程的 方法叫做公式法.
三、用公式法解一元二次方程
例1、解方程
解:
2 x 5x 3 0
2
a 2, b 5, c 3
二、公式的推导
ax 2 bx c 0
解:
a 0
b c x 0 a a
a
2
a 0
x2
移项得: x 2 b x c
a
2
b b c b 2 配方得: x x a 2 a a 2 a
即:
2 x b b 4ac a 4a 2 2
例2解方程 12 x 2 3x 2 0
解:
a 2, b 3, c 2
b 4ac 3 4 2 2
2
2
3 25 3 5 x 4 22
1 即:x1 2, x2 2
9 16 注意符号 25
2 x b b 4ac a 4a 2
2
4a 2 0
2 b b 4ac 2 当b 4ac 0时, x 2a 4a 2
b b 2 4ac 即: x 2a 2a
b2 4ac 2a
b b 2 4ac x 2a 2a b b 2 4ac 即: x 2a
x1 x2
b b 2 4ac b b 2 4ac 2a 2a
数学人教版九年级上册解一元二次方程——公式法

21.2.2 公式法教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.教学目标1.理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.2.经历复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程.重难点关键1.重点:求根公式的推导和公式法的应用.2.难点与关键:一元二次方程求根公式法的推导.教学过程一、复习引入1.用配方法解下列方程2x2-12x+10=02. 用配方法解一元二次方程的步骤(1)化1:把二次项系数化为1(方程两边都除以二次项系数);(2)移项:把常数项移到方程的右边;(3)配方:方程两边都加上一次项系数绝对值一半的平方;(4)变形:方程左边分解因式,右边合并同类;(5)开方:根据平方根意义,方程两边开平方;(6)求解:解一元一次方程;(7)定解:写出原方程的解.二、探索新知用配方法解方程(1)ax2-7x+3 =0 (2)ax2+bx+3=0(3)如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax 2+bx+c=0(a ≠0),试推导它的两个根x 1=2b a -,x 2=2b a -(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a+(2b a )2 即(x+2b a )2=2244b ac a - ∵4a 2>0,4a2>0, 当b 2-4ac ≥0时2244b ac a -≥0 ∴(x+2b a)2)2 直接开平方,得:x+2b a =±2a 即x=2b a-± ∴x 1x 2 由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,•将a 、b 、c 代入式子x=2b a-就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
九年级数学 用公式法求解一元二次方程》(共21张PPT)

2、解下列方程: (1) x2-2x-8=0; (2) 9x2+6x=8; (3) (2x-1)(x-2) =-1;
1.x1 2; x2 4.
2.x1
2 3
;
x2
4 3
.
3.x1
1;
x2
3. 2
3、不解方程判断下列方程根的情况:
(1)2x2+5=7x
(2)4x(x-1)+3=0
次项系数绝对值一半的平方;
x
b
2
2a
b2 4ac 4a2 .
4.开方:根据平方根意 义,方程两边开平方
当b2 4ac 0时,
b
b2 4ac
x
.
2a
2a
x b b2 4ac . b2 4ac 0 . 2a
结论:
一般地,对于一元二次方程ax2+bx+c=0(a≠0), 当b2-4ac ≥0时,它的根是:ac<0时,原方程无解. 上面这个式子称为一元二次方程的求根公式, 用求根公式解一元二次方程的方法称为公式法.
【例1】解方程:x2-7x-18=0.
【解析】这里 a=1, b= -7, c= -18.
∵b2 - 4ac=(-7)2 - 4×1×(-18)=121﹥0,
x
7
121 21
7
11 2
,
即:x1=9, x2= -2.
【例2】解方程: 4x2 1 4x
【解析】化简为一般式得
4x2 4x 1 0
这里 a=4, b= -4 , c= 1.
∵b2 - 4ac=( )42 - 4×4×1=0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、代入求根公式 : xb b2 4ac 2a
4、写出方程的解:
x
、
1
x
2
x b b2 4ac 2a
例 2 解方程: x232 3x
解: 化简为一般式:x22 3x30 这里 a1、 b=-23、 c=3
Q b24ac(2 3) 24130
x(-2 3)
02
3
b
2
) 0
,
2a
因此方程无实数根
b2 4ac
一般地,ax式2子bxc叫0做方程
根的判别式,通常用希腊字母△表示它,即△=
归纳:
b2 4ac
P36
当△>0时,方程 ax2bxc0 (a≠0)
的实根可写为
一元二次方程的
b b2 4ac x
求根公式
2a
用求根公式解一元二次方程的方法 叫做公式法。
x b b2 4ac 2a
(2)9x2+6x+1=0;
(3)16x2+8x=3.
思考题
1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0 有两个相等的实数解
2、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当a,b,c 满足什么条件时,方程的两根为 互为相反数?
作业:P42
5
工作范文,仅供参考!
如需使用,请下载后根据自己的实际情况,更改后使用!
a
2
>0
b 式子 2 4ac的值有以下三种情况
(1)b24a
c0,这b 时 24 a42a
c 0
即
b
b2 4ac
x
2a
2a
此时,方程有两个不等的实数根
b
x1
b
x2
b 2 4 ac
2a
b 2 42 4ac 4a2
因为a≠0,所以4
a
2
>0
b 式子 2 4ac的值有以下三种情况
3
21
2
即 : x1 x2 3
x b b2 4ac 2a
例 3 解方程:x213x6
解:去括号,化简为一般式:
3x27x80
这里 a3 、 b =-7 、 c =8 Qb24ac( 7) 2438
4996-470
方程没有实数解。
随堂 练习 用公式法解下列方程:
(1)2x2-9x+8=0;
22.2.2公式法(一)
用配方法解一般形式的一元二次方程
ax2bxc0(a≠0)
解: 把方程两边都除以 a
x2 b x c 0 aa
移项,得
x2 b x c
a
a
配方,得
x2abx2ba2ac2ba2
即
x
b 2 2a
b2 4ac 4a2
即
x
b 2 2a
b2 4ac 4a2
因为a≠0,所以4
(2)b24a c0,这b 时 24 a42a
c 0
即 x b b2 4ac =0
2a
2a
此时,方程有两个相等的实数根
x1
x2
b 2a
即
x
b 2 2a
b2 4ac 4a2
因为a≠0,所以4
a
2
>0
b 式子 2 4ac的值有以下三种情况
(3)b24a c0,这b 时 24 a42a
c 0
而x取任何实数都不可能使 (x
例 1 解方程: x27x180
解:
a 1b 7c 1 8
Q b2 4ac (7)2 41(18)121>0
方程有两个不等的实数根
xb b2 4ac(7) 121711
2a
21
2
即 : x19 x22
用公式法解一元二次方程的一般步骤:
1、把方程化成一般形式,并写出 a、b、c 的值。
2、求出 b2 4ac 的值,