2019年全国高考理科数学数学分类汇编---不等式与线性规划

合集下载

(全国通用版)2019版高考数学总复习专题一高频客观命题点1.5不等式与线性规划课件理

(全国通用版)2019版高考数学总复习专题一高频客观命题点1.5不等式与线性规划课件理

Ⅰ卷 Ⅱ卷 Ⅰ卷
15
ⅡⅠⅡⅢⅠⅡⅢⅠⅡⅢ
卷卷卷卷卷卷卷卷卷卷
16
-4高考真题体验·对方向
新题演练提能·刷高分
不等式的性质与解不等式 1.(2016全国Ⅰ· 8)若a>b>1,0<c<1,则( ) A.ac<bc B.abc<bac C.alogbc<blogac D.logac<logbc 答案 C
-7高考真题体验·对方向
新题演练提能·刷高分
2.(2018北京丰台一模)已知a<b<0,则下列不等式中恒成立的是 ( )
A.������ > ������
答案
1
1
B. -������ < D.a3>b3
-������
C.2a>2b
A
解析
1 ∵a<b<0,∴������
>
1 ,故 A ������
正确; -������ >
������3 因为 ������
-11高考真题体验·对方向
新题演练提能·刷高分
6.(2018甘肃天水期中)对于任意实数x,不等式(a-2)x2-2(a-2)-4<0恒 成立,则实数a的取值范围是( ) A.(-∞,2) B.(-∞,2] C.(-2,2] D.(-2,2) 答案 C 解析 当a-2=0,即a=2时,原不等式变为-4<0,显然不等式恒成立,此 时符合题意.当a-2≠0,即a≠2时,因为对于任意实数x,不等式(a-2)x22(a-2)-4<0恒成立, ������-2 < 0, 所以 ������ = [-2(������-2)]2 -4(������-2) × (-4) < 0, ������ < 2, 解得 ∴-2<a<2. -2 < ������ < 2. 综上可得-2<a≤2.故选 C.

理科数学2010-2019高考真题分类训练二元一次不等式(组)与简单的线性规划问题

理科数学2010-2019高考真题分类训练二元一次不等式(组)与简单的线性规划问题

专题七 不等式第二十讲 二元一次不等式(组)与简单的线性规划问题2019年1.(2019浙江3)若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则z =3x +2y 的最大值是A .1-B .1C .10D .122.(2019北京理5)若x ,y 满足1x y ≤-,且1y ≥- 则3x y +的最大值为(A )-7 (B )1 (C )5 (D )73.(2019天津理2)设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……则目标函数4z x y =-+的最大值为A.2B.3C.5D.62010-2018年一、选择题1.(2018天津)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩≤≤≤≥ 则目标函数35z x y =+的最大值为A . 6B .19C .21D .452.(2017新课标Ⅱ)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩≤≥≥错误!未找到引用源。

,则2z x y =+的最小值是A .错误!未找到引用源。

B .C .错误!未找到引用源。

D .3.(2017天津)设变量,x y 满足约束条件20,220,0,3,x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩≥≥≤≤则目标函数z x y =+的最大值为 A .23 B .1 C .32D .3 4.(2017山东)已知x ,y 满足3035030x y x y x -+⎧⎪++⎨⎪+⎩≤≤≥,则2z x y =+的最大值是A .0B .2C .5D .65.(2017北京)若x ,y 满足32x x y y x ⎧⎪+⎨⎪⎩≤≥≤ 则2x y +的最大值为A .1B .3C .5D .96.(2017浙江)若x ,y 满足约束条件03020x x y x y ⎧⎪+-⎨⎪-⎩≥≥≤,则2z x y =+的取值范围是A .[0,6]B . [0,4]C .[6,)+∞D .[4,)+∞ 7.(2016年山东)若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是A .4B .9C .10D .128.(2016浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩,中的点在直线20x y +-=上的投影构成的线段记为AB ,则||AB =A .B .4C .D .69.(2016天津)设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则目标函数25z x y =+的最小值为 A .4-B .6C .10D .1710.(2015陕西)某企业生产甲、乙两种产品均需用,A B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为A .12万元B .16万元C .17万元D .18万元11.(2015天津)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为A .3B .4C .18D .4012.(2015福建)若变量,x y 满足约束条件20,0,220,x y x y x y +⎧⎪-⎨⎪-+⎩≥≤≥ 则2z x y =-的最小值等于A .52-B .2-C .32- D .2 13.(2015山东)已知,x y 满足约束条件020x y x y y -⎧⎪+⎨⎪⎩≥≤≥,若z ax y =+的最大值为4,则a =A .3B .2C .-2D .-314.(2014新课标Ⅰ)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3p :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3pB .1p ,4pC .1p ,2pD .1p ,3p15.(2014安徽)y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不.唯一..,则实数a 的值为( ) A .121-或B .212或 C .2或1 D .12-或 16.(2014福建)已知圆()()22:1C x a y b -+-=,设平面区域70,70,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为 A .5 B .29 C .37 D .4917.(2014北京)若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为A .2B .-2C .12 D .12- 18.(2013新课标Ⅱ)设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是A .7-B .6-C .5-D .3-19.(2013陕西)若点(,)x y 位于曲线y = |x |与y = 2所围成的封闭区域,则2x -y 的最小值为A .-6B .-2C .0D .220.(2013四川)若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是A .48B .30C .24D .1621.(2012广东)已知变量,x y 满足约束条件211y x y x y ⎧⎪+⎨⎪-⎩„…„,则3z x y =+的最大值为A .12B .11C .3D .-122.(2012广东)已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则2z x y =+的最小值为A .3B .1C .5-D .6-23.(2012山东)设变量y x ,满足约束条件222441x y x y x y +⎧⎪+⎨⎪--⎩…„…,则目标函数y x z -=3的取值范围是 A .⎥⎦⎤⎢⎣⎡-6,23 B .⎥⎦⎤⎢⎣⎡--1,23 C .[]6,1- D .⎥⎦⎤⎢⎣⎡-23,624.(2012福建)若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A .1-B .1C .32D .225.(2012天津)设变量,x y 满足约束条件22024010x y x y x +-⎧⎪-+⎨⎪-⎩……„,则目标函数32z x y =-的最小值为A .−5B .−4C .−2D .326.(2012辽宁)设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .5527.(2011广东)已知平面直角坐标系xOy 上的区域D由不等式02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A的坐标为,则z =OM u u u u r ·OA u u u r的最大值为 A .3 B .4 C .D .28.(2011安徽)设变量y x y x y x 2,1||||,+≤+则满足的最大值和最小值分别为A .1,-1B .2,-2C .1,-2D .2,-129.(2011湖南)设m >1,在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为A .(1,1 B .(1+∞) C .(1,3 ) D .(3,+∞)30.(2010新课标)已知ABCD Y 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在ABCD Y 的内部,则z =2x -5y 的取值范围是A .(-14,16)B .(-14,20)C .(-12,18)D .(-12,20)31.(2010山东)设变量,x y 满足约束条件20510080x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤,则目标函数34z x y =-的最大值和最小值分别为A .3,11-B .3,11--C .11,3-D .11,3 二、填空题32.(2018北京)若x ,y 满足12x y x +≤≤,则2y x -的最小值是__________. 33.(2018全国卷Ⅰ)若x ,y 满足约束条件220100--⎧⎪-+⎨⎪⎩≤≥≤x y x y y ,则32z x y =+的最大值为__.34.(2018全国卷Ⅱ)若,x y 满足约束条件25023050+-⎧⎪-+⎨⎪-⎩≥,≥,≤,x y x y x 则=+z x y 的最大值为___.35.(2018浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则3z x y =+的最小值是__,最大值是__.36.(2017新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩≤≥≤错误!未找到引用源。

2019年高考数学考纲解读专题06不等式与线性规划热点难点突破文含解析

2019年高考数学考纲解读专题06不等式与线性规划热点难点突破文含解析

不等式与线性规划1.若a >b ,则下列不等式成立的是( ) A .ln a >ln b B .0.3a >0.3bC .a 12>b 12D.3a >3b解析 因为a >b ,而对数函数要求真数为正数,所以ln a >ln b 不成立; 因为y =0.3x是减函数,又a >b ,则0.3a<0.3b,故B 错; 当a >b >0时,a >b ,则a 12>b 12,故C 错;y =x 13在(-∞,+∞)是增函数,又a >b ,则a 13>b 13,即3a >3b 成立,选D.答案 D2.设a =lg e ,b =(lg e)2,c =lg e ,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析 0<lg e<1,即0<a <1,b =(lg e)2=a 2<a ,c =lg e =12lg e =12a <a ,又b =(lg e)2<lg 10lg e =12lg e =c ,因此a >c >b .故选B. 答案 B3.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则( ) A .-1<a <1 B .0<a <2 C .-12<a <32D .-32<a <124.函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上单调递增,则f (2-x )>0的解集为( ) A .{x |x >2或x <-2}B .{x |-2<x <2}C .{x |x <0或x >4}D .{x |0<x <4}解析 由题意可知f (-x )=f (x ),即(-x -2)(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)(x +2).又函数在(0,+∞)上单调递增,所以a >0.f (2-x )>0,即ax (x -4)>0,解得x <0或x >4.故选C.答案 C5.已知点A (-2,0),点M (x ,y )为平面区域⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0上的一个动点,则|AM |的最小值是( )A .5B .3C .2 2D. 655解析 不等式组⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0表示的平面区域如图,结合图象可知|AM |的最小值为点A 到直线2x +y -2=0的距离,即|AM |min =|2×(-2)+0-2|5=655.答案 D6.如果实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥1,目标函数z =kx -y 的最大值为6,最小值为0,则实数k的值为( )A .1B .2C .3D .4解析 不等式组表示的可行域如图,A (1,2),B (1,-1),C (3,0)∵目标函数z =kx -y 的最小值为0,∴目标函数z =kx -y 的最小值可能在A 或B 时取得;∴①若在A 上取得,则k -2=0,则k =2,此时,z =2x -y 在C 点有最大值,z =2×3-0=6,成立; ②若在B 上取得,则k +1=0,则k =-1,此时,z =-x -y ,在B 点取得的应是最大值, 故不成立,∴k =2,故答案为B.答案 B7.已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A .(-∞,-1)B .(-∞,22-1)C .(-1,22-1)D .(-22-1,22-1) 解析 由f (x )>0得32x-(k +1)·3x+2>0, 解得k +1<3x+23x ,而3x +23x ≥22(当且仅当3x=23x ,即x =log 32时,等号成立),∴k +1<22,即k <22-1.答案 B8.已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞),则a +1c +c +1a的最小值为( ) A .4 B .4 2 C .8 D .8 2解析 ∵f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞), ∴a >0且Δ=4-4ac =0.∴c =1a,∴a +1c +c +1a =a +11a+1a +1a =⎝⎛⎭⎪⎫a 2+1a 2+⎝ ⎛⎭⎪⎫a +1a ≥4(当且仅当a =1时取等号),∴a +1c +c +1a的最小值为4,故选A. 答案 A9.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( ) A .n +1 B .2n C.n 2+n +22D .n 2+n +1解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域,选C.答案 C10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( ) A .②③ B .①②③ C .③ D .③④⑤11.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定能成立的是( ) A.c a <b a B.b -ac>0 C.b 2c <a 2c D.a -c ac<0 解析:∵c <b <a 且ac <0,∴c <0,a >0,∴c a <b a ,b -ac >0,a -cac<0,但b 2与a 2的关系不确定,故b 2c <a 2c不一定成立.答案:C12.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C.⎝ ⎛⎭⎪⎫13,12D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞解析:依题意,-12与-13是方程ax 2-bx -1=0的两根,则⎩⎪⎨⎪⎧b a =-12-13,-1a =-12×⎝ ⎛⎭⎪⎫-13,即⎩⎪⎨⎪⎧b a =-56,1a =-16,又a <0,不等式x 2-bx -a <0可化为1a x 2-b a x -1>0,即-16x 2+56x -1>0,解得2<x <3.答案:A13.若正数x ,y 满足x +y =1,且1x +ay≥4对任意的x ,y ∈(0,1)恒成立,则a 的取值范围是( )A .(0,4]B .[4,+∞)C .(0,1]D .[1,+∞)解析:正数x ,y 满足x +y =1,当a >0时,1x +a y =(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y ≥1+a +2y x ·axy=1+a +2a ,当且仅当y =ax 时取等号,因为1x +ay ≥4对任意的x ,y ∈(0,1)恒成立,∴1+a +2a ≥4,解得a ≥1,∴a 的取值范围是[1,+∞).当a ≤0时显然不满足题意,故选D.答案:D14.已知函数f (x )=ax 2+bx +c ,不等式f (x )<0的解集为{x |x <-3或x >1},则函数y =f (-x )的图象可以为( )解析:由f (x )<0的解集为{x |x <-3或x >1}知a <0,y =f (x )的图象与x 轴交点为(-3,0),(1,0), ∴f (-x )图象开口向下,与x 轴交点为(3,0),(-1,0). 答案:B15.设a ,b ∈R ,且a +b =3,则2a+2b的最小值是( ) A .6 B .4 2 C .2 2 D .2 6解析:2a +2b ≥22a +b=223=42,当且仅当2a =2b,a +b =3,即a =b =32时,等号成立.故选B.答案:B16.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥0x -y ≥02x -y -2≥0,则z =y -1x +1的取值范围是( ) A.⎣⎢⎡⎦⎥⎤-1,13 B.⎣⎢⎡⎦⎥⎤-12,13C.⎣⎢⎡⎭⎪⎫-12,+∞D.⎣⎢⎡⎭⎪⎫-12,1 解析:由题知可行域如图阴影部分所示,∴z =y -1x +1的取值范围为[k MA,1),即⎣⎢⎡⎭⎪⎫-12,1.答案:D17.设a ,b 为实数,则“a <1b 或b <1a”是“0<ab <1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:充分条件可举反例,令a =b =-10,此时a <1b ,b <1a ,但ab =100>1,所以“a <1b 或b <1a”不是“0<ab <1”的充分条件.反之,a ,b 为实数,当0<ab <1时,说明a ,b 同号.若a >0,b >0,则a <1b 或b <1a;若a <0,b <0,则a >1b 或b >1a .所以“a <1b 或b <1a ”不是“0<ab <1”的必要条件.综上可知“a <1b 或b <1a”是“0<ab <1”的既不充分也不必要条件. 答案:D18.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b 等于( ) A .-3 B .2 C .3 D .8 解析:y =x -4+9x +1=x +1+9x +1-5,因为x >-1,所以x +1>0,9x +1>0.所以由基本不等式,得y =x+1+9x +1-5≥2 x +9x +1-5=1,当且仅当x +1=9x +1,即(x +1)2=9,即x +1=3,x =2时取等号,所以a =2,b =1,a +b =3. 答案:C19.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1x -y ≥-12x -y ≤2,且目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( ) A .[-4,2] B .(-4,2) C .[-4,1] D .(-4,1)解析:作出不等式组表示的区域如图中阴影部分所示,直线z =ax +2y 的斜率为k =-a2,从图中可看出,当-1<-a2<2,即-4<a <2时,仅在点(1,0)处取得最小值.故选B.答案:B20.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞) D .(-∞,-1) 解析:x 2+ax -2>0,即ax >2-x 2. ∵x ∈[1,5],∴a >2x-x 成立.∴a >⎝ ⎛⎭⎪⎫2x -x min .又函数f (x )=2x-x 在[1,5]上是减函数,∴⎝ ⎛⎭⎪⎫2x -x min =25-5=-235,∴a >-235.故选A.答案:A21.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2. 而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:222.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 223.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.24.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。

2019届高考数学二轮复习不等式、线性规划课件(51张)(全国通用)

2019届高考数学二轮复习不等式、线性规划课件(51张)(全国通用)
[答案] D
x+2y≤1, 4.设 x,y 满足约束条件2x+y≥-1,
x-y≤0,
则 z=(x+1)2+y2
的取值范围是________.
[解析]
由xx- +y2=y=0, 1,
解得x=13, y=13,
即 C13,13.
(x+1)2+y2 的几何意义是区域内的点(x,y)与定点(-1,0)间
(3)方法:使用基本不等式时,一般通过“拆、拼、凑”的技 巧把求最值的函数或代数式化为 ax+bx(ab>0)的形式,常用的方法 是变量分离法和配凑法.
考点三 线性规划问题 1.线性目标函数 z=ax+by 最值的确定方法 把线性目标函数 z=ax+by 化为 y=-abx+bz,可知bz是直线 ax+by=z 在 y 轴上的截距,要根据 b 的符号确定目标函数在什么 情况下取得最大值、什么情况下取得最小值. 2.常见的目标函数类型 (1)截距型:形如 z=ax+by,可以转化为 y=-abx+bz,利用 直线在 y 轴上的截距大小确定目标函数的最值;
[解析]

x>1


x

1 x-1

x

1

1 x-1

1≥2 x-1×x-1 1+1=3,当且仅当 x-1=x-1 1,即 x=2 时
等号成立,所以最小值为 3,∴a≤3,即实数 a 的取值范围是(- ∞,3].故选 A.
[答案] A
[快速审题] (1)看到有关不等式的命题或结论的判定,想到 不等式的性质.
[答案] 15,197
[快速审题] (1)看到最优解求参数,想到由最值列方程(组) 求解.
(2)看到最优解的个数不唯一,想到直线平行;看到形如 z= (x-a)2+(y-b)2 和形如 z=yx- -ba,想到其几何意义.

2007-2019年新课标全国卷理——不等式(含线性规划)

2007-2019年新课标全国卷理——不等式(含线性规划)

2007-2019年全国卷不等式线性规划题(2007宁夏卷)7.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则2()a b cd +的最小值是( )A.0 B.1 C.2 D.4(2008宁夏卷)6、已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.(0,11a )B. (0,12a )C. (0,31a )D. (0,32a ) 12、某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为( ) A. 22 B. 32 C. 4 D. 52(2009宁夏卷)(6)设x,y 满足241,22x y x y z x y x y +≥⎧⎪-≥-=+⎨⎪-≤⎩则(A )有最小值2,最大值3 (B )有最小值2,无最大值(C )有最大值3,无最小值 (D )既无最小值,也无最大值(2010课标全国卷)(无)(2011课标全国卷)13.若变量x ,y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为________. (2012课标全国卷)14.设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为_________(2013课标全国I 卷)11、已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0](2013课标全国II 卷)(9)已知a > 0,x , y 满足约束条件⎩⎪⎨⎪⎧x ≥1x + y≤3y ≥a (x - 3) , 若z =2x + y 的最小值为1,则a = (A )14 (B )12 (C )1 (D )2(2014课标全国Ⅰ卷)9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P(2014课标全国Ⅱ卷)9.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2(2015课标全国Ⅰ卷)(15)若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则y x 的最大值为 .(2015课标全国Ⅱ卷)(14)若x ,y 满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y =+的最大值为____________.(2016课标全国Ⅰ卷)(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.(2016课标全国Ⅱ卷)(2016课标全国Ⅲ卷)(13)若,x y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为_____________.(2017课标全国Ⅰ卷)11.设xyz 为正数,且235x y z==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << 14.设,x y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .(2017课标全国Ⅱ卷)5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .921.(12分)已知函数()2ln f x ax ax x x =--,且()0f x ≥。

〖高考首发2019〗高考数学(理)分类专题:15-线性规划与基本不等式

〖高考首发2019〗高考数学(理)分类专题:15-线性规划与基本不等式

考纲解读明方向分析解读 1.了解不等式的有关概念及其分类,掌握不等式的性质及其应用,明确各个性质中结论成立的前提条件.2.能利用不等式的相关性质比较两个实数的大小.3.利用不等式的性质比较大小是高考的热点.分值约为5分,属中低档题.分析解读 1.多考查线性目标函数的最值问题,兼顾面积、距离、斜率等问题.2.能用线性规划的方法解决重要的实际问题,使收到的效益最大,耗费的人力、物力资源最少等.3.应重视数形结合的思想方法.4.本节在高考中主要考查与平面区域有关的范围、距离等问题以及线性规划问题,分值约为5分,属中低档题.分析解读 1.掌握利用基本不等式求最值的方法,熟悉利用拆添项或配凑因式构造基本不等式形式的技巧,同时注意“一正、二定、三相等”的原则.2.利用基本不等式求函数最值、求参数范围、证明不等式是高考热点.本节在高考中主要以选择题或填空题的形式进行考查,分值约为5分.分析解读不等式的性质与函数、导数、数列等内容相结合,解决与不等式有关的数学问题和实际问题是高考热点.2018年高考全景展示1.【2018年天津卷文】设变量x,y满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45【答案】C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.2.【2018年文北京卷】设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.3.【2018年浙江卷】若满足约束条件则的最小值是___________,最大值是___________.【答案】 -28【解析】分析:先作可行域,再平移目标函数对应的直线,从而确定最值.详解:作可行域,如图中阴影部分所示,则直线过点A(2,2)时取最大值8,过点B(4,-2)时取最小值-2.点睛:线性规划的实质是把代数问题几何化,即用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界处取得.4.【2018年天津卷文】已知,且,则的最小值为_____________.【答案】【解析】分析:由题意首先求得a-3b的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.5.【2018年文北京卷】若,y满足,则2y−U最小值是_________.【答案】3【解析】分析:将原不等式转化为不等式组,画出可行域,分析目标函数的几何意义,可知当时取得最小值.详解:不等式可转化为,即,满足条件的在平面直角坐标系中的可行域如下图令,由图象可知,当过点时,取最小值,此时,的最小值为.点睛:此题考查线性规划,求线性目标函数的最值,当时,直线过可行域在轴上截距最大时,值最大,在轴上截距最小时,值最小;当时,直线过可行域在轴上截距最大时,值最小,在轴上截距最小时,值最大.6.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【2018年全国卷Ⅲ文】若变量满足约束条件则的最大值是________.【答案】3【解析】分析:作出可行域,平移直线可得详解:作出可行域由图可知目标函数在直线与的交点(2,3)处取得最大值3,故答案为3.点睛:本题考查线性规划的简单应用,属于基础题。

2019年全国卷高三上期末考试理科数学分类汇编---不等式与线性规划

2019年全国卷高三上期末考试理科数学分类汇编---不等式与线性规划

2019年全国卷高三上期末考试理科数学分类汇编---不等式与线性规划1.(2019福建宁德市期末)已知点,为不等式组所表示平面区域上的任意一点,则的最小值为()A. B. C. 1 D.【答案】B【解析】【分析】本道题结合不等式组,绘制可行域,则最小值即为点A到距离,即可。

【详解】结合不等式组,绘制可行域,则的最小值即为点A到距离,利用点到直线距离公式,故选B。

【点睛】本道题考查了线性规划问题,难度中等。

2.(2019河南开封期末)已知函数若,则的取值范围是A. B. C. D.【答案】B【解析】【分析】依题意,对a分a与a讨论,再解相应的不等式即可.【详解】∵,∴或即或即∴的取值范围是故选:B【点睛】本题考查分段函数的图象与性质的应用,突出考查分类讨论思想与方程思想的综合应用,属于中档题.3.(2019河南开封期末)若,满足约束条件则的取值范围为A. B. C. D.【答案】A【解析】【分析】问题转化为在约束条件下目标函数的取值范围,作出可行域由斜率公式数形结合可得.【详解】作出x,y满足约束条件的可行域如图:△ABC,表示区域内的点与点(﹣2,0)连线的斜率,联方程组可解得B(2,﹣2),同理可得A(2,4),当直线经过点B时,M取最小值:,当直线经过点A时,M取最大值1.则的取值范围:[,1].故选:A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.4.(2019河南郑州期末)已知变量,满足则的取值范围是__________.【答案】【解析】【分析】由约束条件作出可行域,再由z的几何意义求解得答案.【详解】由变量x,y满足作出可行域如图:A(2,3),解得B(,),z的几何意义为可行域内动点与定点D(3,﹣1)连线的斜率.∵k DA4,k DB13.∴z的取值范围是[﹣13,﹣4].故答案为:[﹣13,﹣4].【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.5.(2019湖北宜昌市期末)若,满足约束条件,则的最大值为__________.【答案】6【解析】【分析】作出不等式对应的平面区域,利用z的几何意义,利用直线平移法进行求解即可.【详解】作出不等式组对应的平面区域如图:由z=﹣x+y,得y=x+z表示,斜率为1纵截距为Z的一组平行直线,平移直线y=x+z,当直线y=x+z经过点A时,直线y=x+z的截距最大,此时z最大,此时﹣x+y=6,即此时z=6,故答案为:6.【点睛】本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.6.(2019江西新余市期末)已知x,y满足不等式组则z=2x+y的最大值与最小值的比值为A. B. C. D. 2【答案】D【解析】解:因为x,y满足不等式组,作出可行域,然后判定当过点(2,2)取得最大,过点(1,1)取得最小,比值为2,选D7.(2019山东泰安市期末)若A为不等式组表示的平面区域,则当a 从﹣2连续变化到1时,则直线x+y=a扫过A中的那部分区域的面积为()A.1 B.C.D.【考点】简单线性规划.【分析】先由不等式组画出其表示的平面区域,再确定动直线x+y=a的变化范围,最后由三角形面积公式解之即可.【解答】解:如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=﹣x+a)在y轴上的截距从﹣2变化到1.知△ADC是斜边为3的等腰直角三角形,△EOC是直角边为1等腰直角三角形,所以区域的面积S阴影=S△ADC﹣S△EOC=×3×﹣×1×1=故答案为:D.8.(2019山东泰安市期末)已知x>0,y>0,lg2x+lg8y=lg2,则+的最小值是 4 .【考点】基本不等式在最值问题中的应用;对数的运算性质.【分析】由对数的运算性质,lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,结合题意可得,x+3y=1;再利用1的代换结合基本不等式求解即可.【解答】解:lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,又由lg2x+lg8y=lg2,则x+3y=1,进而由基本不等式的性质可得,=(x+3y)()=2+≥2+2=4,当且仅当x=3y时取等号,故答案为:4.9.(2019山东泰安市期末)定义在R上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知函数y=f′(x)的图象如图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是.【考点】简单线性规划的应用;导数的运算;利用导数研究函数的单调性.【分析】先根据导函数的图象判断原函数的单调性,从而确定a、b的范围,最后利用不等式的性质得到答案.【解答】解:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增,∵两正数a,b满足f(2a+b)<1,又由f(4)=1,即f(2a+b)<4,即2a+b<4,又由a>0.b>0;点(a,b)的区域为图中阴影部分,不包括边界,的几何意义是区域的点与A(﹣2,﹣2)连线的斜率,直线AB,AC的斜率分别是,3;则∈(,3);故答案为:().10.(2019山东泰安市期末)已知一家电子公司生产某种电子产品的月固定成本为20万元,每生产1千件需另投入5.4万元,设该公司一月内生产该电子产品x千件能全部销售完,每千件的销售收入为g(x)万元,且g(x)=(Ⅰ)写出月利润y(万元)关于月产量x(千件)的函数解析式;(Ⅱ)月产量为多少千件时,该公司在这一产品的生产中所获利润最大?并求出最大利润.【考点】函数模型的选择与应用.【分析】(Ⅰ)根据年利润=年销售收入﹣年总成本,可得年利润y(万元)关于年产量x(万件)的函数关系式;(Ⅱ)由(Ⅰ)的解析式,我们求出各段上的最大值,即利润的最大值,然后根据分段函数的最大值是各段上最大值的最大者,即可得到结果.【解答】解:(Ⅰ)当0<x≤10时,y=x(13.5﹣x2)﹣20﹣5.4x=8.1x﹣x3﹣20,当x>10时,y=(﹣﹣)x﹣20﹣5.4x=148﹣2(+2.7x),∴y=,(Ⅱ)①当0<x≤10时,y′=8.1﹣x2,令y′=0可得x=9,x∈(0,9)时,y′>0;x∈(9,10]时,y′<0,=28.6万元;∴x=9时,ymax②当x>10时,y=148﹣2(+2.7x)≤148﹣120=22(万元)(当且仅当x=时取等号)…综合①②知:当x=9时,y取最大值…故当年产量为9万件时,服装厂在这一高科技电子产品的生产中获年利润最大…11.(2019山东潍坊市期末)若实数x,y满足,则z=x﹣2y的最大值是()A.2B.1C.﹣1D.﹣4【分析】作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.【解答】解:作出实数x,y满足对应的平面区域如图:由z=x﹣2y得y=x﹣z,平移直线y=x﹣z,由图象可知当直线y=x﹣z,经过点A时,直线y=x﹣z,的截距最小,此时z最大,由,解得A(﹣1,﹣1),z=1.故选:B.【点评】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.12.(2019山东潍坊市期末)由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准(GB/T19522﹣2010)》于2011年7月1日正式实施.车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阀值见表1.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图1,且图1表示的函数模型f(x)=,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:ln15≈2.71,ln30≈3.40)()表1 车辆驾驶人员血液酒精含量阀值A.5B.6C.7D.8【分析】由图知车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时x>2;令90•e﹣0.5x+14<20,解得x的取值范围,结合题意求得结果.【解答】解:由图知0≤x<2时,函数f(x)取得最大值,此时f(x)=40sin(x)+13,x≥2时,函数f(x)=90•e﹣0.5x+14;当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时x>2;由90•e﹣0.5x+14<20,得e﹣0.5x<,两边取自然对数,得lne﹣0.5x<ln,即﹣0.5x<﹣ln15,解得x>≈=5.42,所以喝啤酒后需6个小时后才可以合法驾车.注:如果根据图象可猜出6个小时.故选:B.【点评】本题考查了散点图的应用问题,也考查了分段函数与不等式的应用问题,是中档题.。

2019年高考全国各地数学理科真题分类汇编18个专题(解析版)

2019年高考全国各地数学理科真题分类汇编18个专题(解析版)

2019年高考全国各地数学理科真题分类汇编(解析版)专题一集合-------------------------------------------------------------- 2 专题二函数-------------------------------------------------------------- 3 专题三三角函数 ------------------------------------------------------ 16 专题四解三角形 ------------------------------------------------------ 26 专题五平面向量 ------------------------------------------------------ 29 专题六数列------------------------------------------------------------ 34 专题七不等式--------------------------------------------------------- 46 专题八复数------------------------------------------------------------ 48 专题九导数及其应用 ------------------------------------------------ 50 专题十算法初步 ------------------------------------------------------ 62 专题十一常用逻辑用语 --------------------------------------------- 65 专题十二概率统计 --------------------------------------------------- 67 专题十三空间向量、空间几何体、立体几何-------------------- 75 专题十四平面几何初步 -------------------------------------------- 95 专题十五圆锥曲线与方程 ----------------------------------------- 99 专题十六计数原理------------------------------------------------- 118 专题十七不等式选讲 ---------------------------------------------- 120 专题十八坐标系与参数方程--------------------------------------- 123专题一 集合(2019·全国Ⅰ理科)1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<【答案】C【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019·全国Ⅱ理科)设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019·全国Ⅲ理科)已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( )A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A【分析】先求出集合B 再求出交集.【详解】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A . 【点睛】本题考查了集合交集的求法,是基础题. (2019·天津理科)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R …,则()A CB =( )A. {}2B. {}2,3C. {}1,2,3-D. {}1,2,3,4【答案】D【分析】先求A B ⋂,再求()A C B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因为 y 3x 是增函数,所以 3a 3b ,故 B 错;因为幂函数 y x 3 是增函数, a b ,所以
a3 b3 ,知 C 正确;取 a 1,b 2 ,满足 a b , 1 a b 2 ,知 D 错.
【详解】取 a 2, b 1 ,满足 a b ,ln( a b) 0 ,知 A 错,排除 A ;因为 9 3a 3b 3 ,
2019 年全国高考理科数学分类汇编——不等式与线性规划
1. ( 2019 北京理科)若 x, y 满足 | x | 1 y ,且 y≥-1,则 3x+y 的最大值为
A. -7
B. 1
C. 5
D. 7
【答案】 C
【解析】
【分析】
首先画出可行域,然后结合目标函数的几何意义确定其最值即可
.
1y
【详解】由题意
y2
2 , 所以曲线 C 上任意一点到
2
原点的距离都不超过 2 . 结论②正确 .
如图所示 , 易知 A 0, 1 , B 1,0 ,C 1,1, , D 0,1 ,
四边形 ABCD 的面积 S明显“心形”区域的面积大于
2
2
即“心形”区域的面积大于 3, 说法③错误 .
以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养
.
4.(2019 全国 2 卷理科)若 a>b,则 A. ln( a- b)>0
ab
B. 3 <3
C. a3- b3>0
D. │a│ >│b│
【答案】 C
【解析】
【分析】
本题也可用直接法,因为 a b ,所以 a b 0 ,当 a b 1时, ln( a b) 0 ,知 A 错,
知 B 错,排除 B ;取 a 1,b 2 ,满足 a b , 1 a b 2 ,知 D 错,排除 D,因为
幂函数 y
3
x 是增函数, a
b ,所以 a3
b3 ,故选 C.
【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,
辑推理和运算能力素养,利用特殊值排除即可判断.
渗透了逻
5. ( 2019 江苏卷)设 x R ,解不等式 |x|+|2 x 1|>2 .
y 120 元时 , 李明得到的金额为 y 80% , 符合要求 .
y 120 元时 , 有 y x 80% y 70% 恒成立 , 即 8 y x
7 y, x
y
,即
8
y
x
15 元 .
8 min
所以 x 的最大值为 15.
【点睛】本题主要考查不等式的概念与性质
?数学的应用意识 ?数学式子变形与运算求解能力 ,
【答案】 { x | x
1 或x 1} .
3
【解析】
【分析】
由题意结合不等式的性质零点分段即可求得不等式的解集
.
【详解】当 x<0 时,原不等式可化为
x 1 2x 2 ,解得 x<–1 : 3
1
当 0≤x≤ 时,原不等式可化为 x+1 –2x>2,即 x<–1,无解;
2
1
当 x> 时,原不等式可化为
【答案】
(1). 130
(2). 15.
则 x 的最大
【解析】 【分析】 由题意可得顾客需要支付的费用, 然后分类讨论, 将原问题转化为不等式恒成立的问题可得
x 的最大值 . 【详解】 (1) x 10 , 顾客一次购买草莓和西瓜各一盒 , 需要支付 60 80 10 130 元 .
(2) 设顾客一次购买水果的促销前总价为 y 元 ,
, 作出可行域如图阴影部分所示 .
y1 x 1y
设 z 3x y, y z 3x ,
当直线 l0 : y z 3x 经过点 2, 1 时 , z 取最大值 5. 故选 C.
【点睛】本题是简单线性规划问题的基本题型 大题 , 注重了基础知识 ?基本技能的考查 .
, 根据“画 ?移 ?解”等步骤可得解 . 题目难度不
最大值为
A. 2
B. 3
C. 5
D. 6
【答案】 D
【解析】
【分析】
画出可行域,用截距模型求最值。
【详解】已知不等式组表示的平面区域如图中的阴影部分。
这四种水果进行促销:一次购买水果的总价达到
120 元,顾客就少付 x 元.每笔订单顾客网
上支付成功后,李明会得到支付款的 80%.
.①当 x=10 时,顾客一次购买草莓和西瓜各 1 盒,需要支付 __________元;
②在促销活动中, 为保证李明每笔订单得到的金额均不低于促销前总价的七折,
值为 __________.
x+2 x–1>2,解得 x>1.
2
综上,原不等式的解集为 { x | x
1 或x 1} .
3
【点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.
6.( 2019 天津卷理科) 设变量 x, y 满足约束条件
x y2 x y2 x… 1, y… 1,
0, 0,
,则目标函数 z
4x y 的
A. ① 【答案】 C
B. ②
C. ①②
D. ①②③
【解析】
【分析】
将所给方程进行等价变形确定 x 的范围可得整点坐标和个数, 结合均值不等式可得曲线上的
点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围
.

详解


x2 y2 1 x y
得,
y2 x y 1 x2
,
y
2
| x|
1
3x2 ,1
3x2 厔0, x2
4
,
2
4
4
3
所以 x 可为的整数有 0,-1,1, 从而曲线 C : x2 y 2 1 x y 恰好经过
(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)
六个整点 , 结论①正确 .
2
由x
2
y
1
x y 得, x2
y2, 1
x2
y 2 , 解得 x 2
2.( 2019 北京理科) 数学中有许多形状优美、
寓意美好的曲线,
曲线
C:
2
x
2
y
1 |x|y
就是其中之一(如图) .给出下列三个结论:
①曲线 C 恰好经过 6 个整点(即横、纵坐标均为整数的点) ;
②曲线 C 上任意一点到原点的距离都不超过
2;
③曲线 C 所围成的“心形”区域的面积小于 3.
其中,所有正确结论的序号是
2SABCD ,
故选 C.
【点睛】本题考查曲线与方程 ?曲线的几何性质,基本不等式及其应用 , 属于难题 , 注重基础
知识 ?基本运算能力及分析问题解决问题的能力考查 , 渗透“美育思想”.
3. ( 2019 北京理科)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白
梨、西瓜、桃,价格依次为 60 元/盒、 65 元 /盒、 80 元/盒、 90 元 /盒.为增加销量,李明对
相关文档
最新文档