【大题】工科物理大作业04-刚体定轴转动

合集下载

大学物理刚体的定轴转动习题及答案

大学物理刚体的定轴转动习题及答案

第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化答:当刚体作匀变速转动时,角加速度β不变;刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变;又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化;2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩;()2z i iL m l I ωω==∑,其中()2i iI m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====;既 z M I β=; 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式; 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:1如果它们的角动量相同,哪个轮子转得快2如果它们的角速度相同,哪个轮子的角动量大答:1由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;2如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大; 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒;5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求:(1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度; 解:1由题意飞轮的初角速度为飞轮作均减速转动,其角加速度为故从开始制动到停止转动,飞轮转过的角位移为 因此,飞轮转过圈数为/2θπ∆=100圈;2开始制动后5秒时飞轮的角速度为6.如图所示, 一飞轮由一直径为2()d m ,厚度为()a m 的圆盘和两个直径为1()d m ,长为()L m 的共轴圆柱体组成,设飞轮的密度为3(/)kg m ρ,求飞轮对轴的转动惯量;解:如图所示,根据转动惯量的可加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;由此可得7. 如图所示,一半径为r,质量为m 1的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m 2的重物,求重物下落的加速度;解:设绳中张力为T对于重物按牛顿第二定律有22m g T m a -= 1对于滑轮按转动定律有212Tr mr β=2 由角量线量关系有a r β= 3联立以上三式解得8. 如图所示,两个匀质圆盘同轴地焊在一起,它们的半径分别为r 1、r 2,质量为1m 和2m ,可绕过盘心且与盘面垂直的光滑水平轴转动,两轮上绕有轻绳,各挂有质量为3m 和4m 的重物,求轮的角加速度β;解:设连接3m 的绳子中的张力为T1,连接4m 的绳子中的张力为T2; 对重物3m 按牛顿第二定律有3133m g T m a -= 1 对重物4m 按牛顿第二定律有2444T m g m a -= 2对两个园盘,作为一个整体,按转动定律有112211221122T r T r m r m r β⎛⎫-=+ ⎪⎝⎭3aLd 1d 2由角量线量之间的关系有 31a r β=442a r β= 5联立以上五式解得9. 如图所示,一半径为R,质量为m 的匀质圆盘,以角速度ω绕其中心轴转动;现将它平放在一水平板上,盘与板表面的摩擦因数为μ;1求圆盘所受的摩擦力矩;2问经过多少时间后,圆盘转动才能停止 解:分析:圆盘各部分的摩擦力的力臂不同,为此,可将圆盘分割成许多同心圆环,对环的摩擦力矩积分即可得总力矩;另由于摩擦力矩是恒力矩,由角动量定理可求得圆盘停止前所经历的时间;1圆盘上半径为r 、宽度为dr 的同心圆环所受的摩擦力矩为负号表示摩擦力矩为阻力矩;对上式沿径向积分得圆盘所受的总摩擦力矩大小为2由于摩擦力矩是一恒力矩,圆盘的转动惯量212I mr =,由角动量定理可得圆盘停止的时间为10. 飞轮的质量m =60kg,半径R =0.25m,绕其水平中心轴O 转动,转速为900rev ·min -1.现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速.已知闸杆的尺寸如题4-10图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算.试求:1设F =100 N,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转2如果在2s 内飞轮转速减少一半,需加多大的力F解: 1先作闸杆和飞轮的受力分析图如图b .图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反.∵ N F r μ=N N '=∴F l l l N F r 121+='=μμ 又∵ ,212mR I = ∴ F mRl l l I R F r 121)(2+-=-=μβ ① 以N 100=F 等代入上式,得由此可算出自施加制动闸开始到飞轮停止转动的时间为 这段时间内飞轮的角位移为可知在这段时间里,飞轮转了1.53转. 210s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 用上面式1所示的关系,可求出所需的制动力为11. 如图所示,主动轮A 半径为r 1,转动惯量为1I ,绕定轴1O 转动;从动轮B 半径为r 2,转动惯量为2I ,绕定轴2O 转动;两轮之间无相对滑动;若知主动轮受到的驱动力矩为M ,求两个轮的角加速度1β和2β;解:设两轮之间摩擦力为f 对主动轮按转动定律有:111M fr I β-= 1对从动轮按转动定律有222fr I β= 2由于两个轮边沿速率相同,有1122r r ββ= 3联立以上三式解得12. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题4-12a 图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =2m .求:1柱体转动时的角加速度; 2两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度方向题4-12b图.(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,,而 222121mr MR I += 由上式求得 2由①式 由②式13. 一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动.另一质量为0m 的子弹以速度0v 射入轮缘如题2-31图所示方向. 1开始时轮是静止的,在质点打入后的角速度为何值2用m ,0m 和θ表示系统包括轮和质点最后动能和初始动能之比. 解: 1射入的过程对O 轴的角动量守恒 ∴ Rm m v m )(sin 000+=θω2020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ14. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和2m 的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为13l 和23l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0υ与杆下端小球m 作对心碰撞,碰后以021υ 的速度返回,试求碰撞后轻杆所获得的角速度.解:碰撞过程满足角动量守恒:而 222212()2()333I m l m l ml =+=2m m O21 0vl l 31l所以 2023mv l ml ω=由此得到:032vlω=15. 如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J A =10 kg ·m2 和 J B =20 kg ·m2.开始时,A 轮转速为600 rev/min,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:1 两轮啮合后的转速n ;2 两轮各自所受的冲量矩.解:1 两轮啮合过程满足角动量守恒: 所以 A AA BI I I ωω=+ 因为 2n ωπ= 故 10600200/min 1020A A AB I n n r I I ⨯===++ 2 两轮各自所受的冲量矩: 末角速度:2200202/603n rad s ππωπ⨯=== A 轮各所受的冲量矩:202060040010(2) 4.1910()3603A A L I I N m s ππωωπ∆=-=⨯-⨯=-=-⨯⋅⋅B 轮各所受的冲量矩:16. 有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为0T .如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.球体对于通过直径的轴的转动惯量为J =2mR2 / 5,式中m 和R 分别为球体的质量和半径.解:1 球体收缩过程满足角动量守恒:所以17. 一质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上圆盘与水平面之间的摩擦系数为,圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求1 子弹击中圆盘后,盘所获得的角速度.2 经过多少时间后,圆盘停止转动.解:1 子弹击中圆盘过程满足角动量守恒: 所以 002211()22mRv mv mR MR m M Rω==++ 2圆盘受到的摩擦力矩为 由转动定律得 M Iβ'=。

刚体定轴转动 大学物理习题答案

刚体定轴转动 大学物理习题答案

薄圆盘对过球心轴的转动惯量为 d J 1 r 2 d m 1 R5 cos 5 d
2
2
J 2
/2 1 r2 dm
/2
R5 cos 5d
8
R 5
8
m R5 2 mR 2
02
0
15
15 4 R 3
5
3
由平行轴定理, J J mR 2 2 mR 2 mR 2 7 mR 2
5
5
悬垂。现有质量 m=8g 的子弹,以 v=200m/s 的速率从 A 点射入棒中,假定 A 点与 O 点的距离为 3 l , 4
如图 4-11 所示。求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。
解:(1) 子弹射入前后系统对 O 点的角动量守恒
mv 3 l J , J 1 Ml 2 m ( 3 l)2 1 1 0.42 0.008 9 0.42 0.054 kg m2
计小球大小)
A
解:M (3m m)g l cos l mg cos ,J 3m( l )2 1 ml2 m( l )2 1 ml 2
4
2
4 12
43
l/4 O
l
图 4-5
13
大学物理练习册—刚体定轴转动
M
l mg cos 2
3g
cos
J
1 ml 2
2l
3
4-6 一均匀圆盘,质量为 m,半径为 R,可绕通过盘中心的光滑竖直轴在水平桌面上转动,如图 4-6 所示。 圆盘与桌面间的动摩擦因数为 ,若用外力推动使其角速度达到 0 时,撤去外力,求(1)转动过程 中,圆盘受到的摩擦力矩;(2)撤去外力后,圆盘还能转动多少时间?
dt d 0
0

刚体的定轴转动(带答案)

刚体的定轴转动(带答案)

刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是[ C ](A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C)取决于刚体的质量、质量的空间分布和轴的位置。

(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?[ A ](A)角速度从小到大,角加速度从大到小。

(B)角速度从小到大,角加速度从小到大。

(C)角速度从大到小,角加速度从大到小。

(D)角速度从大到小,角加速度从小到大。

3.(本题3分)5640一个物体正在绕固定的光滑轴自由转动,则[D ](A)它受热或遇冷伸缩时,角速度不变.(B)它受热时角速度变大,遇冷时角速度变小.(C)它受热或遇冷伸缩时,角速度均变大.(D )它受热时角速度变小,遇冷时角速度变大.4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断5、(本题3分)5028如图所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M的物体,B 滑轮受拉力F ,而且F=Mg 设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 [ C ](A )βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB6、(本题3分)0294刚体角动量守恒的充分而必要的条件是 [ B ](A )刚体不受外力矩的作用。

(B )刚体所受合外力矩为零。

刚体大作业.doc

刚体大作业.doc

大学物理( A )大作业(三)刚体定轴转动教学班姓名学号成绩一、选择题【】1. 两个匀质圆盘 A 和 B 的密度分别为A 和B ,若 A > B ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的轴的转动惯量各为J AB和 J ,则(A) J A > J B (B) J B >J A (C) J A = J B (D) 不能确定【】 2. 有一根水平杆子,一半是铁,一半是木头,长度、截面均相同,可分别绕 a , b , c 三根竖直轴转动,如图所示。

试问对哪根轴的转动惯量最大(A) a 轴(B) b 轴(C) c 轴(D) 都一样【 】 3. 如图所示,一摆由质量均为 m 的杆与圆盘构成,杆长等于圆盘直径 2 倍,则摆对通过 O 点并与圆盘平面垂直轴的转动惯量为D 的(A) 7 17mD 224(B)17mD 24(C) 5 17mD 224(D)17mD 26【】 4. 刚体绕定轴作匀变速转动时,刚体上距转轴为 r 的任一点的(A) 切向、法向加速度的大小均随时间变化(B) 切向、法向加速度的大小均保持恒定(C) 切向加速度的大小恒定,法向加速度的大小变化(D) 切向加速度的大小变化,法向加速度的大小恒定 【】 5. 在下列说法中错误的是(A) 刚体定轴转动时,各质点均绕该轴作圆周运动(B) 刚体绕定轴匀速转动时,其线速度不变(C) 力对轴的力矩 M 的方向与轴平行(D) 处理定轴转动问题时, 总要取一个转动平面 S ,只有 S 面上的分力对轴产生的力矩才对定轴转动有贡献【】 6. 下列说法中正确的是(A) 作用在定轴转动刚体上的力越大,刚体转动的角加速度越大(B) 作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大(C) 作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大(D) 作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零【】 7. 均质细杆可绕过其一端且与杆垂直的水平光滑轴在竖直平面内转动。

刚体定轴转动练习题及答案

刚体定轴转动练习题及答案

刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。

设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。

B 角速度从小到大,角加速度从小到大。

C 角速度从大到小,角加速度从大到小。

D 角速度从大到小,角加速度从小到大。

3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。

(B )n a 、t a 的大小均保持不变。

(C )n a 的大小变化, t a 的大小恒定不变。

(D )n a 的大小恒定不变, t a 的大小变化。

5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。

A 只有(1)是正确的。

B (1),(2)正确,(3),(4)错误。

刚体定轴转动习题解答工科

刚体定轴转动习题解答工科

第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:( ) A. α > 0 B. ω > 0,α > 0 C. ω < 0,α > 0 D. ω > 0,α < 0 解:答案是B 。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小 解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定 解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

简要提示:由定轴转动定律: α221MR FR =,得:mRFt 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J + B .0121ωJ J J + C .021ωJ J D .012ωJ J解:答案是A 。

ch4刚体的定轴转动习题及答案毛峰.docx

ch4刚体的定轴转动习题及答案毛峰.docx

第4章刚体的定轴转动习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度0不变。

刚体上任一点都作匀变速岡周运动,因此该点速率在均匀变化,Y = lCO,所以一定有切向加速度亠=1卩,其大小不变。

乂因该点速度的方向变化,所以一定冇法向加速度a n = la)2,由于角速度变化,所以法向加速度的大小也在变化。

2.刚体绕定轴转动的转动定律和质点系的动最矩定理是什么关系?答:刚体是一个特姝的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z转动时,动量矩定理的形式为陀,AT表示刚体对Z轴的合外力矩,乙表示刚体对Z轴的动量矩。

、clt、'L产正叫,其中? = (》>”:),代表刚体对定轴的转动惯量,所以M_=归旦g = I 乜~ = 10 °既M_=l(3。

~ clt dt dt所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。

3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个伦了的角动蜃人?答:(1)由于L = T而转动惯最与质最分布有关,半径、质最均相同的轮子,质最聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

4.一圆形台面可绕屮心轴无摩擦地转动,有一玩具车札I对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具千相对台面由静止启动,绕轴作圆周运动吋,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。

刚体的定轴转动(带答案)

刚体的定轴转动(带答案)

欢迎阅读页脚内容刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是 [ C ] (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B )取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C(D 2、(本题静止开的? [ A ](A (B (C (D 3. (A ) (B ) (C )页脚内容(D ) 它受热时角速度变小,遇冷时角速度变大. 4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题设A (A )βA (C )βA 6、(本题(A (B (C (D 7、(本题现有一个小球自左方水平打击细杆,设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统[ C ](A)只有机械能守恒。

(B)只有动量守恒。

(C)只有对转轴O的角动量守恒。

(D)机械能、动量和角动量均守量。

8、(本题3分)0677一块方板,可以绕通过其一个水平边的光滑固定转轴自由转动,最初板自由下垂,今有一小团粘土,(A9、(本题(A)ω(C)ω10、ω[ C ](A(C)减少(D)不能确定11、(本题3分)0133如图所示,一静止的均匀细棒,长为 ,质量为M,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为1/2 ML2,一质量为m,速率为v的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为 V,则此时棒的角速度应为 [B ](A(312、中心(A(C13、(A(B(C14、页脚内容有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0404 刚体定轴转动班号 学号 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号)1.某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元来说,在下列关于其法向加速度n a 和切向加速度τa 的表述中,正确的是:A .n a 、τa 的大小均随时间变化;B .n a 、τa 的大小均保持不变;C .n a 的大小变化,τa 的大小保持恒定;D .n a 的大小保持恒定,τa 大小变化。

(C )[知识点]刚体匀变速定轴转动特征,角量与线量的关系。

[分析与题解] 刚体中任一质元的法向、切向加速度分别为 r a n 2ω=,r a τβ=当恒量时,t βωω+=0 ,显然r t r a n 202)(βωω+==,其大小随时间而变,r a τβ=的大小恒定不变。

2. 两个均质圆盘A 和B ,密度分别为ρA 和ρB ,且B ρρ>A ,但两圆盘的质量和厚度相同。

若两盘对通过盘心且与盘面垂直的轴的转动惯量分别为A I 和B I ,则 A .B I I >A; B. B I I <A ;C .B I I =A; D. 不能确定A I 和B I 的相对大小。

(B )[知识点]转动惯量的计算。

[分析与题解] 设A 、B 两盘厚度为d ,半径分别为R A 和R B ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <且转动惯量221mR I =,则B A I I <3.在下列关于刚体的表述中,不正确的是:A .刚体作定轴转动时,其上各点的角速度相同,线速度不同;B .刚体定轴转动的转动定律为βI M =,式中β,,I M 均对同一条固定轴而言的,否则该式不成立;C .对给定的刚体而言,它的质量和形状是一定的,则其转动惯量也是唯一确定的;D .刚体的转动动能等于刚体上各质元的动能之和。

(C )[知识点]刚体定轴转动的基本概念。

[分析与题解] 刚体定轴转动时,其上各点的角速度相同,线速度r v ω=;刚体定轴转动中,相关物理量对固定轴而言,转动惯量不仅与质量和形状有关,而且与转轴的位置有关;刚体的转动动能就是刚体上各质点的动能之和。

4.一个作定轴转动的刚体受到两个外力的作用,则在下列关于力矩的表述中,不正确的是: A .若这两个力都平行于轴时,它们对轴的合力矩一定是零; B .若这两个力都垂直于轴时,它们对轴的合力矩可能为零; C .若这两个力的合力为零时,它们对轴的合力矩一定是零;D .只有这两个力在转动平面S 上的分力对转轴产生的力矩,才能改变该刚体绕转轴转动的运动状态;E .一对作用力和反作用力对同一轴的力矩之和一定为零。

(C )[知识点] 力矩的概念。

[分析与题解] 对转轴上任一点,力矩为F r M ⨯=。

若F 与轴平行,则M 一定与轴垂直,即轴的力矩M z = 0,两个力的合力矩一定为零。

两个力都垂直于轴时,对轴上任一点的力矩都平行于轴,若二力矩大小相等,方向相反,则合力矩一定为零。

两个力的合力为零,如果是一对力偶,则对轴的合力矩不一定为零。

力在转动平面上的力矩F r M ⨯=z ,力矩M z 是改变刚体运动状态的原因。

一对作用力和反作用力,对轴的力矩大小相等,符号相反,合力矩一定为零。

5.在下列关于转动定律的表述中,正确的是:A .对作定轴转动的刚体而言,力矩不会改变刚体的角加速度;B .两个质量相等的刚体,在相同力矩的作用下,运动状态的变化情况一定相同;C .同一刚体在不同力矩作用下,必然得到不同的角加速度;D .作用在定轴转动刚体上的力越大,刚体转动的角加速度越大;E .角速度的方向一定与外力矩的方向相同。

(A )FrO mA rOAaF Tm g(a ) (b ) (c )图4-1 [知识点] 刚体定轴转动定理。

[分析与题解] 由于力是成对出现的,所有力矩的总和为零,因此力矩不会改变刚体的运动状态。

由刚体绕定轴转动定理,βI M =知,质量相等的刚体,若转动惯量I 不同,既使在相同的力矩作用下,运动状态的改变也不会相同(不同)。

而同一刚体虽力矩M 不同,但若对不同转轴的转动惯量I 也不同,也会得到相同的角加速度的。

若外力矩的方向和角加速度的方向一致,而角加速度与角速度的方向可能相同,也可能相反。

6.如图4-1(a )所示,一轻绳绕在具有光滑水平转轴的定滑轮上,绳下端挂一质量为m 的物体A ,此时滑轮的角加速度为。

若将物体A 卸掉,而改用力F 拉绳子,该力的大小mg F=,力的方向向下,如图(b )所示,则此时滑轮的角加速度将:A .变大;B .不变;C .变小;D .无法判断。

(A ) [知识点] 力矩。

[分析与题解] 当绳下挂物体时,绳中力为F T ,设滑轮半径为R ,转动惯量为I ,物体的受力如4-1图(c)所示,按牛顿运动定律有ma F mg T =-滑轮的转动定律为 1βI F T =又知1βR a =,解得 ImR mgR+=21β (1) 当用mg F =的力拉绳时,绳中力就是mg 。

滑轮的转动定律为 2βI mgR =,得 ImgR=2β (2) 比较式(1)和式(2),显然有 21ββ<7.如图4-2(a)所示,两根长度和质量都相等的细直杆分别绕光滑的水平轴1O 和2O 转动,设它们从水平位置静止释放时的角加速度分别为1β和2β;当它们分别转过90时,端点A 、B 的速度分别为A v 、B v ,则A .B A v v >>,21ββ; B .B A v v ==,21ββ;C .B A v v <<,21ββ; D .B A v v >=,21ββ;ABAO 1lBO 2l /3图4-2(a)A O 1l BO 2l /3CC图4-2(b)E .B A v v <=,21ββ。

(D )[知识点] 转动惯量I 随轴不同,机械能守恒定律的应用。

[分析与题解] 两个细直杆的转动惯量分别为2131ml I =, 22229132121ml l l m ml I =⎪⎭⎫⎝⎛-+=如图4-2(b),当它们转到铅直位置时,所受重力过转轴,则重力矩为M 1 = M 2 = 0则由βI M =知, 021==ββ。

由于细杆在转动过程中,只受到重力矩作用,故转动过程机械能守恒。

取转轴水平面为势能零点,则有221211l mg I =ω 即 23121212l mg ml =⨯ω得lg31=ω 则gl l v A 31==ω同理621222l mg I =ω 即69121222l mg ml =⨯ω lg 32=ω 则gl l v B 332322==ω显然B A v v >8. 如图4-3所示,两飞轮A 、B 组成一摩擦啮合器。

A 通过与B 之间的摩擦力矩带着B 转动。

则此刚体系在啮合前后:A .角动量改变,动能也改变;ωmmOvv图4-4RB .角动量改变,动能不变;C .角动量不变,动能改变;D .角动量不变,动能也不变。

(C ) 知识点] 摩擦力矩的作用. [分析与题解]沿轴向作用的外力对轴不产生力矩,、两轮间的摩擦力为力,故系统的角动量守恒,即ωω'+=)(B A A I I I由此得ωωBA AI I I +='B A k A B A A B A A B A B A k I I E I I I I I I I I I I I E +=+=++='+='22222221)()(21)(21ωωω 可见,摩擦力矩不改变系统的角动量,但改变动能。

9.如图4-4所示,一圆盘绕通过盘心O 且垂直于盘面的水平轴转动,轴间摩擦不计。

两颗质量相同、速度大小相等、方向相反且沿同一直线运动的子弹,同时射进圆盘并留在盘,则两子弹射入后的瞬间,圆盘和子弹系统的角动量L 及圆盘的角速度ω将会:A .L 不变,ω增大;B .L 不变,ω减小;C .L 增大,ω减小;D .L 增大,ω增大。

(B ) 知识点] 角动量守恒。

[分析与题解] 取子弹和圆盘为系统,在子弹射入圆盘过程中系统的角动量守恒。

由于两颗子弹同时对称入射,故两子弹的初始角动量之和为零,所以有()ωωI I I ∆+=0即0ωω<10. 如图4-5所示,有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为I 。

开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径方向向外跑去,当人到达转台边缘时,转台的角速度为A .02ωmR I I +; B. 02)(ωRm I I+; C .02ωmRI; D. 0ω(A )知识点] 角动量守恒。

[分析与题解] 取人和转台为系统,在人沿半径方向向外跑过程中,系统的角动量守恒,则有()ωω人I I I +=0而人到转台边缘时,2mR I =人,即()ωω20mR I I +=则02ωωmR I I+=二. 填空题1.一汽车发动机的曲轴,在12s ,其转速由min r 102130⨯=.n 均匀增加到min r 10723⨯=.n ,则此曲轴转动的角加速度=β 13.1 2s rad ;在此时间,曲轴共转了390 圈。

知识点] 转动运动学的基本知识和运算。

[分析与解答] 本题中的曲轴作匀加速定轴转动,根据题意,曲轴的初速度为ππω4060120020=⨯=-1s rad ⋅终态运转角速度为 ππω9060270022=⨯=-1s rad ⋅已知s t 12=,故角加速度β为 113625012)4090(12.==--=∆-=ππωωβt-2s rad ⋅在12s 曲轴的角位移为 21021t t βωθθθ+=-=∆ rad 780)12(6252112402πππ=⨯⨯+⨯=因而曲轴在这一段时间转过的圈数为 3902780==ππN2.半径为R =1m 的飞轮,以角速度rad 500πω=转动,受到制动后均匀减速,经s 50=t 后静止。

则飞轮在s 25=t时的角速度=ω 78.5 s rad ;此时,飞轮边缘上某一点的切向加速度τa = -3.14 2s m;法向加速度=n a 310166⨯. 2s m 。

[知识点] 转动运动学的基本计算。

Om2m θ0图4-6(a)O2m g m g图4-6(b)[分析与解答] 因为飞轮的运动是匀变速转动,因而其角加速度为 t∆-=0ωωβππ-=-=50500-2s rad ⋅ 飞轮在s 25=t时的角速度为 57825255001.==-=+=πππβωωt -1s rad ⋅飞轮边缘上一点的切向加速度的大小为 143.-==R βa τ2s m -⋅法向加速度为 321110166⨯==.ωR a n 2s m -⋅3.刚体转动惯量的物理意义是 刚体绕定轴转动惯性大小的量度 ,它的计算公式为=I⎰dm r 2, 表明转动惯量的大小取决于 刚体的总质量 、 质量分布情况 和 转轴位置 三个因素。

相关文档
最新文档