数学人教版七年级下册不等式组与方程组综合应用题

合集下载

人教版七年级数学下册 利用方程组与不等式组解应用题专题训练(含答案)

人教版七年级数学下册 利用方程组与不等式组解应用题专题训练(含答案)

人教版七年级数学下册利用方程组与不等式组解应用题专题训练1.某校计划购买篮球、排球共20个购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.2.某小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.5万元;新建3个地上停车位和2个地下停车位共需1.1万元(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 若该小区投资超过10万元的金额新建停车位,且地上的停车位要求不少于30个,问共有几种建造方案?(3) 对(2)中的几种建造方案中,哪一种方案的投资最少?并求出最少投资金额?3.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?4. 某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元.已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌的足球50个,正好赶上商场对商品价格进行调整,A种品牌的足球售价比第一次购买时提高4元,B种品牌的足球按第一次购买时售价的九折出售,如果学校此次购买A、B两种品牌的足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌的足球不少于23个,则这次学校有哪几种购买方案?5.某中学为达到校园足球特色学校的要求,准备一次性购买一批训练用足球和比赛用足球.若购买3个训练用足球和2个比赛用足球共需500元,购买2个训练用足球和3个比赛用足球共需600元.(1)购买1个训练用足球和1个比赛用足球各需多少元?(2)某中学实际需要一次性购买训练用足球和比赛用足球共96个,要求购买训练用足球和比赛用足球的总费用不超过6000元,问这所中学最多可以购买多少个比赛用足球?6.为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?7.我区注重城市绿化提高市民生活质量,新建林荫公园计划购买甲、乙两种树苗共800株,甲种树苗每株12元,乙种树苗每株15元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去10500元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.8.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A,B,C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,求该电商销售甲、乙两种袋装粗粮的数量之比。

七年级下册数学不等式与不等式组综合题人教版(含答案)

七年级下册数学不等式与不等式组综合题人教版(含答案)

七年级下册数学不等式与不等式组综合题人教版一、单选题(共10道,每道10分)1.已知ax<2a(a≠0)是关于x的不等式,那么它的解集是()A.x<2B.x>-2C.当a>0时,x<2D.当a>0时,x<2;当a<0时,x>2答案:D试题难度:三颗星知识点:含字母的不等式2.若不等式组无解,则实数m的取值范围是( )A.B.C.D.答案:D试题难度:三颗星知识点:含字母的不等式组的无解问题3.如果不等式组有解,则m的取值范围为()A.m≧4B.m>4C.m<4D.m≦4答案:C试题难度:三颗星知识点:含字母的不等式组的无解问题4.如果不等式组的解集为x<2,则m的取值范围为()A.m>2B.m≧2C.m<2D.m≦2答案:B试题难度:三颗星知识点:含字母的不等式组的有解问题5.如果-3x-a<0的负整数解有2个,则a的取值范围为()A.-9≤a<-6B.-9<a≤-6C.6≤a<9D.6<a≤9答案:D试题难度:三颗星知识点:含字母的不等式的整数解6.如果不等式组的解集是,那么a+b的值为()A.-1B.2C.1D.不能确定答案:C试题难度:三颗星知识点:含字母的不等式组的有解问题7.若关于x、y的二元一次方程组的解满足4x+2y<3,则a的取值范围为()A.a<0B.a≦-1C.a<-1D.a≧3答案:C试题难度:三颗星知识点:含字母的不等式组8.某班50名学生利用现有的36kg甲种材料和29kg乙种材料制作陶艺品.每人制作一件A型或B型的陶艺品.已知制作一件A型陶艺品需甲种材料0.9kg、乙种材料0.3kg,制作一件B 型陶艺品需甲种材料0.4kg、乙种材料1kg.设制作B型陶艺品x件,则x的取值有()A.18≤x≤20B.18<x<20C.19D.18,19或20答案:D试题难度:三颗星知识点:一元一次不等式组的应用——方案设计9.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,则宿舍间数和住宿人数分别是()A.9,54或10,59或11,63B.12,67或11,63C.10,59或11,63或12,67D.9,54或10,59或11,63或12,67答案:C试题难度:三颗星知识点:一元一次不等式组的应用——不空不满10.为了缓解停车矛盾,郑州市某小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个、露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?请写出所有可能的方案.A.方案一:室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个B.室内车位20个,露天车位50个C.室内车位21个,露天车位45个D.方案一:室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个;方案三:室内车位22个,露天车位40个答案:A试题难度:三颗星知识点:一元一次不等式组的应用——关键词型。

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册不等式组《方案选择》专题1、为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 和B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元。

(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担。

规定若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元。

请问共有哪几种改扩建方案?解:(1)设改扩建1所A 类学校需资金x 万元,改扩建1所B 类学校需资金y 万元则依题意可得⎩⎨⎧=+=+54003780032y x y x∴⎩⎨⎧==18001200y x ∴改扩建1所A 类学校需资金1200万元,改扩建1所B 类学校需资金1800万元 (2)设改扩建A 类学校m 所,则改扩建B 类学校(10-m )所依题意可得:()()()()⎩⎨⎧≥-+≤--+-400010500300118001050018003001200m m m m∴⎩⎨⎧≥-+≤-+4000500500030011800130013000900m m m m ∴⎩⎨⎧≤≥53m m∴53≤≤m ∵m 是正整数 ∴m=3或4或5 即共有3种方案方案一:改扩建A 类学校3所,B 类学校7所 方案二:改扩建A 类学校4所,B 类学校6所 方案三:改扩建A 类学校5所,B 类学校5所2、某房地产开发公司计划建A、B两种户型的住房共80套。

该公司所筹资金不少于2090万元,但不超过2096万元。

且所筹资金全部用于建房,两种户型的建房成本和售价如下表(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a 万元(a>0),且所建的两种住房可全部售出,该公司如何建房获得利润最大?解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套根据题意,得()()⎩⎨⎧≤-+≥-+20968028252090802825xxxx,解得48≤x≤50∵x取非负整数,∴x为48,49,50(2由题意知:W=5x+6(80-x)=480-x∵k=-1,W随x的增大而减小∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套当a=l时,a-1=0,三种建房方案获得利润相等当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套3、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册。

人教版七年级下册数学不等式与不等式组应用题训练(word,含答案)

人教版七年级下册数学不等式与不等式组应用题训练(word,含答案)

人教版七年级下册数学不等式与不等式组应用题训练1.列方程组或不等式解决问题:2022年北京冬奥会、冬残奥会已圆满结束,活泼敦厚的“冰墩墩”,喜庆祥和的“雪容融”引起广大民众的喜爱.王老师想要购买两种吉祥物作为本次冬奥会的纪念品,已知购买2件“冰墩墩”和1件“雪容融”共需150元,购买3件“冰墩墩”和2件“雪容融”共需245元.(1)求“冰墩墩”和“雪容融”的单价;(2)学校现需一次性购买上述型号的“冰墩墩”和“雪容融”纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个“冰墩墩”?2.为支援上海抗击新冠肺炎,甲地捐赠多批救援物资并联系了一家快递公司进行运送.快递公司准备安排A、B两种车型把这批物资从甲地快速送到上海.其中,从甲地到上海,A型货车1辆、B型货车1辆,一共需补贴油费1000元;A型货车10辆、B 型货车6辆,一共需补贴油费8400元.(1)从甲地到上海,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)如果需派出20辆车,并且预算油费补贴不超过9600元,那么该快递公司至多能派出几辆A型货车?3.开学前夕,某书店计划购进A、B两种笔记本共350 本.已知A种笔记本的进价为12 元/本,B种笔记本的进价为15 元/本,共计4800 元.(1)请问购进了A种笔记本多少本?(2)在销售过程中,A、B两种笔记本的标价分别为20元/本、25元/本.受疫情影响,两种笔记本按标价各卖出m本以后,该店进行促销活动,剩余的A种笔记本按标价的七折全部售出,剩余的B种笔记本按成本价清货,若两种笔记本的总利润不少于2348元,请求出m的最小值.4.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11000元,84消毒液和酒精的进价和售价如下:(1)该药房销售完这批84消毒液和酒精后共获利5400元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,结合药房实际,该药房打算用不超过6600元钱再次采购84消毒液和酒精共300瓶,已知84消毒液和酒精价格不变,则第二批最多采购84消毒液多少瓶?5.小玉计划购买A、B两种饮料,若购买8瓶A种饮料和5瓶B种饮料需用220元;若购买4瓶A种饮料和6瓶B种饮料需用152元.(1)求每瓶A种饮料和B种饮料各多少元;(2)小玉决定购买A种饮料和B种饮料共15瓶,总费用不超过260元,那么最多可以购买多少瓶A种饮料?6.小明家新买了一套住房,打算装修一下,春节前住进去.现有甲、乙两家装修公司可供选择,这两家装修公司提供的信息如下表所示:若设需要x天装修完毕,请解答下列问题:(1)请分别用含x的代数式,写出甲、乙两家公司的装修总费用;(2)当装修天数为多少时,两家公司的装修总费用一样多?(3)根据装修天数x讨论选择哪家装修公司更合算(提示:结合(2)中的结论进行分类解决问题).7.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台?8.为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92人(其中七年级的人数多于八年级的人数,且七年级的人数不足90人)准备统一购买服装参加比赛.如表是某服装厂给出服装的价格表:(1)如果两个年级分别单独购买服装一共应付5000元,求七、八年级各有多少学生参加合唱比赛;(2)如果七年级参加合唱比赛的学生中,有10名同学抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.9.某电器超市销售每台进价分别为140元、100元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市准备用不多于6500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过2850元的目标?若能,请给出相应的采购方案:若不能,请说明理由.10.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;购进A种商品6件和B种商品8件需440元.(1)A、B两种商品每件的进价分别为多少元?(2)若该商店A种商品每件的售价为48元,B种商品每件的售价为31元,该商店准备购进A、B两种商品共50件,且这两种商品全部售出后总获利不低于344元,则至少购进多少件A种商品?11.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.求道具A最多购买多少件?12.对于企业来说:科学技术永远是第一生产力,在长沙市里程最长、站点最多的地铁6号线建设过程中,某知名运输集团承包了地铁6号线多标段的土方运输任务,该集团为了出色完成承接任务,拟派出该集团自主研发的A、B两种新型运输车运输土方.已知4辆A型运输车与3辆B型运输车一次共运输土方64吨,2辆A型运输车与4辆B型运输车一次共运输土方52吨.(1)请问一辆A型运输车和一辆B型运输车一次各运输土方多少吨?(2)该运输集团决定派出A、B两种型号新型运输车共18辆参与运输土方,若每次运输土方总量不小于169吨,且B型运输车至少派出4辆,则有哪几种派车方案?13.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;若购进A种商品6件和B种商品8件需440元.(1)求A、B两种商品每件的进价分别为多少元?(2)商店准备用不超过1615元购进50件这两种商品,求购进A种商品最多是多少件?14.某超市共用24000元同时购进甲、乙两种型号书包各200个,购进甲型号书包40个比购进乙型书包30个少用100元.(1)求甲、乙两种型号书包的进价各为多少元?(2)若超市把甲、乙两种型号书包均按每个90元定价进行零售,同时为扩大销售,拿出一部分书包按零售价的8折进行优惠销售.商场在这批背包全部售完后,若总获利不低于10200元,则超市用于优惠销售的书包数量最多为多少个?15.某工艺品店购进A,B两种工艺品,已知这两种工艺品的单价之和为200元,购进2个A种工艺品和3个B种工艺品需花费520元.(1)求A,B两种工艺品的单价;(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?16.每年的4月22日是世界地球日.某校为响应“携手为保护地球投资”的号召计划购入,A B两种规格的分类垃圾桶,用于垃圾分类.若购买A种垃圾桶30个和B种垃圾桶20个共需1020元;若购买A种垃圾桶50个和B种垃圾桶40个共需1860元.(1),A B两种垃圾桶的单价分别是多少元?(2)若该校最多有4360元用于购买这两种规格的垃圾桶共200个,则B种垃圾桶最多可以买________个.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A,B两种商品的单价分别是多少元?(2)已知该商店购买A,B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A,B两种商品的总费用不超过276元,那么该商店有几种购买方案?18.每年一度的中考牵动着数万家长的心,为了给考生一个良好的环境,某市教委规定每个考场安排考生数是固定的人数,该市A 区的9000 名考生安排的考场数比B 区3000人安排的考场数多200个.(1)求每个考场安排固定考生的人数;(2)该市C区共有可作为考场的大小教室共300 间,由于今年疫情影响,该市教委要求大教室按原固定人数的80%安排考生,小教室按原固定人数的50%安排考生,若该市C 区共有考生6300 人,则至少需要有多少间大教室.19.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,并且购买20个冰墩墩和30个雪容融的价格相同.(1)问每个冰墩墩和雪容融的进价分别是多少元?(2)根据市场实际,供应商计划用20000元购进这两种吉祥物200个,则他本次采购时最多可以购进多少个冰墩墩?20.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.已知工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?参考答案:1.(1)“冰墩墩”和“雪容融”的单价分别为55元,40元(2)最多可以购买66个“冰墩墩”2.(1)每辆A型货车补贴油费600元,每辆B型货车补贴油费400元.(2)该快递公司至多能派出8辆A型货车.3.(1)购进了A种笔记本150本;(2)m的最小值128.4.(1)84消毒液销售了200瓶,酒精销售了300瓶;(2)120瓶5.(1)每瓶A种饮料20元,每瓶B种饮料12元(2)10瓶6.(1)甲公司的总费用为(900x+2700)元,乙公司的总费用为(960x+1500)元;(2)当装修天数为20天时,两家公司的装修总费用一样多;(3)当x<20时,乙装修公司更合算;当x=20时,两家装修公司一样;当x>20时,甲装修公司更合算.7.(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台8.(1)七年级52人,八年级40人;(2)两个年级一起买91套时最省钱;9.(1)A、B两种型号的电风扇的销售单价分别为200元和150元(2)A种型号的电风扇最多能采购37台(3)能实现利润超过2850元的目标,相应方案有两种:方案一:购买A种型号的电风扇36台,购买B种型号的电风扇14台;方案二:购买A种型号的电风扇37台,购买B种型号的电风扇13台10.(1)A种商品每件的进价为40元,B种商品每件的进价为25元(2)至少购进22件A种商品11.(1)购买1件A道具需要15元,1件B道具需要5元(2)道具A最多购买32件12.(1)一辆A型运输车一次运土10吨,一辆B型运输车一次运土8吨(2)有两种派送方案,方案一:派出A型号的新型运输车13辆,B型号的新型运输车5辆;方案二:派出A型号的新型运输车14辆,B型号的新型运输车4辆.13.(1)A种商品每件进价40元,B种商品每件进价25元(2)24件14.(1)A、B两种型号书包的进货单价各为50元、70元;(2)商场用于优惠销售的书包数量为100个.15.(1)A种工艺品的单价为80元,B种工艺品的单价为120元(2)共有3种进货方案16.(1)A种垃圾桶的单价熟练掌握18元,B种垃圾桶的单价是24元.(2)12617.(1)A种商品的单价为16元、B种商品的单价为4元(2)有四种方案,方案一:购买A商品的件数为10件,购买B商品的件数为20件;方案二:购买A商品的件数为11件,购买B商品的件数为19件;方案三:购买A商品的件数为12件,购买B商品的件数为18件;方案四:购买A商品的件数为13件,购买B商品的件数为17件.18.(1)每个考场安排固定考生的人数为30人;(2)至少需要有200间大教室.19.(1)今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元(2)最多可以购进100个冰墩墩20.共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件。

部编人教版数学七年级下学期方程组与不等式的综合应用优课比赛ppt课件

部编人教版数学七年级下学期方程组与不等式的综合应用优课比赛ppt课件

2、为实现区域教育均衡发展,我市计划对某县A、B两类 薄弱学校全部进行改造,根据预算,共需资金1575万元, 改造一所A类学校和两所B类学校共需资金230万元;改 造两所A类学校和一所B类学校共需资金205万元. (1)改造一所A类学校和一所B类学校所需的资金分别是 多少万元?
(2)我市计划今年对该县A、B两类学校共6所进行改造,
生产能力如下表。已知购买机器的资金不超过34
万元
甲乙
价格(万元/台) 7
5
每台日产量(个) 100 60Байду номын сангаас
(1)该公司有几种购买方案?
(2)该该公司购进的6台机器的日生产能力不低 于380个,那么为节约资金应选哪种方案?
方程组与不等式
练习1、关于x的方程 x 6m 1 x 5m 1
63
2
的解是小于1,求m的非负整数值
2x-a<1
2、若不等式
的解集为-1<x<1,
x-2b>3
那么求(a+1)(b+1)的值。
2x+y=5m+6
3、方程组
的解x、y都是正数,
x-2y=-17
且x的值小于y的值, 求m的最大整数值.
改造资金由国家财政和地方财政共同承担。若今年国家财 政拨付的改造资金不超过400万元;地方财政投入的改造 资金不少于70万元,其中地方财政投入到A、B两类学校 的改造资金分别为每所10万元和15万元。请你通过计算 求出有几种改造方案?
3、某公司为了扩大经营,决定购买6台机器,现
有甲、乙两种机器供选择,每台机器的价格和日
职工


月销售件数(件) 200
240

人教版七年级下册数学第8章 二元一次方程组 一元一次不等式的实际应用

人教版七年级下册数学第8章 二元一次方程组 一元一次不等式的实际应用
解:设可以安排成人 a 人,少年 b 人带队(a,b 均为整 数),则 1≤a≤17,1≤b≤5. 当 10≤a≤17 时, (ⅰ)当 a=10 时,100×10+80b≤1 200,解得 b≤52,
∴b 最大值=2,此时 a+b=12,费用为 1 160 元. (ⅱ)当 a=11 时,100×11+80b≤1 200,解得 b≤54, ∴b 最大值=1,此时 a+b=12,费用为 1 180 元. (ⅲ)当 a≥12 时,100a≥1 200,即成人票至少需要 1 200 元,不合题意,舍去. 当 1≤a<10 时, (ⅰ)当 a=9 时,100×9+80b+60≤1 200,解得 b≤3,
(2)该公司准备用不超过300万元资金,采购A,B两种型号 的新能源汽车共22台,问最少需要采购A型新能源汽车 多少台?
解:设需要采购A型新能源汽车m台,则采购B型新能 源汽车(22-m)台,依题意得12m+15(22-m)≤300, 解得m≥10. 答:最少需要采购A型新能源汽车10台.
4 【教材P125练习T2变式】【2021·长沙】为庆祝伟大的中 国共产党成立100周年,发扬红色传统,传承红色精神, 某学校举行了主题为“学史明理,学史增信,学史崇德, 学史力行”的党史知识竞赛,一共有25道题,满分100 分,每一题答对得4分,答错扣1分,不答得0分.
(1)若某参赛同学只有一道题没有作答,最后他的总得分为 86分,则该参赛同学一共答对了多少道题?
解:设该参赛同学一共答对了x道题, 则答错了(25-1-x)道题, 依题意得:4x-(25-1-x)=86,解得:x=22. 答:该参赛同学一共答对了22道题.
(2)若规定参赛者每道题都必须作答且总得分大于或等于90 分才可以被评为“学党史小达人”,则参赛者至少需答 对多少道题才能被评为“学党史小达人”?

部编数学七年级下册专题26不等式(组)和方程组结合的实际应用(解析版)含答案

部编数学七年级下册专题26不等式(组)和方程组结合的实际应用(解析版)含答案

专题26 不等式(组)和方程组结合的实际应用【例题讲解】有大小两种货车,3辆大货车和2辆小货车一次共运货17吨,6辆大货车和3辆小货车一次共运货31.5吨.(1)求每辆大货车和每辆小货车一次分别可以运货多少吨?(2)若要安排10辆货车运输至少35吨的货物,则至少安排多少辆大货车?1.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【详解】(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:2015380 1510280x yx y+=ìí+=î,解得:164xy=ìí=î,2.某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择,经调查,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元,(1)求甲、乙两型机器每台各多少万元?(2)如果该工厂买机器的预算资金不相过34万元,那么你认为该工厂至多购买甲型机器多少台?【答案】(1)甲机器每台7万元,乙机器每台5万元(2)该工厂至多购买甲型机器2台【分析】(1)设甲机器每台x 万元,乙机器每台y 万元,根据等量关系式3台甲型机器+2台乙型机器=31万元,一台甲型机器-一台乙型机器=2万元,列出方程组,解方程组即可;(2)设该工厂购买甲型机器m 台,则购买乙型机器()6m -台,根据不等关系式甲型机器花费+乙型机器花费≤34万元,列出不等式,解不等式即可.(1)解:设甲机器每台x 万元,乙机器每台y 万元,根据题意得:32312x y x y +=ìí-=î,解得:75x y =ìí=î,答:甲机器每台7万元,乙机器每台5万元.(2)设该工厂购买甲型机器m 台,则购买乙型机器()6m -台,根据题意得:()m m+-£,75634m£,解得:2答:该工厂至多购买甲型机器2台.【点睛】本题主要考查了二元一次方程组的应用和一元一次不等式的应用,根据题意找出等量关系式,或不等关系式,是解题的关键.3.2022年北京冬奥会、冬残奥会的纪念品得到广大民众的喜爱,某校想要购买A型、B型两种纪念品.已知购买2件A型纪念品和1件B型纪念品共需150元;购买3件A型纪念品和2件B型纪念品共需245元.(1)求A型纪念品和B型纪念品的单价;(2)学校现需一次性购买A型纪念品和B型纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个A型纪念品?分式要记得检验,最后答题.掌握做应用题的步骤,是解决本题的关键.4.如图,为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗(注:饭碗的大小形状都一样)摞起来的高度为15cm,9只饭碗摞起来的高度为21cm.(1)求出一个碗的高度是多少?(2)李老师家的碗柜每格的高度为36cm,求李老师一摞碗最多只能放多少只?5.某电器商城准备销售每台进价分别为200元、150元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)销售数量销售时段A 种型号B 种型号销售收入第一个月3台5台2300元第二个月4台10台4000元(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5500元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为2100元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号电风扇的销售单价分别为300元、280元(2)超市最多采购A 种型号电风扇20台时,采购金额不多于5500元(3)超市不能实现利润2100元的目标,理由见解析【分析】(1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,根据总价=单价×数量结合近两月的销售情况统计表,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设A 种型号的电风扇采购a 台,则B 种型号的电风扇采购()30a - 台,根据进货总价=进货单价×进货数量结合超市准备用不多于5500元的金额采购两种型号的电风扇共30台,即可得出关于a 的一元一次不等式,解之取其中的最大值即可得出结论;(3)先求出超市销售利润为2100元时的A 种型号电风扇采购台数a ,再判断即可.(1)解:设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:3523004104000x y x y +=ìí+=î,解得:300280x y =ìí=î,答:A 、B 两种型号电风扇的销售单价分别为300元、280元;(2)解:设采购A 种型号电风扇a 台,则采购B 种型号电风扇()30a -台.依题意得:()200150305500a a +-£,解得:20a £.答:超市最多采购A 种型号电风扇20台时,采购金额不多于5500元;(3)解:依题意有:()()()300200280150302100-+--=a a ,解得:60a =,∵20a £,∴在(2)的条件下超市不能实现利润2100元的目标.答:超市不能实现利润2100元的目标.【点睛】本题主要考查解二元一次方程组、一元一次方程与一元一次不等式,解题的关键是根据条件列出相应的方程或者不等式.6.在“6·18”活动中,某电商上架200个A 商品和150个B 商品进行销售,已知购买3个A 商品和6个B 商品共需780元,购买1个A 商品和5个B 商品共需500元.(1)求A 商品和B 商品的售价分别是多少元?(2)在A 商品售出35,B 商品售出23后,为了尽快回笼资金,店主决定对剩余的A 商品每个打a 折销售,对剩余的B 商品每个降价2a 元销售,很快全部售完.若要保证本月销售总额不低于29250元,求a 的最小值.即a的最小值为7.5.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.7.历经7年艰辛努力,北京冬奥会、冬残奥会胜利举办,激发了亿万人民的体育热情,推动了我国体育事业发展.某校为了普及推广冰雪活动进校园,准备购买滑雪镜和滑雪手套用于开展冰雪运动,已知购买20副滑雪镜和60副滑雪手套共需7800元,购买40副滑雪镜和50副滑雪手套共需10000元.(1)求滑雪镜和滑雪手套每副购买的价格分别为多少元?(2)学校准备购买滑雪镜和滑雪手套共100副,购买的总费用不能超过12000元,则该校最多购买滑雪镜多少副?∴最多购买滑雪镜57副.【点睛】本题主要考查二元一次方程组的应用,一元一次不等式的应用,根据题意正确列出关系式是接题的关键.8.随着旅游业的多元化发展,自驾游呈现蓬勃发展的态势,相距50千米的A、B两家人相约开车自驾游,若两车同时出发相向面行,先会合后再一同前往旅游地,则出发20分钟相遇;若两车同时出发同向而行,沿同一线路前往旅游地,则出发5小时A车可追上B车.(1)求A、B两车的平均速度分别为多少千米/时;(2)两家人决定同时出发同向而行,沿同一线路前往旅游地,A车要想在出发后2小时内追上B车,求A车的平均速度要在原速上至少提高多少千米/时?9.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买4个足球和3个篮球共需750元,购买3个足球和5个篮球共需920元.(1)求购买一个足球、一个篮球各需多少元?(2)根据该中学的实际情况,需从晨光体育用品商店一次性购买足球和篮球共90个,要求购买足球和篮球的总费用不超过8980元.这所中学最多可以购买多少个篮球?【答案】(1)足球单价90元、篮球单价130元(2)这所中学最多可以买22个篮球【分析】(1)根据“购买4个足球和3个篮球共需750元.购买3个足球和5个篮球共需920元”分别得出二元一次方程,组成方程组求出即可;(2)利用一次性购买足球和篮球共90个,购买足球和篮球的总费用不超过8980元,得出不等式求出即可.(1)解:设足球单价为x元、篮球单价为y元,根据题意得:4375035920x yx yìíî+=+=,解得:90130xyìíî==,答:足球单价90元、篮球单价130元.(2)解:设购买篮球m个,则买足球(90−m)个,根据题意得:130m+90(90−m)≤8980,解得:m≤22,∵m为整数,∴m最大取22,答:这所中学最多可以买22个篮球.【点睛】本题主要考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系,是解答本题的关键.10.某公司招聘考试,规定如下:考生总成绩=笔试成绩70%´+面试成绩30%´(其中笔试和面试成绩满分各100分),录取总成绩大于或等于80分的考生.(1)王红笔试成绩和面试成绩两项得分之和为175分,而总成绩得分为88.5分,则王红笔试成绩和面试成绩各得多少分?(2)如果一个考生被录取了,他的笔试成绩至少多少分(保留一位小数)?【答案】(1)王红笔试成绩为90分,面试成绩为85分;(2)他的笔试成绩应该至少为71.4分.【分析】(1)设王红笔试成绩为x分,面试成绩为y分,根据“两项得分之和为175分,而总成绩得分为88.5分,”列方程组求解可得;(2)假设他的面试成绩为满分,即100分,则面试成绩部分为100×30%=30(分),设笔试成绩为a 分,根据30+70%a≥80求出a的范围可得答案.(1)解:设王红笔试成绩为x分,面试成绩为y分,依题意得:17570%30%88.5x yx y+=ìí+=î,解之得:9085 xy=ìí=î答:王红笔试成绩为90分,面试成绩为85分;(2)解:设面试成绩为满分,即100分,面试成绩折后为100×30%=30,设笔试成绩为a分,根据题意可得:30+70%a≥80,解得:a≥71.4.答:他的笔试成绩至少71.4分.【点睛】此题考查了加权平均数,一元一次不等式的应用,以及二元一次方程组的应用,弄清题意是解本题的关键.11.立体书兼具了传统书的内容和形式,也拥有玩具的趣味和功能.某工厂生产了一款立体书,按标价销售此立体书,每本可获利30元;若按标价的八折销售6本此立体书与将标价降低10元销售3本此立体书获得的利润相同.(1)该工厂生产的这款立体书的标价与成本分别为多少元?(2)该工厂原计划按标价销售这款立体书共600本,销售一部分后发现生意火爆,于是将每本立体书提价10元,很快全部销售完,最后发现总利润不低于22000元,求提价前最多销售多少本此款立体书?【答案】(1)该工厂生产的这款立体书的标价为100元,成本为70元.(2)提价前最多销售200本此款立体书.【分析】(1)设该工厂生产的这款立体书的标价为x元,成本为y元,根据“按标价销售此立体书,每本可获利30元;按标价的八折销售6本此立体书与将标价降低10元销售3本此立体书获得的利润相同”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设提价前销售m本此款立体书,则提价后销售(600-m)本此款立体书,利用总利润=每本的销售利润×销售数量,结合总利润不少于22000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.(1)设该工厂生产的这款立体书的标价为x 元,成本为y 元,依题意得:306(0.8)3(10)x y x y x y -=ìí-=--î,解得:10070x y =ìí=î.答:该工厂生产的这款立体书的标价为100元,成本为70元.(2)设提价前销售m 本此款立体书,则提价后销售(600-m )本此款立体书,依题意得:30m +(30+10)(600-m )≥22000,解得:m ≤200.答:提价前最多销售200本此款立体书.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.12.某零食店销售牛轧糖、雪花酥2种糖果,如果用800元可购买5千克牛轧糖和4千克雪 花酥,用760元可购买7千克牛轧糖和2千克雪花酥.(1)求牛轧糖、雪花酥每千克的价格分别为多少元?(2)已知该零食店在12月共售出牛轧糖50千克、雪花酥30千克.春节将近,1月份超市将牛轧糖每千克的售价提升43m 元,雪花酥的价格不变,结果与12月相比,牛轧糖只销售了45千克,雪花酥销量上升1m 5千克,销售总额超过了12月份销售总额;求m 的取值范围.【答案】(1)每千克牛轧糖的价格为80元,每千克雪花酥的价格为100元(2)m >5【分析】(1)根据题意,设每千克牛轧糖为x 元,每千克雪花酥为y 元,然后列出二元一次方程组,解方程组即可;(2)根据题意,写出1月份销售总额关于m 的表达式,根据1月份销售总额超过了12月份销售总额,列出关于m 的一元一次不等式,解不等式即可得到答案.(1)解:根据题意,设每千克牛轧糖为x 元,每千克雪花酥为y 元,则13.某水果店购进100千克水蜜桃和50千克苹果,苹果的进价是水蜜桃的1.2倍,本次进货共花费800元.(1)求水蜜桃和苹果的进价;(2)在销售过程中,水蜜桃有4%的损耗,若销售完这批水蜜桃利润不低于268元,求水蜜桃售价每千克至少多少元?【答案】(1)5元/千克,6元/千克(2)8元【分析】(1)设水蜜桃的进价为x 元/千克,苹果的进价为y 元/千克,根据题意列出二元一次方程组,解二元一次方程组即可求解.(2)设水蜜桃售价每千克m 元,根据不等关系列出一元一次不等式并解一元一次不等式即可求解.(1)解:设水蜜桃的进价为x 元/千克,苹果的进价为y 元/千克,由题意得: 1.210050800y x x y =ìí+=î,解得56x y =ìí=î,答:水蜜桃的进价为5元/千克,苹果的进价为6元/千克.(2)设水蜜桃售价每千克m 元,由题意得:(1001004%)1005268m -´×-´³,解得8m ³,答:水蜜桃售价每千克至少8元.【点睛】本题考查了二元一次方程组的应用及一元一次不等式的应用,根据等量关系列出方程组及根据不等关系列出一元一次不等式,并能正确求解是解题的关键.14.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A ,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A ,B 两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?【答案】(1)购买A 型学习用品400件,B 型学习用品600件.(2)最多购买B 型学习用品800件【分析】(1)设购买A 型学习用品x 件,B 型学习用品y 件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设购买A 型学习用品x 件,B 型学习用品y 件,由题意,得x y 100020x 30y 26000+=ìí+=î,解得:x 400y 600=ìí=î.答:购买A 型学习用品400件,B 型学习用品600件.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,由题意,得20(1000﹣a )+30a≤28000,解得:a≤800.答:最多购买B 型学习用品800件15.为了响应新中考体育考试要求,某商场引进篮球、排球两种商品.这两种商品的进价、售价如下表所示:篮球排球进价(元/个)x y 售价(元/个)5432(1)若该商场购进3个篮球比1个排球多95元,购进4个篮球和1个排球共要花185元,求每个篮球、每个排球的利润?(注:利润=售价-进价)(2)该商场向某校售出篮球与排球共计100个,总售价不低于4102元,且不超过4190元,请你通过计算求出有几种售卖方案?(3)在618活动打折促销期间,该商场对篮球、排球进行如下优惠促销:打折前一次性购物总金额 优惠政策不超过350元不优惠超过350元不超过500元售价打九折超过500元售价打七折按上述优惠政策,若小张第一天只购买篮球,一次性付款324元;第二天只购买排球,付了403.2元,那么这两天他在该商场购买篮球________个,排球________个.【答案】(1)篮球利润14元/个,排球利润7元/个(2)共计五种售卖方案(3)篮球6个和排球共14个或18个【分析】(1)由表格得篮球进价x 元/个,排球进价y 元/个,根据题意,列出方程组,即可求解;(2)设篮球售出a 个,则排球售出(100-a )个,根据题意“总售价不低于4102元,且不超过4190元,”列出不等式组,即可求解;(3)根据题意可得第一天:购入篮球未打折,购入个数6个,设购入排球m 个,然后分两种情况讨论:若35032500m <£时,若32500m >时,即可求解.(1)解:由表格得篮球进价x 元/个,排球进价y 元/个,依题意得:3954185x y x y -=ìí+=î,解得:4025x y =ìí=î,∴篮球利润:54−40=14(元/个),排球利润:32−25=7(元/个),答:篮球利润14元/个,排球利润7元/个.(2)解:设篮球售出a 个,则排球售出(100-a )个,根据题意得:()()5432100419054321004102a a a a ì+-£ïí+-³ïî①②解不等式①得:45a £,解不等式②得:41a ³,∴4145a ££,又a 为正整数,∴a=41,42,43,44,45,16.某公司的1号仓库与2号仓库共存粮450吨,如果从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,2号仓库所余粮食就比1号仓库所余粮食多30吨,从1号仓库、2号仓库调运存粮到加工厂的运价分别为120元/吨和100元/吨.(1)求1号仓库与2号仓库原来各存粮多少吨?(2)该公司将两个仓库中原来的存粮共调出300吨运往加工厂进行深加工,若2号仓库调出的粮食不少于1号仓库调出粮食的1.5倍,设从1号仓库调出m 吨粮食到加工厂,求m 的取值范围;(3)在(2)的条件下,若1号仓库到加工厂的运价可优惠a 元/吨(1530a ££),2号仓库到加工厂的运价不变,当总运费的最小值为30360元时,请直接写出a 的值.【答案】(1)1号仓库原来存粮240吨,2号仓库原来存粮210吨(2)90120m ££(3)a 的值为16【分析】(1)设1号仓库与2号仓库各存粮x 吨,y 吨,根据题意列二元一次方程组,即可求解;(2)从1号仓库调出m 吨粮食,则从2号仓库调出()300m -吨粮食,由题意300 1.5m m -³,300210m -£,解不等式组即可;(3)求出总费用w 关于m 的表达式,分20a =,1520a £<,2030a <£三种情况讨论.【详解】(1)解:设1号仓库与2号仓库原来各存粮x 吨,y 吨,由题意得,45060%3040%x y x x y y+=ìí-+=-î,解得,240210x y =ìí=î,答:1号仓库原来存粮240吨,2号仓库原来存粮210吨;(2)解:从1号仓库调出m 吨粮食,则从2号仓库调出()300m -吨粮食,由题意得,300 1.5m m -³,解得,120m £.由(1)得2号仓库原来存粮210吨,∴300210m -£,∴90m ³,∴m 的取值范围为90120m ££;(3)解:设总运费为w 元,由题意知,()()()1201003002030000w a m m a m =-+-=-+.若20a =,则30000w =元,与已知总运费的最小值为30360元不符,∴20a ¹;当1520a £<时,200a ->,w 随m 的增大而增大,∴90m =时,w 取最小值30360,即 ()90203000030360a -+=,解得16a =;当2030a <£时,200a -<,w 随m 的增大而减小,∴120m =时,w 取最小值30360,即 ()120203000030360a -+=,解得17a =(不符合题意,舍去);综上所述,a 的值为16.【点睛】本题考查二元一次方程组、一元一次不等式组、一次函数的实际应用,根据题意列出总费用w 关于m 的表达式,并掌握分类讨论思想是解题的关键.17.列方程(组)或不等式(组)解应用题:学校为了支持体育社团开展活动,鼓励同学们加强锻炼,准备增购一些羽毛球拍和乒乓球拍.(1)根据图中信息,求出每支羽毛球拍和每支乒乓球拍的价格;(2)学校准备用5300元购买羽毛球拍和乒乓球拍,且乒乓球拍的数量为羽毛球拍数量的3倍,请问最多能购买多少支羽毛球拍?18.某校组织学生去游乐园参加拓展体验活动,活动中有“空中飞人”和“保卫地球”两个体验项目供同学选择.如果4名同学选择“空中飞人”,1名同学选择“保卫地球”,购票费用共需210元;如果3名同学选择“空中飞人”,2名同学选择“保卫地球”,购票费用共需220元.(1)求每张“空中飞人”的票价和每张“保卫地球”的票价各为多少元;(2)在(1)的条件下,某班有45名同学全部参加体验,老师要求购票总费用不超过2000元,那么最少有多少名同学选择“空中飞人”体验项目?【答案】(1)每张“空中飞人”的票价40元,每张“保卫地球”的票价50元;(2)25名【分析】(1)设每张“空中飞人”的票价x 元,每张“保卫地球”的票价y 元.根据 4个 “空中飞人”,1个 “保卫地球”,费用共需210元; 3个 “空中飞人”,2个 “保卫地球”,费用共需220元.构造方程组解方程组即可;(2)设m 名同学选择“空中飞人”体验项目,根据某班有45名参加体验购票总费用不超过2000元,列不等式求解即可.【详解】解:(1)设每张“空中飞人”的票价x 元,每张“保卫地球”的票价y 元.根据题意,得421032220.x y x y +=ìí+=î,解得4050.x y =ìí=î, 答:每张“空中飞人”的票价40元,每张“保卫地球”的票价50元;(2)设m 名同学选择“空中飞人”体验项目,那么(45-m )名同学选择“保卫地球”体验项目.根据题意,得:()4050452000m m +-≤,解得:m ≥25.答:最少有25名同学选择“空中飞人”体验项目.【点睛】本题考查列二元一次方程组解应用题与列一元一次不等式解应用题,关键是抓住等量关系与不等关系列方程组与不等式.。

2020-2021学年人教版七年级下期期末复习不等式和不等式组应用题2

2020-2021学年人教版七年级下期期末复习不等式和不等式组应用题2

2020-2021学年人教版七年级下期期末复习不等式和不等式组应用题21.2020年1月以来,由于新型冠状病毒(COVID﹣19)的肆虐,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如右表:(1).求该网店购进甲、乙两种口罩各多少袋?(2).该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打多少折?3.电动车是太原市民喜欢的交通工具之一,这使得太原市成为全国电动车保有量最高的城市之一.某电动车店以每辆1500元的价格购入某品牌电动车50辆,并以每辆1800元的价格销售,一段时间后,销售额已经超过这批电动车的进价,求此时至少已售出多少辆该品牌电动车?4.夏季即将来临,某电器超市销售每台进价分别为200元、170元的A,B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1).分别求出A,B两种型号电风扇的销售单价;(2).若超市准备用不超过5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3).在2.的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.5.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1).求购买甲、乙两种树苗各多少棵?(2).为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?6.某玩具厂每天生产喜羊羊与灰太狼两种毛绒玩具共450个,两种玩具的成本和售价如下表所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每辆汽车载鱼量(吨) 每吨鱼获利(万元)
鲢鱼 8 2 0.25
草鱼 6 0.3
x
青鱼 5 0.2
y
(1)若安排 辆汽车装运鲢鱼,则装运草鱼和青鱼的车辆数各 为多少辆?
2
精讲精练 某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨
去外地销售,按计划三种鱼都要有,20辆车都要装运,每辆汽车只 能装运同一种鱼,且必须装满,根据下表提供的信息,解答下列问 题:
每辆汽车载鱼量(吨) 每吨鱼获利(万元)
鲢鱼 8 a 0.25
草鱼 6 m 0.3
青鱼 5 0.2
n
(2)若安排 辆车装运鲢鱼,则装运草鱼和青鱼的车辆数各为 多少辆(用含a的式子表示)?
a
精讲精练 某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨
去外地销售,按计划三种鱼都要有,20辆车都要装运,每辆汽车只 能装运同一种鱼,且必须装满,根据下表提供的信息,解答下列问 题:
小结 & 拓展☞
1.一元一次不等式组与方程组解决实际问题 的区别与联系。
2.利用一元一次不等式组解决实际问题时, 最关键的是哪一步?
3.用一元一次不等式组解决方案问题的思维 过程。
应用一元一次不等式组解决 方案设计型问题的一般思维过程:
找出
实际问题 解 决 设计 求 不等关系 列出 不等式组 解
决策
方案
正整数解
解集
每辆汽车载鱼量(吨) 每吨鱼获鱼 青鱼 m a)5 2 na 6 (20-3 0.3 0.2
若设销售获利为W万元
方案 装运鲢鱼车 (辆) 装运草鱼车 (辆) 装运青鱼车 (辆) 销售获利 (万元)
方案一 方案二 方案三
3 4 5
11 8 5
6 8 10
31.8 30.4 29
不等式组与方程组应用题
x 2 (1) 不等式组 的解集是__________ ___. 2≤x<3 x 3 x 5 无解 ___. (2) 不等式组 的解集是__________ x 3
x 2 0 4,5,6 . (3) 不等式组 x 3 0的正整数解是_________ x 6 0
解关于x,y的二元一次方程组:
x y 8m ( 1 ) x - y 2m x y 20 a (2) 6x 5y 120 8a
精讲精练 某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨
去外地销售,按计划三种鱼都要有,20辆车都要装运,每辆汽车只 能装运同一种鱼,且必须装满,根据下表提供的信息,解答下列问 题:
相关文档
最新文档