不定积分典型例题讲解
6-3 不定积分的分部积分法09.12.8

E 指数函数 x x 方法1) 解(方法 I = ∫ 方法 de x [ ]′ ( x + 1)2 ( x + 1) ( x + 1) 1 x x ]′ = [ x x ( x + 1) e ∫ e [ ]′ d x = 2 2 1 1 ( x + 1) ( x + 1) ]′ = [ x + 1 ( x + 1) x 1 2 x x e ∫ e [ ]d x = + 2 2 3 ( x + 1) ( x + 1) ( x + 1) x 1 ex ex + ∫ dex 2∫ dx = 2 2 3 ( x + 1) ( x + 1) ( x + 1)
= ln(sec t + tant ) + C = ln( x + 1+ x2 ) + C
∴
∫
xarctan x 1 + x2
dx
= 1+ x2 arctan x ln( x + 1 + x2 ) + C.
例5
I = ∫ e x cos x dx= ∫ cos xde x dv = e x cos x ∫ e x dcos x vdu x + ∫ sin xe x dx = e cos x
例2
1 2 ? 分析 取 u== ? x, xd x = d x = dv = u cos 2 x2 x2 ∫ xcos xd x = 2 cos x + ∫ 2 sin xd x 更不易积分
显然,u 选择不当,积分更难进行 显然, 选择不当,积分更难进行. 解
u dv
= ∫ xdsin x dv
(完整版)高等数学不定积分例题、思路和答案(超全)

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习一一求不定积分的基本方法思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分★⑴dx x2 . x思路: 被积函数由积分表中的公式(2)可解。
解:dxx2-x5x 2dx★⑵1 ^=)思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
(x3x 2)dx1x3dx1x 2dx3 - 13x32x2C4★(3)(2x x2) dx思路:根据不定积分的线性性质,将被积函数分为两项, 分别积分。
解:(2x x2)dx 2x dx x2dx 2In 21x3 C 3★(4). x(x 3)dx思路:根据不定积分的线性性质,将被积函数分为两项, 分别积分。
解: ' x(x 3)dx3x2dx1x2dx5 32 2x2 C3x42x Jx1思路:观察到3x43x2 1x2 1 3x2 -后,根据不定积分的线性性质,将被积函数分项,分别积1分。
解:(注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分 解为一个整式加上或减去一个真分式的形式,再分项积分。
思路:分项积分。
思路:分项积分。
…、1 ★★(10) - ------- -dxx (1 x )思路:裂项分项积分。
解:4 2 ,3x 3x 12 ,dx 3x dx. 3—dx x arctan x Cx★★ (6)dx思路:注意到2x 1 x 2,根据不定积分的线性性质,将被积函数分项,分别积分。
25 x .斛:-------- 2dx1 xdx ----- 2dx1 xarctan x C.,/ x ★⑺( --- 21 + 1- 4、4)dx x…/x斛:(一 ——i - 3 x x 4、 —)dx 1 2 -x 4 In |x| x3 x 2 24 x 3 xdx-dx x 3 x 3dx 4 x 4dx C. 3 ★(8) (rv2-解:2、,-dx1 , c c . c ---- dx 3arctan x 2arcsin x C. x 2★★(9)x x xdx1 1x 2 47x 8,直接积分。
不定积分的经典讲解共23页

x 2 2arcxta 1 2 n 1 xx 22dx
x 2 2arx c t1 2a 1 n 1 1 x 2 dx
x 22arcxta1 2n xarcxt acn
x221arcx t a2 xnc.
8
例 3.
xlnxdx
1 2
ln
x
d(x2)
(uln x,vx2)
12x2lnx12x2dlnx 12x2lnx12x2 1xdx
解: ∴ 原式 exd(cox)s
excoxsexcoxsdx
再令 u ex , vcoxs
excoxs exsix n exsix d n x
故 原式 = 1 2ex(sx i n co x) sC
说明: 也可设
, 但两次所设类型必须一致 .
13
机动 目录 上页 下页 返回 结束
8 . n 为正 ,求 In 整 (x 数 2d a 2 x )n.
u vd xu v u vd x
分部积分公式
或 udvuvvdu
6
例1 求积分 xcoxs d.x
udvuvvdu
解(一) 令 uco x,sxdx1dx2 dv
xcosxdx
cosxd(
x2) 2
x2c2oxs 2
x2sin xdx 2
显然,u, v 选择不当,积分更难进行.
解(二) 令 ux, cx o d d s s x i x d nv
内容小结
分部积分公式 u vd xu vu vd x
1. 使用原则 : v易求出, uvdx易积分
2. 使用经验 : “反对幂指三” , 前 u v 后
3. 题目类型 : 分部化简 ; 循环解出; 递推公式
高数—不定积分.讲解和例题-PPT.共68页文档

25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!高数—不定积分.讲来自和例题-PPT.56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
不定积分例题(含过程及解析)

例题1dx e x x ⎰+)12( ce e x dxe e x x d e e x de x x x xx x x x+-+=•-+=+-+=+=⎰⎰⎰2)12(2)12()12()12()12( 根据分部积分法⎰⎰-=vdu uv udv ,(2x+1)为u ,e x 为v 。
(确定u 和v 的口诀:对反幂三指;对——对数函数、反——反函数、幂——幂函数、三——三角函数、指——指数函数)2x+1为幂函数,e x 为指数函数。
例题2dx xe x ⎰-ce xe dxe e xe dx e xe xde x x x x x x x++-=•+-=--=-=-------⎰⎰⎰1)(x e -是一个复合函数,其导数应为1-•-x e例题3⎰xdx arctanc x x x xd xx x dx x x x x xxd x x ++-=++-=+-•=-•=⎰⎰⎰)1ln(21arctan 11121arctan 1arctan tan arctan 2222arctanx ’=1/1+x 2,在这里会用到反三角函数的导数公式。
其它的反三角导数是arcsinx ’=211x -、arccosx ’=211x --、arccotx ’=211x +-例题4dx x x ⎰2cos 2sin|cos |ln 2cos cos 12cos sin 2cos cos sin 22x x d xdx xx dx xx x -=-===⎰⎰⎰这里用到二倍角公式,如下:Sin2x=2sinxcosxCos2x=2cos 2x-1=1-sin 2x-1例题5dx x x ⎰++2cos 1sin 12c x x x xdx dx dx x dx xx +-=-=-=-=⎰⎰⎰⎰21tan 21sec 121cos 1cos 2cos 22222 这里除了用到二倍角公式,还会用到sin 、cos 、sec 、csc 间的相互转化,sinx 和cscx 互为倒数、cosx 和secx 互为倒数。
不定积分典型例题

不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式.例1、求∫(1−1)x x dx x 234−54714解原式=∫(x −x )dx =x 4+4x 4+C 7e 3x +1例2、求∫x dx e +1解原式=∫(e 2x −e x +1)dx =例3、求∫12x e −e x +x +C 21dx 22sin x cos xsin 2x +cos 2x 11解原式=∫dx =dx +dx =tan x −cot x +C 2222∫∫sin x cos x cos x sin x例4、∫cos 2解原式=∫x dx 2x +sin x 1+cos x dx =+C 22x 2例5、∫dx 21+x x 2+1−11dx =(1−解原式=∫∫1+x 2)dx =x −arctan x +C 1+x 2注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)∫f (x )dx =∫g [ϕ(x )]ϕ'(x )dx 凑成令ϕ(x )=u =∫g (u )du 求出=G (u )+C 还原=G [ϕ(x )]+C 在上述过程中,关键的一步是从被积函数f (x )中选取适当的部分作为ϕ'(x ),与dx 一起凑成ϕ(x )的微分d ϕ(x )=du 且∫g (u )du 易求.tan x dx cos x例1、求∫3−2sin x −d cos x =−∫(cos x )2d cos x =+C dx =∫解原式=∫cos x cos x cos x cos x cos x例2、求∫arcsin xx −x 2dx解原式=∫arcsin x1−x ⋅1x dx =∫2arcsin x1−(x )2d (x )=2∫arcsin xd (arcsin x )=(arcsin x )2+C注1dx =2d (x )x1−x9−4x 2 例3、求∫dx1−1d (2x )12 解原式=∫+∫(9−4x )2d (9−4x 2)232−(2x )28=12∫2d (x )11213+9−4x 2=arcsin x +9−4x 2+C 423421−(x )23例4、求∫tan 1+x 2⋅x1+x 2dx解原式=∫tan1+x 2d 1+x 2=−ln |cos 1+x 2|+C 例5、求∫x x −x −12dxx (x +x 2−1)22dx =x dx +x x −1dx 解原式=∫2∫∫x −(x 2−1)3x 31x 31222=+∫x −1d (x −1)=+(x −1)2+C 3233例6、求∫1dx 1+tan xcos x 1cos x −sin x )dx dx =∫(1+sin x +cos x 2cos x +sin x解原式=∫=1⎡1⎤1++(cos sin )x d x x =(x +ln |cos x +sin x |)+C ∫⎢⎥2⎣cos x +sin x ⎦211+x ln dx 1−x 21−x11+x 1+x 121+x ln (ln +C )d ln =∫21−x 1−x 41−x例7、求∫ 解原式= 例8、求∫1dx x e +1e x 1+e x −e x dx =∫dx −∫dx 解原式=∫e x +11+e x=∫dx −∫1x x d (1+e )=x −ln(1+e )+C x1+e例9、求∫1dx e x +e −xe x 1 解原式=∫2x dx =∫d (e x )=arctan e x +C x 2e +11+(e ) 例10、求∫sin x dx 1+sin x11−sin x )dx =∫dx −∫dx 21+sin x cos x解原式=∫(1−=x −∫1sin x dx +dx =x −tan x +sec x +C 22∫cos x cos x例11、求∫dx x 2−3ln x−12 解原式=∫(2−3ln x )d (ln x )1111(2−3ln x )2+C =∫(2−3ln x )(−)d (2−3ln x )=−⋅33−1+12−12=−22−3ln x +C 31dx a 2sin 2x +b 2cos 2x1b 2+a 2tan 2x d (tan x )=11a (tan x )d ab ∫1+(a tan x )2b b例 12、求∫ 解原式=∫=1a arctan(tan x )+C ab bx 4+1dx 例13、求∫6x +1(x 2)2−x 2+1x 2x 4−x 2+1+x 2dx +∫32dx dx =∫解原式=∫(x 2)3+1(x )x 6+1=∫111133dx +dx =arctan x +arctan x +C 232∫1+x 31+(x )3例14、求∫1dx x (1+x 8)1+x 8−x 811x 78=−dx dx dx 解原式=∫=ln |x |−ln(1+x )+C 88∫x ∫1+x x (1+x )8例15、求∫3x −2dx x 2−4x +53d (x 2−4x +5)1+4∫2 解原式=∫2dx 2x −4x +5x −4x +5d (x −2)3ln |x 2−4x +5|+4∫22(x −2)+13ln |x 2−4x +5|+4arctan(x −2)+C 2== 注由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形1dx 的积分(将分母配方,再凑微分).如∫2ax +bx +cx 2 例16、已知f (x −1)=ln 2,且f [ϕ(x )]=ln x ,求∫ϕ(x )dx .x −22x 2−1+1x +1 解 因为f (x −1)=ln 2,故f (x )=ln ,又因为x −1−1x −12f [ϕ(x )]=ln ϕ(x )+1ϕ(x )+1x +1=ln x ,得=x ,解出ϕ(x )=,从而ϕ(x )−1ϕ(x )−1x −1∫ϕ(x )dx =∫ 例17、求∫x +12dx =∫(1+)dx =x +2ln |x −1|+C x −1x −11dx cos 4x1 解原式=∫sec 2xd tan x =∫(1+tan 2x )d tan x =tan x +tan 3x +C 3例18、求∫1+ln x dx 22+(x ln x ) 解原式=∫1d (x ln x )x ln x arctan(=)+C 2+(x ln x )222三、第二类换元法设x =ϕ(t )单调可导,且ϕ'(t )≠0,已知∫f [ϕ(t )]ϕ'(t )dt =F (t )+C ,则∫f (x )dx 令x =ϕ(t )=∫f [ϕ(t )]ϕ'(t )dt =F (t )+C t =ϕ−1(x )还原=F [ϕ−1(x )]+C选取代换x =ϕ(t )的关键是使无理式的积分化为有理式的积分(消去根号),同时使∫f [ϕ(t )]ϕ'(t )dt 易于计算.例1、求∫xdx(x +1)1−x 22 解令x =sin t ,dx =cos tdt原式=∫111sin t cos tdt d cos t (=−)d cos t =−+22∫∫(sin t +1)cos t 2−cos t 222−cos t 2+cos t2+cos t 12+1−x 2ln +C =−+C ln =−2222−cos t 222−1−x 1例2、求∫dxx41+x2解令x=tan t,dx=sec2tdtsec2tdt cos3tdt1−sin2t原式=∫=∫=∫d sin t=∫(sin−4t−sin−2t)d sin t 444tan t⋅sec t sin t sin t(1+x2)3(1+x2)111++C=−++C=−333sin t sin t3x xx2−9dxx2例3、求∫解令x=3sec t,则dx=3sec t⋅tan tdt3tan t tan2t原式=∫⋅3sec t⋅tan tdt=∫dt=∫(sec t−cos t)dt29sec t sec t=ln|sec t+tan t|−sin t+C1x x2−a2x2−a2=ln+−+C1a a xx2−a2+C=ln x+x−a−x22例4、求∫1dxx(x7+2)11 解令x=,则dx=−2dt,t t1t 6117 原式=∫(−2)dt =−∫dt =−d (1+2t )77∫11+2t 141+2t +2t 7t t 111ln |1+2t 7|+C =−ln |2+x 7|+ln |x |+C 14142=− 注设m ,n 分别为被积函数的分子,分母关于x 的最高次数,当n −m >1时,可用倒代换求积分.例5、求∫x +1x 2x −12dx11 解令x =,dx =−2dt t t 1+111+t 1d (1−t 2)t (−2)dt =−∫dt =−∫dt +∫ 原式=∫222t 111−t 1−t 21−t −1t 2t 2=−arcsin t +1−t +C =2x 2−11−arcsin +C x x例6、求∫x 3x −x 24dxt 10⋅t 4t 6t 1411解原式=11∫83⋅12t dt =12∫5dt =12∫5dt dx =12t dt t −t t −1t −1令12x =t t 10−1+14121121212⋅t dt =∫(t 5+1+5)dt 5=t 10+t 5+ln |t 5−1|+C =12∫5t −15t −1105561212=x 6+x 12+ln x 12−1+C 555555例7、求∫dx1+e x解令1+e x =t ,e x =t 2−1,dx =2t dt 2t −112t 1t −11+e x −1原式=∫⋅2dt =2∫2dt =ln +C =ln +C x t t −1t −1t +11+e +1ln x dx x 1+ln x例8、求∫解令t =1+ln x原式=∫ln x t −1d ln x =∫dt 1+ln x t112322=∫(t −)dt =t −2t 2+C =(ln x −2)1+ln x +C 33t例9、求∫x +1−1dx x +1+1解令x +1=t ,x =t 2−1,dx =2tdt因为原式=∫x +2−2x +1x +1dx =x +2ln |x |−2∫dx x x而∫x +12t 2dt 1dx =∫2=2∫(1+2)dt x t −1t −1t −1x +1−1+C =2x +1+ln +C t +1x +1+1=2t +ln原式=x +2ln |x |−4x +1−2ln x +1−1+C =x −4x +1+4ln x +1+1+C x +1+1四、分部积分法分部积分公式为∫uv 'dx =uv −∫u 'vdx 使用该公式的关键在于u ,v '的选取,可参见本节答疑解惑4.例1、求∫x 3e x dx解原式=∫x 3de x =x 3e x −3∫x 2de x =x 3e x −3x 2e x +6∫xde x =x 3e x −3x 2e x +6xe x −6e x +C例2、求∫x 2cos 2解原式=x dx 2121312x (1+cos x )dx =x +∫x cos xdx ∫262=131211x +∫x d sin x =x 3+x 2sin x −∫x sin xdx 6262131211x +x sin x +∫xd cos x =x 3+x 2sin x +x cos x −∫cos xdx 62621312x +x sin x +x cos x −sin x +C 623==例3、求∫e x dx令3x =t 解原式dx =3t 2dt=3∫t e dt =3∫t de 2t 2t =3t 2e t −6te t +6e t +C=33x 2e 3x −63xe 3x +6e 3x +C例4、求∫cos(ln x )dx解原式=x cos(ln x )+∫sin(ln x )dx=x cos(ln x )+x sin(ln x )−∫cos(ln x )dxx移项,整理得原式=[cos(ln x )+sin(ln x )]+C2注应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:αxe ∫cos βxdx 或αxe ∫sin βxdx例5、求∫ln(x +1+x 2)dx解原式=x ln(x +1+x 2)−∫x 1+x 2dx =x ln(x +1+x 2)−1+x 2+Cln 3x例6、求∫2dx x 1ln 3x 1 解原式==∫−ln xd ()=−−3∫ln 2xd ()x x x3ln 3x ⎡ln 2x 1⎤ln 3x 3ln 2x 6ln x 6−3⎢+2∫ln xd ()⎥=−−−−+C=−x x ⎦x x x x ⎣x例7、推导∫1dx 的递推公式22n(x +a ) 解令I n =∫1dx (x 2+a 2)nx x 2+a 2−a 21x 2I n =2n +dx 222=+−nI na dx n 2n 22n +122n 22n +1∫∫(x +a )(x +a )(x +a )(x +a )=x 2+2nI −2na In +1n 22n(x +a )I n +1=12na 2⎡⎤x(2n 1)I +−n ⎥⎢(x 2+a 2)n ⎣⎦⎡⎤x(2n 3)I +−n −1⎥⎢(x 2+a 2)n −1⎣⎦I n =12(n −1)a 2例8、推导I n=∫tan n xdx 的递推公式.解I n=∫tan n −2x ⋅tan 2xdx =∫tan n −2x ⋅(sec 2x −1)dx=∫tan n −2x ⋅sec 2xdx −∫tan n −2xdx =∫tann −2xd (tan x )−In −2=1tan n −1x −I n −2n −1注应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式.例9、已知f (x )的一个原函数是e −x ,求∫xf '(x )dx解原式=∫xdf (x )=xf (x )−∫f (x )dx =xf (x )−e −x +C例10、求∫x arctan x ln(1+x2)dx解因为∫x ln(1+x 2)dx ==221ln(1+x 2)d (1+x 2)∫211(1+x 2)ln(1+x 2)−x 2+C 221⎤⎡1所以 原式=∫arctan xd ⎢(1+x 2)ln(1+x 2)−x 2⎥2⎦⎣211⎡x 2⎤2222=(1+x )ln(1+x )−x arctan x −∫⎢ln(1+x )−2⎥22⎣1+x ⎦[]=13x arctan x (1+x 2)ln(1+x 2)−x 2−3−ln(1+x 2)+x +C 222[]注本题是三类函数相乘的形式,这类问题大多采用本题的方法.xe arctan xdx 例11、求∫2(1+x )解令x =tan t ,dx =sec 2tdttan t ⋅e t sec 2tdt =∫sin t cos te t dt 原式=∫4sec te arctan x (x 2+x −1)11t t +C =∫sin 2te dt =e (sin 2t −cos 2t )+C =25(1+x )210x 2arctan xdx 例12、求∫21+x 解原式=∫(1−11=−)arctan xdx arctan xdx ∫∫1+x 2arctan xdx 1+x 211=x arctan x −ln(1+x 2)−(arctan x )2+C22arcsin x 1+x 2⋅dx 例13、求∫22x 1−x 解令x =sin t ,arcsin x =t ,dx =cos tdt ,t (1+sin 2t )t cos ⋅tdt = 原式=∫∫sin 2tdt +∫tdt sin 2t cos t=td (−cot t )+∫121t=−t cot t +∫cot tdt +t2221=−t cos t +ln |sin t |+t 2+C21−x 21=−arcsin x +ln |x |+(arcsin x )2+Cx 2注直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用.五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分:(1)∫Adx =A ln |x −a |+C x −a−AA 1dx =+C (n ≠1)n n −1(x −a )n −1(x −a )(2)∫(3)∫dx dx dx =∫⎡p 4q −p 2⎤n(x 2+px +q )n 2⎢(x +)+⎥24⎣⎦p令x +=u24q −p 2令=a 4=du 22n∫(u +a )2(4)∫(x +a )dx 11p dx()dx a =−+−,其2n 2n −12n∫(x +px +q )2(n −1)(x +px +q )2(x +px +q )中p 2−4q <0.这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的.例1、求∫dx2x −2x +31dx d (x −1)x −1arctan ==+C(x −1)2+2∫2+(x −1)222解原式=∫x 2+5x +4例2、求∫4dx 2x +5x +4x 2+4x解原式=∫2dx +5dx222∫(x +1)(x +4)(x +1)(x +4)dx 5dx 25112=∫2arctan x ()dx +∫2=+−222∫x +12(x +1)(x +4)6x +1x +45x 2+1+C=arctan x +ln 26x +4本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,x 2+5x +4Ax +B Cx +D 设4=2+2,通分后应有2x +5x +4x +1x +4x 2+5x +4=(Ax +B )(x 2+4)+(Cx +D )(x 2+1)得A +C =0,B +D =0,4A +C =5,4B +D =4比较等式两端x 的同次幂的系数,55由此,A =,B =1,C =−,D =−1335⎡5⎤−−+11x x ⎢3⎥5x 2+13+2+arctan x +C 故原式=∫⎢2⎥dx =ln 2x +4⎥6x +4⎢x +1⎣⎦例3、求∫解设xdx3x −1x A Bx +C2=+,通分后应有x =A (x +x +1)+(Bx +C )(x −1)32x −1x −1x +x +1比较等式两端x 的同次幂的系数,得A +B =0,A −B +C =1,A −C =0,由此,111A =,B =−,C =333⎡1⎤x −1故原式=∫⎢dx −⎥2⎣3(x −1)3(x +x +1)⎦1d (x +)1dx 12x +112dx +∫=∫−∫23x −16x +x +12(x +1)2+324(x −1)212x +11=ln 2+arctan +C 6x +x +133例4、求∫dx24x (1−x )(x 2+1)−x 211解原式=∫2dx dx =−∫x 2(1−x 2)∫(1−x 2)(1+x 2)dx x (1−x 4)=∫(11111+−+)dx ()dx x 21−x 22∫1−x 21+x 211111=−+∫−dx dx 22∫21+x x 21−x 111+x 1−arctan x +C=−+ln x 41−x 2注:本题若用待定系数法,应当将被积函数分解为A B C D Ex +F11==++++x 2(1−x 4)x 2(1−x )(1+x )(1+x 2)x x 21−x 1+x 1+x 2然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.x 11dxdx 例5、求∫8x +3x 4+3解令x 4=u ,则du =4x 3dx ,于是,u 21411−原式=∫2du =∫(1+)du u +1u +24u +3u +241x 41=(u +ln |u +1|−4ln |u +2|+C )=+ln(1+x 4)−ln(x 4+2)+C 444x 5例6、求∫dx23(2x +3)解令2x 2+3=t ,x 2=t −3,4xdx =dt ,从而,2(t −3)21169原式=∫dt =(−2+3)dt 3∫4⋅4t 16t t t 169169(ln |t |+−2)+C =[ln |2x 2+3|+2−]+C 221616t 2t 2x +32(2x +3)=x 4dx 例7、求∫4x +5x 2+4x 4−(5x 2+4)解4=1+4x +5x 2+4x +5x 2+4−(5x 2+4)A 1x +B 1A 2x +B2设4=2+2,通分后应有x +5x 2+4x +1x +4−(5x 2+4)=(A 1x +B 1)(x 2+4)+(A 2x +B 2)(x 2+1)116由此,A 1=0,B 1=,A 2=0,B 2=−,故33⎡18116⎤xdx −原式=∫⎢1+arctan arctan =x +x −+C ⎥223(1)3(4)++x x 332⎣⎦例8、求∫dx 102x (x +1)x 10+1−x 10x 911==−10解由于102102102x (x +1)x (x +1)x (x +1)(x +1)1x 9x 9=−10−102x (x +1)(x +1)⎤⎡1x 9x 91d (x 10+1)1d (x 10+1)dx =ln |x |−∫10原式=∫⎢−10−∫10−102⎥2x x x (1)(1)10x +110(x +1)++⎦⎣111x 10110=ln |x |−ln(x +1)++C =ln ++C10x 10+110(x 10+1)1010(x 10+1)注对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分∫R (sin x ,cos x )dx 可通过万能代换x化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,2然后再求解.t =tan 例1、求∫dx4sin x cos xsin 2x +cos 2x sin x dx dx dx =+解原式=∫442∫∫sin x cos x cos x sin x cos x=−∫=sin x dx1d (cos x )dx ++∫cos 2x ∫sin xcos 4x x 111d (cos x )x −+ln |tan |=++ln |tan |+C 3cos 3x ∫cos 2x 23cos 3x cos x 2例2、求∫1+sin xdxx x x x +cos 2+2sin cos dx2222解原式=∫sin 2=∫(sin x x x x x x+cos )2dx =∫(sin +cos )dx =−2cos +2sin +C222222例3、求∫dx2sin x −cos x +5x 2t 1−t 22dt,cos x ,dx ==,于是解令t =tan ,则sin x =22221+t 1+t 1+t x ⎞⎛3tan +1⎟⎜11dt ⎛3t +1⎞2⎟+C 原式=∫2arctan ⎜arctan ⎜=⎟+C =3t +2t +2555⎜⎟⎝5⎠⎜⎟⎝⎠例4、求∫sin xdx 1+sin xsin x (1−sin x )sin x 1−cos 2xdx =∫dx −∫dx 解原式=∫cos 2x cos 2x cos 2x=1−tan x +x +C cos xsin xdx sin x +cos x1sin x +cos x +sin x −cos x 1⎛sin x −cos x ⎞dx =⎜1+⎟dx ∫∫2sin x +cos x 2⎝sin x +cos x ⎠例5、求∫解原式==11−d (sin x +cos x )1x +∫=(x −ln |sin x +cos x |)+C 22sin x +cos x 2例6、求∫sin 5x cos xdx解原式=111[sin 4x +sin 6x ]dx =−cos 4x −cos6x +C 2∫812注积化和差公式1sin αx ⋅cos βx =[sin(α+β)x +sin(α−β)x ]21sin αx ⋅sin βx =[cos(α−β)x −cos(α+β)x ]21cos αx ⋅cos βx =[cos(α+β)x +cos(α−β)x ]2例7、求∫dx2(2+sin x )cos x解令sin x =t ,cos xdx =dt1(2+t 2)+(1−t 2)dt =于是原式=∫dt(2+t 2)(1−t 2)3∫(2+t 2)(1−t 2)=1dt 111+t 1dt tln +=+arctan()+C 22∫∫31−t 32+t 61−t 32211+sin x 1sin xarctan(=ln +)+C 61−sin x 322注形如∫R (sin x ,cos x )dx 的有理函数的积分,一般可利用代换tan 为有理函数的积分.(i) 若R (−sin x ,cos x )=−R (sin x ,cos x )或R (sin x ,−cos x )=−R (sin x ,cos x )成立,最好利用代换cos x =t 或对应的sin x =t .(ii) 若等式R (−sin x ,−cos x )=R (sin x ,cos x )成立,最好利用代换tan x =t .x=t 化2例8、求∫sin xdx sin 3x +cos 3x解令tan x =t ,则sec 2xdx =dt ,于是t 1(1+t )2−(1−t +t 2)1t +11dt dt =dt =dt −原式=∫1+t 33∫(1+t )(1−t +t 2)3∫1−t +t 23∫1+t 112t −11arctan()−ln |1+t |+C =ln(t 2−t +1)+63332tan x −11tan 2x −tan x +11+arctan()+C =ln 26(1+tan x )33 21。
不定积分例题及参考答案

第4章不定积分习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰★★(5)4223311x x dx x +++⎰ 思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。
解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰思路:分项积分。
《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:高等数学第四章不定积分习题第四章不定积分4 – 1不定积分的概念与性质一.填空题1.若在区间上F?(x)?f(x),则F(x)叫做f(x)在该区间上的一个f(x)的所有原函数叫做f(x)在该区间上的__________。
2.F(x)是f(x)的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为d(arcsinx)?1?x2dx,所以arcsinx是______的一个原函数。
4.若曲线y=?(x)上点(x,y)的切线斜率与x成正比例,并且通过点A(1,6)和B(2,-9),则该曲线方程为__________ 。
二.是非判断题1.若f?x?的某个原函数为常数,则f?x??0. [ ] 2.一切初等函数在其定义区间上都有原函数. [ ] 3.3??f?x?dx???f??x?dx. [ ]?4.若f?x?在某一区间内不连续,则在这个区间内f?x?必无原函数. [ ] ?ln?ax?与y?lnx是同一函数的原函数. [ ] 三.单项选择题1.c为任意常数,且F’(x)=f(x),下式成立的有。
(A)?F’(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c;(C)?F(x)dx?F’(x)+c;(D) ?f’(x)dx=F(x) +c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)?0,则下式成立的有。
(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c; (D) F(x)?G(x)=c. 3.下列各式中是f(x)?sin|x|的原函数。
(A) y??cos|x| ; (B) y=-|cosx|;(c)y=??cosx,x?0,cosx?2,x?0;(D) y=??cosx?c1,x?0,cosx?c2,x?0.c1、c2任意常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则
1 2
x2
x
C1
,
x 1
x
1 2
x
2
C2
,
x 1
因 连续 , 利用
得
1 2
C1
1 2
C2
记作
C
得
1 2
1
C1
112121(212x(xx221C)12x2x)21C212C, C,C,,
x 1 x 1
例
9. 设
为
的原函数, 且
求
解: 由题设 F(x) f (x), 则
e 2x
1 2
e
2x
6x
1 4
e
2x
60
1 8
e2x
1 16
e
2x
原式
ห้องสมุดไป่ตู้
e2 x
1 2
(
x3
x
2)
1 4
(3x2
1)
1 8
6
x
1 16
6
C
1 8
e2
x
(4x3
6x2
2x
7)
C
说明: 此法特别适用于 如下类型的积分:
Pn
(
x)sienkax x
定都能积出. 例如 ,
1 k 2 sin2 x dx (0 k 1),
例10. 求
dx
xx
x.
1 e2 e3 e6
x
解:
令 t e6 , 则
x 6lnt ,
dx
6 t
d
t
原式 6
(1
t3
dt t
2
t)
t
6
dt (t 1)(t 2 1)t
32) x d
(
2 3
)
2
x
ax dx
a
x
ln
a
dx
1
ln
2 3
d (32) x 1 (32)2 x
arctan(
2 3
)x
C
ln 2 ln3
例2. 求
解:
原式
[ln(x
1
x2
1
) 5]2
d [ ln(x
1 x2 ) 5]
2 ln(x
1
x2
)
解: 原式 arctan exd ex
ex arctan ex
e
x
ex 1 e2x
dx
ex arctan ex
(1
e2x ) 1 e2x
e2x
dx
e
x
arctan
e
x
x
1 2
ln
(1
e2
x
)
C
例6. 求
解: 取
x3 x 2 3x2 1
例4. 设
求积分
解:
令 x y t, 即 y xt
x
t
t
2
3
, 1
y
t
2
t
, 1
而
dx
t 2 (t (t 2
2 3) 1) 2
d
t
原式
t
t
2
3
1 1
t
3t 2
1
t 2 (t (t 2
2
3) 1)2
dt
1 2
ln
(x
y)2
1
C
例5. 求
习题课
第四章
不定积分的计算方法
一、 求不定积分的基本方法 二、几种特殊类型的积分
一、 求不定积分的基本方法
1. 直接积分法 通过简单变形, 利用基本积分公式和运算法则 求不定积分的方法 .
2. 换元积分法
第一类换元法
第二类换元法 (代换: x (t) )
注意常见的换元积分类型, 如掌握 法P205~P206 公式(16) ~(24)的推导方
dx
cos ax
例7. 证明递推公式
证: In tann2 x (sec2 x 1) dx
tann2 x d(tan x) In2
tann1 x n 1
In2
注:
或
例8. 求
解: 设 F(x) x 1 x 1, x 1
1 x , x 1
5
3 2
C
3
分析:
d [ ln(x
1 x2 ) 5]
(1
2
2x 1
x
2
)
dx
x 1 x2
dx 1 x2
例3. 求
解:
x 2sin x cos x
原式
2 2 cos2 x
2 dx
2
x
d
tan
x 2
tan
x 2
dx
x tan x C 2
分部积分
3. 分部积分法
u vdx u v uv dx
使用原则:
1) 由 v 易求出 v ;
2) uv dx 比
好求 .
一般经验: 按“反, 对, 幂, 指 , 三” 的顺
序,
排前者取为 u , 排后者取为 v .
计算格式: 列表计算
多次分部积分的 规 律
u v(n1) dx u v(n) uv(n) dx
a cos x bsin x
I2
cos x dx . a cos x b sin x
a a
cos cos
x x
∴
原式
dx
2
d(cos x sin x) cos x sin x
x 2ln cos x sin x C
说明: 此技巧适用于形为 a cos x b sin x dx 的积分. c cos x d sin x
例12. 求 I1 解:因为
sin x dx 及
u(k)
u
u u
u(n) u(n1)
v(n1k ) v(n1) v(n) v(n1)
(1)n (1)n1
v v
特别: 当 u 为 n 次多项式时, u(n1) 0,计算大为简便 .
例1. 求
解: 原式
2x3x 32 x 22
x
dx
1
(
dt
6ln t 3ln t 1 3 ln(t2 1) 3arctan t C 2
例11. 求
解: 令 3cos x sin x A(cos x sin x) B(cos x sin x)
令 a cos x(AbsinBx)cos x (A B)sin x 比较同类项A系(c数cos xAAdBsBinx3)1,B故(cAcos1x,Bdsi2n x)
u v(n) uv(n1) uv(n1) dx u v(n) uv(n1) uv(n2) uv(n2) dx
u v(n) uv(n1) uv(n2) (1)n1 u(n1)v dx
快速计算表格:
故
即 又
, 因此
故
二、几种特殊类型的积分
1. 一般积分方法
指数代换
指数函数有理式
有理函数
分解
万能代换 根式代换
三角函数有理式
三角代换
多项式及 部分分式之和
简单无理函数
2. 需要注意的问题 (1) 一般方法不一定是最简便的方法, 要注意综合
使用各种基本积分法, 简便计算 . (2) 初等函数的原函数不一定是初等函数 , 因此不一