中考数学几何五大模型

合集下载

中考几何专题常考五大全等模型

中考几何专题常考五大全等模型

EC OE
ED OE
,
∴Rt△COE≌Rt△DOE(HL).
∴OC=OD;
第3题图
专题四
五大常考的全等模型
(2)∵Rt△COE≌Rt△DOE, ∴∠CEF=∠DEF. 在△ECF和△EDF中,
CE DE CEF DEF , ∴ E△FECFE≌F△EDF(SAS).
专题四
五大常考的全等模型
AG AE GAF EAF , AF AF
∴△AGF≌△AEF(SAS).
∴EF=GF. ∵GF=DG+DF=BE+DF, ∴BE+DF=EF.
例6题解图
专题四
五大常考的全等模型
基本模型
图示
等边三角 形含半角 (∠BDC=120°)
等腰直角三 角形含半角
专题四
五大常考的全等模型
图示
正方形含半角
专题四
五大常考的全等模型
三角形全等属于中考的必考知识,为了在复习中更好掌握和快速解题 达到高分,本节专题把大常考的模型总结如下
模型一 平移模型 模型二 对称模型 模型三 三垂直型 模型四 旋转模型 模型五 半角模型
专题四
五大常考的全等模型
模型一 平移模型
例 1 如图,已知BC∥EF,∠B=∠DGC,点D、C在AF上,且AB= DE.求证:AD=CF. 【找一找】
专题四
五大常考的全等模型
基本模型
图示
模型 总结
有三个直角,常利用同角(等角)的余角相等证明角相等.
专题四
五大常考的全等模型
针对训练
4. 在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,
BE⊥MN于点E.求证:DE=AD+BE.

几何五大模型

几何五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△五大模型1S 2S图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理")①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方.五、燕尾定理模型S △ABG :S △AGC =S △BGE :S △EGC =BE :EC S △BGA :S △BGC =S △AGF :S △FGC =AF :FC S △AGC :S △BCG =S △ADG :S △DGB =AD :DB典型例题精讲例1 一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的0.15倍,黄色三角形的面积是21平方厘米。

中考数学几何模型大汇总

中考数学几何模型大汇总

中考数学几何模型大汇总
当涉及到中考数学几何模型时,以下是一些常见的模型大汇总:
1. 三角形模型:
-等边三角形:三边长度相等的三角形。

-等腰三角形:两边长度相等的三角形。

-直角三角形:一个角度为90度的三角形。

-平面内角和为180度。

2. 四边形模型:
-正方形:四边相等且角度为90度的四边形。

-长方形:相对边相等且角度为90度的四边形。

-平行四边形:对边平行的四边形。

-梯形:有一对平行边的四边形。

-菱形:四边相等的四边形。

3. 圆模型:
-圆的面积和周长计算。

-弧长和扇形面积计算。

4. 空间几何模型:
-立体图形的表面积和体积计算:
-立方体:六个面都是正方形。

-直方体:六个面都是矩形。

-圆柱体:底面是圆形,侧面是矩形。

-圆锥体:底面是圆形,侧面是三角形。

-球体:所有点到球心的距离相等。

5. 相似模型:
-相似三角形:具有相同形状但不同大小的三角形。

-相似多边形:具有相同形状但不同大小的多边形。

6. 坐标几何模型:
-直角坐标系:平面上的点通过x轴和y轴的坐标进行定位。

-坐标点之间的距离和斜率计算。

这只是一些中考数学几何模型的大致汇总,其中还有很多其他模型和概念。

掌握这些模型和概念将有助于解决与几何相关的中考数学问题。

中考数学几何模型大汇总

中考数学几何模型大汇总

中考数学几何模型大汇总下面是中考几何模型的大汇总:1、平面直角坐标系模型平面直角坐标系模型中,我们可以使用坐标系来描述平面上图形和点的位置关系。

这个模型常用于图形的平移、旋转、对称等问题。

2、矩形模型矩形模型用于讨论四边形的性质、面积、周长等问题。

在这个模型中,我们将四边形近似为一个矩形,从而使问题更易解决。

3、三角形模型三角形模型是中考中最常见的模型之一、它可以用于计算三角形的面积、周长,讨论三角形的性质。

在这个模型中,我们通常使用海伦公式、正弦定理、余弦定理等方法来求解。

4、圆形模型圆形模型用于讨论圆、弧、扇形等问题。

在这个模型中,我们通常使用圆的周长、面积公式,以及角度与弧长的关系来进行计算。

5、球体模型球体模型用于讨论球体的体积、表面积以及球冠、球缺等问题。

在这个模型中,我们通常使用球的体积、表面积公式,以及球冠、球缺的体积和表面积公式来求解。

6、棱锥模型棱锥模型用于讨论棱锥的体积、表面积、正棱锥、锥台等问题。

在这个模型中,我们通常使用棱锥的体积、表面积公式,以及正棱锥、锥台的体积和表面积公式来求解。

7、棱柱模型棱柱模型用于讨论棱柱的体积、表面积、正棱柱、柱台等问题。

在这个模型中,我们通常使用棱柱的体积、表面积公式,以及正棱柱、柱台的体积和表面积公式来求解。

8、立体几何模型立体几何模型用于讨论正方体、长方体、正六面体等立体图形的体积、表面积、对角线等问题。

在这个模型中,我们通常使用立体图形的体积、表面积公式,以及对角线长的求法来计算。

总之,几何模型是中考数学中重要的一环,通过利用这些模型,我们可以更好地理解几何知识,更好地应对考试。

初中几何五大模型,学会轻松搞定初中几何,考试不再愁

初中几何五大模型,学会轻松搞定初中几何,考试不再愁

初中几何五大模型,学会轻松搞定初中几何,考试不再愁初二的同学(即将初二的同学)注意了:到了初二,几何学可以说是初二数学中最重要的一大板块了。

对于整个的初中数学,甚至中考数学而言,也是至关重要的一部分!因此学好几何,就显得尤为重要了!在之前,我们就曾经分享过一篇关于几何辅助线的文章:今天,我们接着为大家分享几何中常见常考的五大模型。

希望对您的日常学习已经各种考试有所帮助!一:共角定理(鸟头定理)即在两个三角形中,它们有一个角相等(或互补),则他们就是共角三角形。

它们的面积之比,就是对应角(相等角或互补角)两夹边的乘积之比。

(这一定理不建议记,符合这种定理的直接应用,不符合的,还不如直接推导的思路)1.等底等高的两个三角形面积相等:2.两个三角形(底)高相等,面积之比等于高(底)之比:3.在一组平行线之间的等积变形,如图:AB平行于CD,则S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。

三:梯形蝴蝶定理1.S2=S4(因为S△ABC=S△DBC,所以S△ABC-S△OBC=S△DBC-S△OBC),S1:S3=a:b2.S1:S3:S2 :S4=a:b:ab:ab3.梯形S的对应数为(a b)在任意四边形中,同样也有蝴蝶定理,如下图:1.S1:S2=S4:S3或者S1×S3=S4×S2;2.AO:OC=(S1 S2):(S4 S3)四:相似三角形定理1.相似三角形:形状相同,大小不相等的两个三角形相似2.寻找相似模型的大前提是平行线:平行于三角形一边的直线和其它两边或两边延长线相交,所构成的三角形与原三角形相似。

3.相似三角形性质:①相似三角形的一切对应线段(对应高,对应边)的比等于相似比;②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方。

相似模型大致分为金字塔模型,沙漏模型这两大类,注意这两大类都含有 BC平行DE这样一组平行线!第四定理练习:在等腰直角三角形ABC中,D是BC上的一点,BD:BC=2:5,而四边形ADEF是正方形,如果S△ABC=98,求S正方形ADEF?五:燕尾定理性质:1.S△ABG:S△ACG=S△BGE:S△CGE=BE=CE2.S△BGA:S△BGC=S△GAF:S△GCF=AF:CF3.S△AGC:S△BGC=S△AGD:S△BGD=AD:BD(这就是燕尾模型)。

中考几何综合压轴题十大模型

中考几何综合压轴题十大模型

中考几何综合压轴题十大模型包括:
1. “12345”模型:适用于和为30度、60度的证明,以及倍长中点的相关证明。

2. “半角”模型:说明上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

3. “角平分线”模型:角平分线定理的应用,以及角平分线+垂线=等腰三角形,角分线+平行线=等腰三角必呈现等的应用。

4. “手拉手”模型:适用于两个等腰三角形,顶角相等,顶点重合的情况,可以证明三角形全等,手的夹角相等,顶点连手的交点得平分。

5. “将军饮马”模型:最短路径问题,适用于解决两点之间距离最短的问题。

6. “中点”模型:中点旋转的模型,可以解决旋转全等问题。

7. “垂直”模型:垂直也可以做为轴进行对称全等。

8. “旋转全等”模型:通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

9. “自旋转”模型:遇60度旋60度,造等边三角形;遇90度旋90度,造等腰直角。

10. “共旋转”模型:通过“8”字模型可以证明。

以上就是中考几何综合压轴题的十大模型,希望对你有所帮助。

初中所有几何模型

初中所有几何模型

初中所有几何模型
初中几何中常见的模型包括但不限于以下几种:
1. 手拉手模型:这种模型通常涉及到两个三角形,其中一个三角形的顶点与另一个三角形的对应顶点相连。

根据角度和边的关系,可以证明这两个三角形是相似的或全等的。

2. 倍长中线模型:如果一个中线长度超过另一边的一半,则可以通过倍长中线来构造新的三角形,从而利用中线性质进行证明。

3. 平行线模型:通过平行线的性质,可以证明一些角的关系,或者利用平行线的传递性来证明一些线段的比例关系。

4. 角平分线模型:利用角平分线的性质,可以证明一些角或者线段的比例关系。

5. 直角三角形模型:通过直角三角形的性质,可以证明一些角或者线段的关系。

6. 对角线模型:利用对角线的性质,可以证明一些线段的比例关系,或者通过构造新的三角形来证明一些结论。

7. 旋转模型:通过旋转图形,可以证明一些结论或者找到一些新的等量关系。

8. 相似三角形模型:通过相似三角形的性质,可以证明一些角或者线段的比例关系。

9. 特殊四边形模型:对于一些特殊的四边形,如平行四边形、矩形、菱形等,可以利用它们的性质来证明一些结论。

以上是一些常见的初中几何模型,它们都是基于几何的基本性质和定理构建的。

掌握这些模型可以帮助学生在解决几何问题时更加高效和准确。

几何的五大模型

几何的五大模型
解析:
利用燕尾定理,连接FC,BFD面积/BFC面积=DE/EC=1/2,如果BFD面积为1份的话,BFC为2份;又DF=FG,所以BFG面积与BFD面积相等也是1份,故FGC面积是2-1=1份,那么BG=GC;再利用燕尾定理,DFC的面积与DFB相等也是1份,BDC的面积是4份=6,故一份面积是6/4=1.5,阴影部分是1+2/3=5/3份,面积是1.5×5/3=2关系是一样的。)
四、相似三角形模型
相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型
解析:
因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50厘米2。
几何的五大模型
一、等积变换模型
1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型
显然,最大的三角形的面积为21公顷.
解析:
如图所示,设上底为a,则下底为2a,梯形的高为h,则EF= (a+2a)= ,所以,
。所以
阴影部分
= 即 ,梯形 ABCD的面积=
如下图所示,为了方便叙述,将某些点标上字母.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等积变换模型
⑴等底等高的两个三角形面积相等;
其它常见的面积相等的情况
⑵两个三角形高相等,面积比等于它们的底之比;
两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =
⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;
反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;
⑸三角形面积等于与它等底等高的平行四边形面积的一半;
二、鸟头定理(共角定理)模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,
五大模型
E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△
图1 图2
三、蝴蝶定理模型
任意四边形中的比例关系(“蝴蝶定理”):
①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++
蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)
①2213::S S a b =
②221324::::::S S S S a b ab ab =;
③梯形S 的对应份数为()2a b +。

四、相似模型
相似三角形性质:
金字塔模型 沙漏模型
①AD AE DE AF AB
AC
BC
AG
===;
②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:
⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;
⑵相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型
S △ABG :S △AGC =S △BGE :S △EGC =BE :EC S △BGA :S △BGC =S △AGF :S △FGC =AF :FC S △AGC :S △BCG =S △ADG :S △DGB =AD :DB
典型例题精讲
例1 一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的0.15倍,
黄色三角形的面积是21平方厘米。

问:长方形的面积是__________平方厘米。


1图
例2 如图,三角形田地中有两条小路AE 和CF ,交叉处为D ,张大伯常走这两条小
路,他知道DF =DC ,且AD =2DE 。

则两块地ACF 和CFB 的面积比是__________。


2图
【举一反三】两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三
角形的面积分别是3,7,7,则阴影四边形的面积是多少?

一反三图
【拓展】如图,已知长方形ADEF 的面积16,三角形ADB 的面积是3,三角形ACF 的
面积是4,那么三角形ABC 的面积是多少?

展图
例3 如图,将三角形ABC 的AB 边延长1倍到D ,BC 边延长2倍到E ,CA 边延长3
倍到F 。

如果三角形ABC 的面积等于1,那么三角形DEF 的面积是__________。


3图
【拓展】如图,在△ABC 中,延长AB 至D ,使BD =AB ,延长BC 至E ,使12
CE BC ,F
是AC 的中点,若△ABC 的面积是2,则△DEF 的面积是多少?

展图
例4 如图,在△ABC中,已知M、N分别在边AC、BC上,BM与AN相交于O,若△AOM、△ABO和△BON的面积分别是3、2、1,则△MNC的面积是__________。


4图
【秒杀题】四边形ABCD的对角线AC与BD交于点O(如图所示)。

如果三角形ABD
,且AO=2,DO=3, 那么CO的长度是的面积等于三角形BCD的面积的1
3
DO的长度的__________倍。

秒杀题图
例5 如图,四边形EFGH的面积是66平方米,EA=AB,CB=BF,DC=CG,HD=DA,求四边形ABCD的面积。

例5图
例6 如右图长方形ABCD中,EF=16,F=9,求AG的长。

例6图
【铺垫】图中四边形ABCD是边长为12cm的正方形,从G到正方形顶点C、D连成
一个三角形,已知这个三角形在AB上截得的EF长度为4cm,那么三角形
GDC的面积是多少?
铺垫图
例7 如图,长方形ABCD中,E为AD中点,AF与BE、BD分别交于G、H,已知AH =5cm,HF=3cm,求AG。

例7

例8 如右图,三角形ABC中,BD∶DC=4∶9,CE∶EA=4∶3,求AF∶FB。


8图
【拓展】如图,三角形ABC的面积是1,BD=DE=EC, CF=FG=GA,三角形ABC被分成9部分,请写出这9部分的面积各是多少?

展图
例9 如右图,△ABC中,G是AC的中点,D、E、F是BC边上的四等分点,AD与BG 交于M,AF与BG交于N,已知△ABM的面积比四边形FCGN的面积大7.2平方
厘米,则△ABC的面积是多少平方厘米?
例9图
例10 如图,在正方形ABCD中,E、F分别在BC与CD上,且CE=2BE,CF=2DF,连接BF,DE,相交于点G,过G作MN,PQ得到两个正方形MGQA和正方形
PCNG,设正方形MGQA的面积为S1,正方形PCNG的面积为S2,则S1:S2=______。

例10图。

相关文档
最新文档