二次函数增减性精编版
考点12 二次函数(精讲)(解析版)

考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。
而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。
当x =–2b a 时,y 最大值=244ac b a-。
最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。
二次函数增减性问题

二次函数的增减性问题教学目标:1、 进一步理解二次函数图像的性质;2、 通过数形结合梳理、体会二次函数的增减性;3、 体会数学思想方法在解决问题中的应用。
一、自主学习如图,抛物线y=2x +2x-3与x 轴交与A 、B 两点,与y 轴交与点C ,顶点为D 。
(1)请你描述抛物线y=2x +2x-3的增减性。
(2)当x ≥1时,y 随x 的增大而增大吗?当x ≥-3呢?(3)当x ≥m 时,y 随x 的增大而增大,求m 的取值范围。
二、精讲点拨如图,在平面直角坐标系中,抛物线1y =41x(x-4)与直线2y =x 相交于O 、A 两点,点C 是抛物线上一动点,过C 点作x 轴的垂线交直线2y =x 于点D ,则线段CD 的长度随点C 的运动而变化。
(1)若点A 的横坐标为a ,求a 的值。
(2)当0≤x ≤a 时,求线段CD 的最大值。
(3)请你描述线段CD 的长度的变化情况。
(4)若当m ≤x ≤n 时,线段CD 的长度随x 的增大而减小;当x ≥n 时,线段CD 的长度随x 的增大而增大。
求m 、n 的值或取值范围。
三、合作探究如图,在平面直角坐标系中,抛物线1y =x(x-t)与直线2y =tx 相交于O 、A 两点(1)若点A 的横坐标为a ,请用含t 的式子表示a 。
(2)当0≤x ≤a 时,求|2y -1y |的最大值。
(3)请你描述|2y -1y |的值随x 的变化情况。
(4)若当m ≤x ≤n 时,|2y -1y |的值随x 的增大而减小;当x ≥n 时,|2y -1y |的值随x 的增大而增大。
求m 、n 与t 的关系。
四、有效训练(2013宜昌)如图1,平面直角坐标系中,等腰直角三角形的直角边BC 在x 轴正半轴上滑动,点C 的坐标为(t ,0),直角边AC =4,经过O ,C 两点做抛物线1y =ax(x -t)(a 为常数,a >0),该抛物线与斜边AB 交于点E ,直线OA :2y =kx(k 为常数,k >0)(1)填空:用含t 的代数式表示点A 的坐标及k 的值:A________,k =________;(3)直线OA 与抛物线的另一个交点为点D ,当t ≤x ≤t +4,|1y -2y |的值随x 的增大而减小,当x ≥t +4时,|1y -2y |的值随x 的增大而增大,求a 与t 的关系式及t 的取值范围.。
二次函数增减性讲义

1
二次函数2y ax
bx c =++的性质——增减性 函数的增减性的识别,对于初中学生来说,既抽象又枯燥,而且难以理解。
那么怎样才能真
正理解它呢?
一、导入 如图所示,当人从A 点到B 点时,是在爬上坡,
在这个过程中,此人水平方的前进距离x 在逐渐增
加,同时他离地面的高度y 也在不断增加。
由图可知,人在上坡时,爬得越高,他离开起
点的水平距离也越大,即高度y 随着水平距离x 的
增加而增加,到达坡顶时,高度y 值达到最大。
不难知道,当人越过B 点向C 点进发时,开始
走下坡,这时人离开地面的高度(y )随着水平距离
x 的增加而降低。
如果我们在图中建立如图所示的直角坐标系则水平距
离x 、高度y 刚好是此人爬坡时所在位置的纵横坐标,可
知爬上坡时y 随x 的增大而增大;走下坡时,y 随x 的增
大而减小。
由上可知,若一个函数的图象形状呈上坡时,图象上
的点的纵坐标的 变化规律是y 随横坐标x 的增大而增大,
反之,函数图象呈下坡时,y 随x 的增大而减小。
(附:由于实际爬坡时,去时是上坡,回来时则为下坡,易混淆,为了避免混淆,我们在坐标系里对“上、下坡”概念作统一规定:函数图象一律由“从左向右”这个方法来判定“上、下坡”。
如图2中,AB 坡始终为上坡,BC 坡为下坡)
二、二次函数增减性性质讲解
1、如图3,是函数y=-2x 2+4x-1的函数图象,由上
法可知,从左往右看,在对称轴左侧图象呈上坡状,右侧
呈下坡状。
那么,对称轴左侧图象上的点应是y 随x 的增
2。
2024年中考数学复习课件---微专题2-二次函数的增减性、最值问题全

∴m2-2m-3=2m,解得m1=2+ (舍),m2=2- .∴m=2- ;
②当m-1>1时,m>2,x=m-1时,y取最小值,
∴(m-1)2-2(m-1)-3=2m,解得m1=0(舍),m2=6.∴m=6;
③当m-1≤1≤m时,1≤m≤2,y=-4为最小值,∴-4=2m,解得m=-2(舍).
数).当自变量x的值满足-1≤x≤2时,与其对应的函数值y随x的
增大而增大,则m的取值范围是 m≤-1
.
6
7
综上所述,m=2- 或6.
3
4
5
微专题2 二次函数的增减性、最值问题
类型三
返回类型清单
对称轴不确定,求最值或取值范围
方法指导Βιβλιοθήκη 先用含字母的式子表示出抛物线的对称轴,然后分三种情况讨论:
①当对称轴大于x取值范围的最大值时;
②当对称轴小于x取值范围的最小值时;
③当对称轴位于x取值范围内时.
6
7
微专题2 二次函数的增减性、最值问题
函数y=ax2-2ax+3的图象上.当x=1时,y<3,则y1,y2,y3的大小比较正
确的是( C
A.y1<y2<y3
C.y2<y1<y3
)
B.y1<y3<y2
D.y2<y3<y1
1
2
微专题2 二次函数的增减性、最值问题
返回类型清单
2.已知二次函数y=ax2+4ax+c(a<0)的图象经过A(-5,y1),B(-3,y2),
微专题2
二次函数的增减性、最值问题
微专题2
高中数学同步学案 二次函数的图象和性质——增减性和最值

1.2.7 二次函数的图象和性质——增减性和最值二次函数的增减性与最值定理定理 二次函数f(x)=ax 2+bx +c(a≠0,x ∈R),当a>0(a<0)时,在区间⎝⎛⎦⎥⎤-∞,-b 2a 上递减(递增),在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上递增(递减),图象曲线开口向上(下),在x =-b 2a 处取到最小(大)值f ⎝ ⎛⎭⎪⎫-b 2a =-Δ4a ,这里Δ=b 2-4ac.试求二次函数y =x 2+2x -3的单调区间和最值.[提示] 在区间(-∞,-1]上是减函数,在[-1,+∞)上为增函数,当x =-1时,y 有最小值,y min =-4.二次函数的单调性及应用[例1] 已知函数(1)求这个函数图象的顶点坐标和对称轴; (2)求这个函数的最小值;(3)不直接计算函数值,试比较f(-1)和f(1)的大小. [思路点拨] 配方后确定单调区间,利用单调性求解.[解] 配方,得y =2⎝ ⎛⎭⎪⎫x -342-18.(1)顶点坐标为⎝ ⎛⎭⎪⎫34,-18,对称轴为x =34.(2)因为2>0,所以抛物线开口向上, 所以当x =34时,y min =-18.(3)∵函数y =2x 2-3x +1的对称轴为x =34,∴f ⎝ ⎛⎭⎪⎫34-x =f ⎝ ⎛⎭⎪⎫34+x . ∴f(-1)=f ⎝ ⎛⎭⎪⎫34-74=f ⎝ ⎛⎭⎪⎫34+74=f ⎝ ⎛⎭⎪⎫52.又∵函数f(x)在⎣⎢⎡⎭⎪⎫34,+∞上是增函数,52>1>34,∴f ⎝ ⎛⎭⎪⎫52>f(1),即f(-1)>f(1).借题发挥 配方法是解决二次函数单调性和最值的较好方法,在求函数的最值前往往需要确定函数的单调性.1.函数f(x)=x 2-2ax -3在区间[1,2]上是单调函数的条件是( ) A .a ∈(-∞,1] B .a ∈[2,+∞)C .a ∈[1,2]D .a ∈(-∞,1]∪[2,+∞)解析:选D f(x)=x 2-2ax -3=(x -a)2-a 2-3, 若f(x)=x 2-2ax -3在区间[1,2]上是单调函数, ∴a≤1或a≥2.2.已知函数y =(m 2-3m)xm 2-2m +2是二次函数,则m =________,该函数的值域为________.解析:由题意,得⎩⎪⎨⎪⎧m 2-3m≠0,m 2-2m +2=2,解得⎩⎪⎨⎪⎧m≠0且m≠3,m =0或m =2,所以m =2,所以y =-2x 2.故值域为{y|y≤0}. 答案:2 {y|y≤0}二次函数的最值及应用[例2] 金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大收益是多少元? [思路点拨] 建立二次函数模型求解.[解] (1)当每辆的月租金为3 600元时,未租出的车辆数为3 600-3 00050=12,所以这时租出了100-12=88(辆). (2)设每辆车的月租金定为x 元,则月收益f(x)=⎝ ⎛⎭⎪⎫100-x -3 00050(x -150)-x -3 00050×50 =-150x 2+162x -21 000=-150(x -4 050)2+307 050.∴当x =4 050时,f(x)最大,最大值为307 050.即当每辆车的月租金定为4 050元时,租赁公司收益最大,最大收益为307 050元. 借题发挥 二次函数是我们接触最早的基本初等函数,建立二次函数模型可以解决生活中的最值优化问题,值得注意的是在求二次函数最值时,切记要注意自变量的取值范围.3.某商店已按每件80元成本购进某种上装1000件,根据市场预测,当每件售价100元时,可全部售完,若定价每提高1元时,销售量就减少5件,若要获得最大利润,则销售价应定为( )A .110元B .130元C .150元D .190元解析:选D 设每件涨价x 元,利润函数为: y =(100+x -80)(1000-5x) =(20+x)(1000-5x) =-5x 2+900x +20000.当x =90时,y 取最大值,故销售价定为190元.1.函数y =-x 2+1的单调增区间是( ) A .[0,+∞) B .(-∞,0] C .(0,+∞)D .(-∞,+∞)解析:选B ∵y =-x 2+1为开口向下,对称轴为x =0的抛物线, ∴该函数y =-x 2+1在(-∞,0]上递增.2.函数f(x)=x 2+4ax +2在(-∞,6)内递减,则a 的取值范围是( ) A .[3,+∞) B .(-∞,3] C .[-3,+∞)D .(-∞,-3]解析:选D ∵f(x)=x 2+4ax +2在(-∞,6)内递减, ∴-4a2≥6,即a≤-3.3.若y =-x 2+4x +k 的最大值为2,则k =________. 解析:∵y =-x 2+4x +k=-(x 2-4x +4)+4+k =-(x -2)2+4+k, ∴其最大值为4+k =2,∴k =-2. 答案:-24.已知一次函数y =ax +b 的图象不经过第一象限,且在区间[-2,1]上的最大值和最小值分别为1和-2,求函数f(x)=x 2-ax +b 在[-2,1]上的最大、最小值.解:∵y =ax +b 不经过第一象限,且最大、最小值不等,∴a<0, 从而有y max =-2a +b =1,y min =a +b =-2,∴a =-1,b =-1,即f(x)=x 2+x -1=⎝ ⎛⎭⎪⎫x +122-54.∵x≤-12时,f(x)单调递减,而x≥-12时,f(x)单调递增.∴在[-2,1]上,f(x)max =f(-2)=f(1)=1,f(x)min =f ⎝ ⎛⎭⎪⎫-12=-54.简述二次函数y =ax 2+bx +c(a≠0)的性质函数的图象是一条抛物线,抛物线顶点的坐标是(h,k),抛物线的对称轴是直线x =h,h =-b2a,k =4ac -b24a;当a>0时,抛物线开口向上,函数在x =h 处取最小值k =f(h);在区间(-∞,h]上是减函数,在区间[h,+∞)上是增函数;当a<0时,抛物线开口向下,函数在x =h 处取最大值k =f(h);在区间(-∞,h]上是增函数,在区间[h,+∞)上是减函数.一、选择题1.函数y =x 2-3x +2的单调递减区间为( ) A .[0,+∞) B .[1,+∞) C .[1,2] D .(-∞,32]答案:D2.若f(x)=(m -1)x 2+2mx +3的图象关于y 轴对称,则f(x)在(-3,1)上( ) A .单调递增 B .单调递减 C .先增后减D .先减后增解析:选C ∵f(x)=(m -1)x 2+2mx +3的图象关于y 轴对称 ∴m =0,∴f(x)=-x 2+3, ∴f(x)在(-3,1)上先增后减.3.某商品进货价为每件40元,当售价为50元时,一个月能卖出500件.通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件,商店为使销售该商品的月利润最高,应将每件商品定价为( )A .45元B .55元C .65元D .70元解析:选D 设当商品定价为x 元时,商店的销售利润为y 元,则有 y =(x -40)[500-10(x -50)](x≥50) =(x -40)(1000-10x)=-10x 2+1 400x -40 000(x≥50), ∴当x =70时,y 有最大值.4.函数f(x)=9-ax 2(a>0)在[0,3]上的最大值为( ) A .9 B .9(1-a) C .9-aD .9-a 2解析:选A f(x)=-ax 2+9开口向下,在[0,3]上单调递减,所以在[0,3]上最大值为9. 二、填空题5.用一根长为12 m 的铁丝折成一个矩形的铁框架,则能弯成的框架的最大面积是________. 解析:设矩形一边长为x m, 则另一边长为12-2x2=(6-x) m,∴面积S =x(6-x)=-x 2+6x(0<x<6), ∴当x =3时,S max =-32+18=9. 答案:9 m 26.函数f(x)=x 2+2(a -1)x +2的单调减区间是(-∞,4],则a 的值为________.解析:f(x)=x 2+2(a -1)x +2 =[x +(a -1)]2-(a -1)2+2.∴f(x)的单调递减区间是(-∞,1-a]. 又∵f(x)的单调递减区间是(-∞,4], ∴1-a =4,即a =-3. 答案:-3 三、解答题7.求下列函数的值域: (1)y =x 2-4x +6,x ∈[1,5); (2)y =2x -x -1.解:(1)配方:y =x 2-4x +6=(x -2)2+2. ∵x ∈[1,5),∴如图所示:函数的值域为[2,11). (2)函数的定义域是{x|x≥1}. 令x -1=t,则t≥0,x =t 2+1, ∴y =2(t 2+1)-t =2t 2-t +2,问题转化为y(t)=2t 2-t +2在t ∈[0,+∞)值域的问题.用配方法解决, ∴y =2(t -14)2+158,∵t≥0,如图,则y min =158,∴所求函数的值域为[158,+∞).8.已知f(x)=x 2+ax +3在[-1,1]上的最小值为-3,求a 的值. 解:当-a2>1,即a<-2,y min =f(1)=4+a =-3,∴a =-7. 当-1≤-a2≤1,即-2≤a≤2,y min =f ⎝ ⎛⎭⎪⎫-a 2=12-a 24=-3,∴a =±26(舍去). 当-a2<-1,即a>2时,y min =f(-1)=4-a =-3, ∴a =7.综上可知,a =±7.。
高中各种函数图像和性质(精编版)

高中各种函数图像及其性质一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
(二)一次函数1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴3、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx +b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k不为零) ①k不为零②x指数为1 ③b取任意实数b,0)两点的一条直线,我们称它为一次函数y=kx+b的图象是经过(0,b)和(-k直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.5、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)6、正比例函数和一次函数及性质6、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.8、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.9、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.10、一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bc x b a +-的图象相同.(2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b cx b a +-的图象交点.二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
二次函数的增减性及最值问题.doc(6月25日)
二次函数的增减性及最值问题.doc(6月25日)第一篇:二次函数的增减性及最值问题.doc(6月25日)《二次函数的增减性及最值问题》是一节复习课。
它是人教版九年级上册《二次函数》的章节复习课第三课时。
下面我将从教材的地位与作用、教学任务,教学重难点,学生起点状况,教法学法,教学思想,教学过程设计6个方面来具体说明我对这节课的理解。
一教材的地位与作用《二次函数的增减性及最值问题》是人教版九年级上册《二次函数》的章节复习课第三课时。
二次函数函数的增减性及最值问题是初中数学的重要知识点,在学习有关性质的基础上深入理解函数值与自变量的一对多的问题;同时,二次函数的增减性与最值问题是高中重要的衔接内容。
二教学任务分析我根据《新课标》,结合学生认知水平,将本节课目标制定如下:教学目标:知识目标:理解并掌握以代数为主干的综合题中有关二次函数的增减性及最值问题。
能力目标:培养学生对于含字母的式子的计算能力及用数形结合分析解决函数问题的能力。
提高学生将复杂问题基本化,陌生问题熟悉化的能力。
三教学重难点分析重点:二次函数增减性及最值问题;带字母的计算难点:带字母的计算;二次函数中函数值与自变量之间一对多的问题四学生起点状况分析在此之前,学生已经掌握二次函数图像的性质,并会利用二次函数性质求最值;而且,对于抛物线中的动点问题学生已经掌握较好;同时,对于抛物线中的含动点的三角形面积问题也已经作为专题讲解过。
在此基础上,对于典例中以代数为主的综合题,就可以将重点放在二次函数的性质的综合运用上,不会因为动态三角形面积的计算花过多时间与精力,才能突出本节课重点,同时便于突破难点。
五教法与学法分析教法分析:在学生探究,讨论的基础上,教师充分利用多媒体进行动画演示,适时讲解点拨,学法分析:探究,交流,动画感知,数形结合,知识升华六数学思想方法分析本节课在教学中向学生渗透的数学思想主要有:转化思想、函数思想、数形结合思想等七教学过程设计基于以上对教材特点和学生情况的分析,为能更好的达成教学目标,我在本节课主要安排以下四个环节。
部编数学九年级上册【单元复习】第二十二章二次函数(知识精讲+考点例析+举一反三+实战演练)(解析版)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!【高效培优】2022—2023学年九年级数学上册必考重难点突破必刷卷(人教版)【单元复习】第二十二章二次函数(知识精讲+考点例析+举一反三+实战演练)温馨提示:一分努力勤奋一份收获,必考重难点突破是培优最佳途径!知识精讲第二十二章二次函数一、二次函数的定义:1.定义:一般地,如果是常数,,那么叫做的二次函数.2.二次函数的性质(1)抛物线的顶点是坐标原点,对称轴是轴.(2)函数的图像与的符号关系.①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点.(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为.二、二次函数的解析式①一般式:(a、b、c为常数),则称y为x的二次函数。
2024年中考数学总复习第一部分中考考点探究微专题(三)二次函数的对称性、增减性问题
-4<a<1
.
类型三
对称轴已知,利用所给范围求参数的值或取值范围
典例6 已知二次函数y=ax2-2ax+3(a>0),当0≤x≤m时,3-
a≤y≤3,则m的取值范围是(
A. 0≤m≤1
B. 0≤m≤2
C. 1≤m≤2
D. m≥2
C )
典例7 已知二次函数y=x2-2x+2,当t≤x≤t+1时,函数的最小值为t,
y2,y3的大小关系为(
B )
A. y1>y2>y3
B. y2>y1>y3
C. y3>y1>y2
D. y2>y3>y1
典例3 已知二次函数y=ax 2 +bx+5,函数y与自变量x的部分对应值
如下表.
x
…
-1
…
2
…
y
…
10
…
1
…
设m≥2,且A(m,y1),B(m+1,y2)两点都在该函数的图象上,试
第一部分
福建中考考点探究
微专题(三)
三 函 数
二次函数的对称性、增减性问题
方法指导:将抛物线y=ax2+bx+c(a≠0)上任意一点到其对称轴的距
离记为d.结论:d相等,y的值相等;a>0时,d越大,y的值越大,d越
小,y的值越小;a<0时,d越大,y的值越小,d越小,y的值越大.
如图①②,当d2=d3时,点B,C关于抛物线的对称轴对称,yB=yC;如
y3)都在该抛物线上,则y1,y2,y3的大小关系是(
A. y3>y1>y2
B. y3<y2<y1
C. y3>y2>y1
D. y3<y1<y2
D
)
典例2 在抛物线y=ax2-2ax-3a(a≠0)上有A(-0.5,y1),B(2,
二次函数系数之间关系及增减性 教师版
二、知识点回顾二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0; 1个交点,b2-4ac=0;没有交点,b2-4ac<0.(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.当x=2时,可确定4a+2b+c的符号,当x=-2时,可确定4a-2b+c的符号……以此类推。
(6)由对称轴公式x=,可确定2a+b的符号.二、知识梳理+经典例题1、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>02、已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤(1)(2)3、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为( 12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、44、已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A、ac>0B、方程ax2+bx+c=0的两根是x1=-1,x2=3C、2a-b=0D、当x>0时,y随x的增大而减小5、已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,有下列结论:①abc>0,②b2-4ac<0,③a-b+c>0,④4a-2b+c<0,其中正确结论的个数是()A、1B、2C、3D、4(3)(4)(5)6、(2011•兰州)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有()A、2个B、3个C、4个D、1个7、(2011•昆明)抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A、b2-4ac<0B、abc<0C、<-1D、a-b+c<0+bx+c(a≠0)的图象如图所示,现有下列结论:①b2-4ac>8、(2011•鸡西)已知二次函数y=ax20 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个(6)(7)(8)9、已知二次函数y=ax2的图象开口向上,则直线y=ax-1经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限10、二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A、a<0,b<0,c>0,b2-4ac>0B、a>0,b<0,c>0,b2-4ac<0C、a<0,b>0,c<0,b2-4ac>0D、a<0,b>0,c>0,b2-4ac>011、(2010•梧州)已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a-b+c>0C、b=-4aD、关于x的方程ax2+bx+c=0的根是x1=-1,x2=512、(2010•文山州)已知二次函数y=ax2+bx+c的图象如图所示,则a,b,c满足()A、a<0,b<0,c>0,b2-4ac>0B、a<0,b<0,c<0,b2-4ac>0C、a<0,b>0,c>0,b2-4ac<0D、a>0,b<0,c>0,b2-4ac>0(10)(11)(12)13、(2010•铁岭)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论,其中正确的结论是()A、abc>0B、b>a+cC、2a-b=0D、b2-4ac<014、(2010•钦州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a-b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根.其中错误的结论有()A、②③B、②④C、①③D、①④15、(2010•黔南州)如图所示为二次函数y=ax2+bx+c(a≠0)的图象,在下列选项中错误的是()A、ac<0B、x>1时,y随x的增大而增大C、a+b+c>0D、方程ax2+bx+c=0的根是x1=-1,x2=316、(2010•荆门)二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A、ab<0B、ac<0C、当x<2时,函数值随x增大而增大;当x>2时,函数值随x增大而减小D、二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根17、(2010•福州)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A、a>0B、c<0C、b2-4ac<0D、a+b+c>0(15)(16)(17)18、(2010•鄂州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①a,b异号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x的取值只能为0,结论正确的个数有()个.A、1B、2C、3D、419、(2010•百色)二次函数y=-x2+bx+c的图象如图所示,下列几个结论:①对称轴为x=2;②当y≤0时,x<0或x>4;③函数解析式为y=-x(x-4);④当x≤0时,y随x的增大而增大.其中正确的结论有()A、①②③④B、①②③C、①③④D、①③(18)(19)能力练习1.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①b<0;②(a+c)2>b2;③2a+b-c>0;④3b<2c.其中正确的结论有()(填上正确结论的序号).DA、①⑤B、①②⑤C、②⑤D、①③④解:∵抛物线的开口方向向上,∴a>0,∵对称轴为x==1,得2a+b=0,2a=-b,∴a、b异号,即b<0,∴①正确;∵抛物线与轴的交点在y轴负半轴,∴c<0,∴2a+b-c=-c>0,∴③正确;∵当x=1时,y=a+b+c<0,∵当x=-1时,y=a-b+c>0,∴2a-2b+2c>0,∴-b-2b+2c>0,∴3b<2c,∴④正确;∵a+b+c<0,a-b+c>>0,∴(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,②错误.3.(2011•广西)已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是()解:①∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∵对称轴为x=>0,∴a、b异号,即b<0,又∵c<0,∴abc>0,故本选项正确;②∵对称轴为x=>0,a>0,-<1,∴-b<2a,∴2a+b>0;故本选项错误;③当x=1时,y1=a+b+c;当x=m时,y2=m(am+b)+c,当m>1,y2>y1;当m<1,y2<y1,所以不能确定;故本选项错误;④当x=1时,a+b+c=0;当x=-1时,a-b+c>0;∴(a+b+c)(a-b+c)=0,即(a+c)2-b2=0,∴(a+c)2=b2故本选项错误⑤当x=-1时,a-b+c=2;当x=1时,a+b+c=0,∴a+c=1,∴a=1+(-c)>1,即a>1;故本选项正确;综上所述,正确的是①⑤.故选A.4.(2010•天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是()A、1B、2C、3D、4解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故本选项正确;②根据图示知,该函数图象的开口向上,∴a>0;又对称轴x=-=1,∴<0,∴b<0;又该函数图象交于y轴的负半轴,∴c<0;∴abc>0;故本选项正确;③∵对称轴x=-=1,∴b=-2a,可将抛物线的解析式化为:y=ax2-2ax+c(a≠0);由函数的图象知:当x=-2时,y>0;即4a-(-4a)+c=8a+c>0,故本选项正确;也可以:当x=4时,从图像上看y>0,此时16a+4b+c>0,而从对称性看出-b2a=1,解得b=-2a,代入上式得8a+c>0;④根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故本选项正确;所以这四个结论都正确.故答案为:4.5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象,则下列结论正确序号是(只填序号).①abc>0,②c=-3a,③b2-4ac>0,④a+b<m(am+b)(m≠1的实数).解:①正确,∵与y轴交于负半轴,所以c<0,∵开口向上,∴a>0,又∵对称轴在y轴右侧,∴->0,∴b<0,∴abc>0.②正确,∵ax2+bx+c=0(a≠0)的两根为x1=-1,x2=3,根据根与系数的关系,=3×(-1)=-3,即c=-3a.③正确,∵函数图象与x轴有两个点,∴b2-4ac>0;④正确,由函数图象可知,对称轴为x=1,此时y取最小值为:a+b+c;∵当x=m时,y值为:am2+bm+c;∴am2+bm+c>a+b+c,(m≠1的实数),∴a+b<m(am+b).故结论正确序号是①②③④.6.二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac-b2<0;⑤当x≠2时,总有4a+2b>ax2+bx其中正确的有(填写正确结论的序号).解:①由图象可知:当x=1时y<0,∴a+b+c<0.②由图象可知:对称轴x=-=2,∴4a+b=0,∴正确;由抛物线与x轴有两个交点可以推出b2-4ac>0,正确;③由抛物线的开口方向向下可推出a<0因为对称轴在y轴右侧,对称轴为x=->0,又因为a<0,b>0;由抛物线与y轴的交点在y轴的负半轴上,∴c<0,故abc>0,错误;④由抛物线与x轴有两个交点可以推出b2-4ac>0∴4ac-b2<0正确;⑤∵对称轴为x=2,∴当x=2时,总有y=ax2+bx+c=4a+2b+c>0,∴4a+2b>ax2+bx正确.故答案为:①②④⑤.7.已知二次函数y=ax2+bx+c(a≠0)的图象如下图所示,有下列5个结论:①abc<0;②a-b+c>0;③2a+b=0;④b2-4ac>0⑤a+b+c>m(am+b)+c,(m>1的实数),其中正确的结论有()A.1个B.2个C.3个D.4个解:由图象可知:开口向下,与Y轴交点在X轴的上方,对称轴是x=1,∴c>0,a<0,-=1,∴2a+b=0,b>0,∴(1)abc<0(正确),(3)2a+b=0(正确),(2)当x=-1时,y=ax2+bx+c=a-b+c,由图象可知当x=-1时y<0,即a-b+c<0,∴(2)a-b+c>0(不正确),(4)由图象知与X轴有两个交点,∴b2-4ac>0,即(4)b2-4ac>0(正确),∵m>1,当x=1时,y1=ax2+bx+c=a+b+c,当x=m时,y2=ax2+bx+c=am2+bm+c=m(am+b)+c,由图象知y1>y2,即(5)a+b+c>m(am+b)+c(正确),综合上述:(1)(3)(4)(5)正确有4个正确.8.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(x1,0),-3<x1<-2,对称轴为x=-1.给出四个结论:①abc>0;②2a+b=0;③b2>4ac;④a-b>m(ma+b)(m≠-1的实数);⑤3b+2c>0.其中正确的结论有()A.2个B.3个C.4个D.5个解:①由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,∴c>0,对称轴为x==-1,得2a=b,∴a、b同号,即b<0,∴abc>0;故本选项正确;②∵对称轴为x==-1,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本选项错误;③从图象知,该函数与x轴有两个不同的交点,所以根的判别式△=b2-4ac>0,即b2>4ac;故本选项正确;④图象开口向下,与y轴交于正半轴,对称轴为x=-1,能得到:a<0,c>0,-=-1,∴b=2a,∴a-b=a-2a=-a,m(ma+b)=m(m+2)a,假设a-b>m(am+b),(m≠1的实数)即-a>m(m+2)a,所以(m+1)2>0,满足题意,所以假设成立,故本选项正确;⑤∵-3<x1<-2,∴根据二次函数图象的对称性,知当x=1时,y<0;又由①知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本选项错误.综上所述,①③④共有3个正确的.故选B.9.已知:如图所示,抛物线y=ax2+bx+c的对称轴为x=-1,与x轴交于A、B两点,交y轴于点C,且OB=OC,则下列结论正确的是()①b=2a ②a-b+c>-1 ③0<b2-4ac<4 ④ac+1=b.解:①∵抛物线y=ax2+bx+c的对称轴为x=-1,∴-=-1,整理得b=2a,故①正确;④由抛物线与y轴相交于点C,就可知道C点的坐标为(0,c),又因OC=OB,所以B(-c,0),把它代入y=ax2+bx+c,即ac2-bc+c=0,两边同时除以c,即得到ac-b+1=0,所以ac+1=b.②∵b=2a,ac+1=b,∴a=,∵0<c<1,∴0<a<1,∴0<b<2,∴a-b+c>-1∴当x=-1时,y=ax2+bx+c=a-b+c>-1,故②正确;③∵函数图象与x轴有两个交点,∴得到b2-4ac>0,∵0<b2<4,4ac>0,∴b2-4ac<4故③正确;故选D.10.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标为x 1、x2,其中-2<x1<-1,0<x2<1,下列结论:①abc>0;②4a-2b+c<0;③2a-b>0;④b2+8a>4ac,正确的结论是①②④解:由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=->-1,且c>0;①∵对称轴x=-<0,a<0,∴b<0;又∵c>0,∴abc>0,故本选项正确;②由图可得:当x=-2时,y<0,即4a-2b+c<0,故本选项正确;③已知x=->-1,且a<0,所以2a-b<0,故本选项错误;④由于抛物线的对称轴大于-1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac-b2<8a,即b2+8a >4ac,故本选项正确;因此正确的结论是②④;故答案是:①②④.11.(2006•武汉)(人教版)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=-1,与x轴的一个交点为(x1,0),且0<x1<1,下列结论:①9a-3b+c>0;②b<a③3a+c>0.其中正确结论的个数是()A.0 B.1 C.2 D.3解:∵y=ax2+bx+c(a>0)的对称轴为直线x=-1,与x轴的一个交点为(x1,0),且0<x1<1,∴x=-3时,y=9a-3b+c>0;∵对称轴是x=-1,则=-1,∴b=2a.∵a>0,∴b>a;再取x=1时,y=a+b+c=a+2a+c=3a+c>0.∴①、③正确.故选C.12.如图为抛物线y=ax2+bx+c的图象,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,AB>AO,下列几个结论:(1)abc<0;(2)b>2a;(3)a-b=-1;(4)4a-2b+1<0.其中正确的个数是()A.4 B.3 C.2 D.1解:(1)∵该抛物线的开口向上,∴a>0;又∵该抛物线的对称轴x=-<0,∴b>0;而该抛物线与y轴交于正半轴,故c>0,∴abc>0;故本选项错误;(2)由(1)知,a>0,-<0,∴b>-2a;故本选项错误;(3)∵OA=OC=1,∴由图象知:C(0,1),A(-1,0),把C(0,1)代入y=ax2+bx+c得:c=1,把A(-1,0)代入y=ax2+bx+c 得:a-b=-1,故本选项正确;(4)由(3)知,点A的坐标是(-1,0).又∵AB>AO,∴当x=-2时,y<0,即4a-2b+1<0;故本选项正确.综上所述,正确的个数是2个.故选C.13.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标为x1、x2,其中-2<x1<-1、0<x2<1.下列结论:①4a-2b+c<0,②2a-b<0,③a<-1,④b2+8a>4ac中,正确的结论是解:由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=- >-1,且c>0;①由图可得:当x=-2时,y<0,即4a-2b+c<0,故①正确;②已知x=- >-1,且a<0,所以2a-b<0,故②正确;③已知抛物线经过(-1,2),即a-b+c=2(1),由图知:当x=1时,y<0,即a+b+c<0(2),由①知:4a-2b+c<0(3);联立(1)(2),得:a+c<1;联立(1)(3)得:2a-c<-4;故3a<-3,即a<-1;所以③正确;④由于抛物线的对称轴大于-1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac-b2<8a,即b2+8a>4ac,故④正确;因此正确的结论是①②③④.14.已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③a<;④b >1.其中正确的结论是()A.①② B.②③ C.③④ D.②④解:①∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∵对称轴为x=<0,∴a、b同号,即b>0,∴abc<0,故本选项错误;②当x=1时,函数值为2,∴a+b+c=2;故本选项正确;③∵对称轴x=>-1,解得:<a,∵b>1,∴a>,故本选项错误;④当x=-1时,函数值<0,即a-b+c<0,(1)又a+b+c=2,将a+c=2-b代入(1),2-2b<0,∴b>1故本选项正确;综上所述,其中正确的结论是②④;故选D.15.(2003•武汉)已知:抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0,以下结论:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2,其中正确的个数有()A.1个B.2个C.3个D.4个解:(1)因为抛物线y=ax2+bx+c(a<0)经过点(-1,0),所以原式可化为a-b+c=0----①,又因为4a+2b+c>0----②,所以②-①得:3a+3b>0,即a+b>0;(2)②+①×2得,6a+3c>0,即2a+c>0,∴a+c>-a,∵a<0,∴-a>0,故a+c>0;(3)因为4a+2b+c>0,可以看作y=ax2+bx+c(a<0)当x=2时的值大于0,草图为:可见c>0,∵a-b+c=0,∴-a+b-c=0,两边同时加2c得-a+b-c+2c=2c,整理得-a+b+c=2c>0,即-a+b+c>0;(4)∵过(-1,0),代入得a-b+c=0,∴c=b-a ,再代入4a+2b+c=3b+3a >0,即b >-a ∴b >0,a <0,c=b-a >0, 又将c=b-a 代入b 2-2ac=b 2-2a (b-a )=b 2-2ab+2a 2,∵b 2-2ab=b (b-2a ),b >-a ,b-2a >-3a ,并且b 是正数, ∴原式大于3a 2.综上可知正确的个数有4个.故选D .16.如图,是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (-3,0),对称轴为x=-1.给出四个结论:①b 2>4ac ;②b=-2a ;③a-b+c=0;④b >5a .其中正确结论是 .解:①∵图象与x 轴有交点,对称轴为x==-1,与y 轴的交点在y 轴的正半轴上,又∵二次函数的图象是抛物线,∴与x 轴有两个交点,∴b 2-4ac >0,即b 2>4ac ,正确;②∵抛物线的开口向下,∴a <0,∵与y 轴的交点在y 轴的正半轴上,∴c >0,∵对称轴为x==-1,∴2a=b ,∴2a+b=4a ,a≠0,错误;③∵x=-1时y 有最大值,由图象可知y≠0,错误;④把x=1,x=-3代入解析式得a+b+c=0,9a-3b+c=0,两边相加整理得5a-b=-c <0,即5a <b .故正确的为①④.二次函数专题——增减性1、已知函数215322y x x =---,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2<x 3,则 对应的函数值的大小关系是( ) A .y 3>y 2>y 1 B .y 1>y 3>y 2 C .y 2<y 3<y 1 D .y 3<y 2<y 12、小明从右边的二次函数2y ax bx c =++图象中,观察得出了下面的五条信息:①0a <,②0c =,③函数的最小值为3-,④当0x <时,0y >, ⑤当1202x x <<<时,12y y >.你认为其中正确的个数为( ) A.2B.3C.4D.53、若123135(,),(1,),(,)43A yB yC y --的为二次函数245y x x =--+的图像上的三点,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 3<y 1<y 2D. y 2<y 1<y 3 4、从y=x 2的图象可看出,当-3≤x≤-1时,y的取值范围是 023-xyA 、y≤0或9≥y B 、0≤y≤9 C 、0≤y≤1 D 、1≤y≤95、小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为( ) A.y 1>y 2>y 3 B.y 2>y 3>y 1 C.y 3>y 1>y 2 D.y 3>y 2>y 1 6、下列四个函数中,y 随x 增大而减小的是( )A .y=2x B.y=-2x+5 C . D .y=-x 2+2x-17、下列四个函数:①y=2x ;②;③y=3-2x ;④y=2x 2+x(x≥0),其中,在自变量x 的允许取值范围内,y 随x 增大而增大的函数的个数为( ) A. 1 B. 2 C. 3 D. 48、已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个9、已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.310、已知函数y=3x 2-6x+k(k 为常数)的图象经过点A(0.85,y 1),B(1.1,y 2),C(2,y 3),则有( )(A) y 1<y 2<y 3 (B) y 1>y 2>y 3 (C) y 3>y 1>y 2 (D) y 1>y 3>y 21、已知二次函数682-+-=x x y ,设自变量x 分别为321,,x x x ,且3214x x x <<<,则对应的函数值321,,y y y 的大小关系是( )A. 321y y y <<B. 132y y y <<C. 123y y y <<D. 231y y y <<22、如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A. 0B. -1C. 1D. 2四、归纳总结五、课后作业1、函数2y x px q=++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数2224y mx x m m=++-的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2y ax bx c=++与y轴交于点A(0,2),它的对称轴是1x=-,那么acb=4、抛物线cbxxy++=2与x轴的正半轴交于点A、B两点,与y轴交于点C,且线段AB的长为1,△ABC的面积为1,则b的值为______.5、已知二次函数cbxaxy++=2的图象如图所示,则a___0,b___0,c___0,acb42-____0;6、二次函数cbxaxy++=2的图象如图,则直线bcaxy+=的图象不经过第象限.7、已知二次函数2y ax bx c=++(0≠a)的图象如图所示,则下列结论:1),a b同号;2)当1x=和3x=时,函数值相同;3)40a b+=;4)当2y=-时,x的值只能为0;其中正确的是(5)(6)(7)8、已知二次函数2224mmxxy+--=与反比例函数xmy42+=的图象在第二象限内的一个交点的横坐y–1 33O xP1标是-2,则m=9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个 13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点,求a、b 、c15、试求抛物线2y ax bx c =++与x 轴两个交点间的距离(240b ac ->)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数增减性
1、已知抛物线822
--=x x y ,当自变量x 在 范围内,0<y 时,y 随x 的增大而增大;
2、二次函数562-+-=x x y ,当x 时,0<y ;且y 随x 的增大而减小;
3、已知抛物线562++=x x y ,当0>y 时,y 随x 的增大而减小,则x 的取值范围是__;
4、对于二次函数为22
--=x x y ,当自变量0<x 时,函数图像在 ( ) (A) 第一、二象限 (B) 第二、三象限 (C) 第三、四象限 (D) 第一、四象限
5、如图,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围
是( )(03金华)
A 、x >3
B 、x <3
C 、x >1
D 、x <1
6、已知y=x 2+ax -1,在0≤x ≤3上有最小值-2,求a 的值。
7、二次函数y=x 2+mx +m 在-3≤x ≤-1的最大值与最小值。
8、对于函数222
--=x x y ,若y 随x 的增大而增大,则x 的取值范围是_____________。
9、已知二次函数)0(2
1≠++=a c bx ax y 与一次函数 )0(2≠+=k m kx y
的图象交于点A (-2,4),B (8,2)(如图所示),则能使 21y y > 成立的x 的取值范围是________________(02杭州) 10、已知二次函数2
5
3212---
=x x y ,设自变量分别为x 1、x 2、x 3且-3<x 1<x 2<x 3,则对应的函数值的大小关系是( )
A y 3<y 2<y 1
B y 3>y 2>y 1
C y 2<y 3<y 1
D y 2>y 3>y 1
11、小颖在二次函数y =2x 2
+4x +5的图象上,依横坐标找到三点(-1,y 1),(0.5,y 2), (-3.5,y 3),则你认为y 1,y 2,y 3的大小关系应为( )。
A.y 1>y 2>y 3 B.y 2>y 3>y 1 C.y 3>y 1>y 2 D.y 3>y 2>y 1 12.已知点A (1,1y )、B (2,2y -
)、C (3,2y -)在函数()2
1
122
-
+=x y 上,则1y 、2y 、3y 的大小关系是( )
A 1y >2y >3y
B 1y >3y >2y
C 3y >1y >2y
D 2y >1y >3y
13、二次函数y=4x 2-mx+5, 当x <-2时y 随x 的增大而减小;当x >-2时y 随x 的增大而增大;则当x=1时函数y=( ) A 、-7 B 、1 C 、17 D 、25
14、已知抛物线)0(2<++=a c bx ax y 的对称轴为x=2,且过A (-1,y 1)、B (1,y 2)、C (2
7,
y 3)三点,则y 1、y 2、y 3的大小关系正确的是( )
A 、y 1<y 2<y 3
B 、y 1<y 3<y 2
C 、y 3<y 2<y 1
D 、y 2<y 3<y 1
15、已知a <-1,点(a - 1,y 1)、(a ,y 2)、(a + 1,y 3)都在函数2
x y =
A 、y 1<y 2
<y
3 B 、y 1<y 3<y 2
C 、y 3<y 2<y 1
D 、y 2<y 1<y 3
16、二次函数c bx x y ++=2
的图象如图所示,则函数值0<y 时,对应
x 的取值范围是 。
(03山西)
17、二次函数y ax bx c =++2
的图象如图所示,则下列结论正确的是( )(03海淀)
A. a b c ><>000,,
B. a b c <<>000,,
C. a b c <><000,,
D. a b c <>>000,,
18、二次函数y = ax 2
+ bx + c 的图象如图所示,那么关于此二次函数的下列四个结论:①a <0;②c>0;③b 2
-4ac>0;④
b
a
<0中,正确的结论有(03常德) A 1个 B 2个 C 3个 D 4个
19、已知抛物线)0(2
<++=a c bx ax y 的对称轴为x=2,且过A (-1,y 1)、B (1,y 2)、C (
2
7
,y 3)三点,则y 1、y 2、y 3的大小关系正确的是( ) A 、y 1<y 2<y 3 B 、y 1<y 3<y 2 C 、y 3<y 2<y 1 D 、y 2<y 3<y 1
20、 已知点(-1,y 1),(-
27,y 2),(2
1
,y 3)在函数y=3x 2+6x+12的图象上,则y 1A y 1>y 2>y 3 B y 2>y 1>y 3 C y 2>y 3>y 1 D y 3>y 1>y 2
21、已知二次函数y=ax 2
+c ,且当x =1时,-4≤y ≤-1,当x =2时,-1≤5,则当x =3时,y 的取值范围是 ( )
A 、-1 ≤y ≤20
B 、 -4 ≤ y ≤15
C 、7 ≤y ≤26
D 、22. (06资阳)已知函数y =x 2-2x -2的图象如图3≥1成立的x 的取值范围是( )
A .-1≤x ≤3
B .-3≤x ≤1
C .x ≥-3
D .x ≤-1或x ≥3
图
23、(06旅顺)如图是一次函数y 1=kx+b 和反比例函数y 2=
m
x
的图象,观察图象写出y 1>y 2时,x 的取值范围 .
24、如图一次函数y 1 = ax + b , y 2 = kx + c 的图象,观察图象,写出同时满足y 1≥0,y 2≥0时x 的取值范围____________________。
25、如图,在同一坐标系中,一次函数图象与坐标轴交于B 、C 两点,二次函数图象与坐标轴交于A 、B 、C 三点,且对称轴平行于y 轴。
求:⑴这两个函数的解析式
⑵根据图象指出,当x 为何值时,一次函数、二次函数值均随x 增大而增大
⑶根据图象指出当x 为何值时,一次函数与二次函数的值之积大于零。