聚乙烯聚丙烯材料改性

合集下载

聚丙烯PP改性料的收缩率综述

聚丙烯PP改性料的收缩率综述

聚丙烯改性料的收缩率控制是聚丙烯改性的一个重要方面。

收缩率控制的好对聚丙烯改性料的推广使用有重要意义,同时也是保证产品质量的一个重要方面。

特别是利用改性聚丙烯取代传统的工程塑料,收缩率这一点显得十分重要。

聚丙烯改性在国内已经有成熟的技术,对聚丙烯改性理化性能的研究报导也很多,但对收缩率问题则很少有专门的报导。

本人集多年的实践经验就聚丙烯改性料的收缩率控制问题做了一些探讨。

1. 试验部分 1.1 试验原料聚丙烯(PP)辽阳石油化纤总公司;高密度聚乙烯(HDPE)辽阳石油化纤总公司 POE 美国杜邦公司; EPDM 荷兰DSM公司; SBS 岳阳石化总厂玻纤上海耀华;碳酸钙营口大石桥;滑石粉海城金新云母粉河北;助剂市售;低密度聚乙烯(LDPE)燕山石化 1.2 试验设备及仪器挤出机 TM40MVC/D-40 意大利MARIS; 注塑机 TP120T 北京信冠机械设备制造有限公司熔融指数仪μPXRZ-400C 吉林大学科教仪器厂; 卡尺; 检测方法: ASTM D955 1.3 试样制备和检测方法原料混合----挤出造粒----注塑打样(放置24h)----收缩率检测(环境温度为23℃)注塑条件:温度170℃---190℃压力80 2. 结果讨论聚丙烯的收缩成型大是聚丙烯本身的一大缺点,这主要是由于聚丙烯的高结晶度所致。

结晶后的聚丙烯比重增大、体积缩小。

结晶度为0%和100%时其比重分别为0.851和0.936。

因此纯PP的成型收缩一般在1.7---2.2之间。

控制聚丙烯的成型收缩率主要是控制其原料成型时的结晶度:结晶度越小其成型收缩率也越小;反之,结晶度越高则成型收缩率也越大。

在聚丙烯改性塑料中,由于各种改性剂的加入都不同程度的破坏了聚丙烯原有的结晶度,从而改变了聚丙烯原有的成型收缩率。

2.1 橡胶对聚丙烯收缩率的影响图1所示橡胶对PP改性料成型收缩率的影响。

从图中可以看出随橡胶含量的增大,成型收缩率呈下降趋势。

聚丙烯改性的主要的几种方法

聚丙烯改性的主要的几种方法

聚丙烯改性的主要的几种方法聚丙烯(PP)是一种重要的塑料,具有较高的力学性能、耐化学腐蚀性和隔热性能,广泛应用于包装、电器、纺织、建筑等领域。

然而,PP在一些方面的性能仍然有待改善,这就要求对PP进行适当的改性。

以下是聚丙烯改性的几种主要方法。

1.添加剂改性:添加剂改性是通过向聚丙烯中添加各种添加剂,如增塑剂、抗氧剂、阻燃剂、光稳定剂等,来改善聚丙烯的性能。

添加剂可以提高聚丙烯的柔软度、耐热性、阻燃性等,从而扩展了聚丙烯的应用范围。

2.共混改性:共混改性是将聚丙烯与其他聚合物进行物理混合,在共混体系中形成相容相并形成新的材料。

常用的共混改性体系包括聚丙烯/聚乙烯、聚丙烯/ABS共混体系等。

共混改性可以综合利用不同聚合物的优点,改善聚丙烯的力学性能、热稳定性、耐冲击性等。

3.界面改性:界面改性是通过在聚丙烯和填充剂之间插入界面剂,来增强聚丙烯与填充剂之间的相容性。

常用的界面改性剂有硅烷偶联剂、聚合物接枝剂等。

界面改性可以改善聚丙烯的强度、韧性、耐冲击性和耐热性等性能。

4.离子辐射改性:离子辐射改性是通过辐射聚丙烯,引入交联结构或引发化学反应,改善聚丙烯的性能。

辐射改性可以显著提高聚丙烯的强度、热稳定性、抗老化性能等。

5.高分子改性:高分子改性是将聚丙烯与其他高分子化合物进行共聚或接枝反应,形成新的共聚物或共聚物接枝聚合物。

常用的高分子改性剂有聚苯乙烯、聚氨酯、聚酯等。

高分子改性可以改善聚丙烯的强度、韧性、耐热性和低温性能。

总之,聚丙烯改性的方法有很多种,可以通过添加剂、共混、界面、辐射和高分子改性等不同途径来改善聚丙烯的性能。

这些改性方法可以提高聚丙烯的力学性能、耐热性、耐化学腐蚀性和耐冲击性等,从而满足不同应用领域对材料性能的需求。

关于聚烯烃(聚丙烯、聚乙烯)共混改性的现代研究

关于聚烯烃(聚丙烯、聚乙烯)共混改性的现代研究

关于聚烯烃(聚丙烯、聚乙烯)共混改性的现代研究摘要随着当今社会的快速发展和科学技术的不断进步,高分子材料在工农业中应用的比重也在不断增加,并得到了广泛的应用。

由于塑料是高分子材料发展的重要内容之一,PP在使用过程中,不仅应该具有较高的强度,也应该有良好的韧性。

因此对通用大品种树脂聚丙烯(PP)和聚乙烯(PE)开展改性研究一直是高分子材料科学研究领域的重要课题。

关键词聚烯烃;聚丙烯;聚乙烯;共混改性前言众所周知,PP和PE是重要的通用大品种树脂,聚丙烯(PP)具有比重小、耐应力开裂性和耐磨性能突出、较好的耐热性和化学稳定性等优点,但脆性和低温抗冲击性能差。

聚乙烯(PE)具有优良的电绝缘性、耐化学性、耐低温性和良好的加工流动性等特点,但耐热性差、耐大气老化性能差以及易应力开裂等缺点也相当突出。

因此聚丙烯和聚乙烯的改性研究已经成为目前高分子材料科学研究的重点,本文主要对聚丙烯(PP)与聚乙烯(PE)的共混改性进行研究与探讨。

1 聚烯烃概述1.1 聚丙烯聚丙烯(即)是非常重要的廉价通用高分子材料,它具有比重小、耐应力开裂性和耐磨性能突出、较好的耐热性和化学稳定性等优点,广泛用于薄膜、管材、板材、注射产品及中空制品中。

聚丙烯相对低的价格和适宜的特性提高了它的市场效能,不仅用做其他材料的替代物,而且也不断地开发出一些新的应用[1]。

1.2 聚乙烯聚乙烯工艺化已有60多年的歷史,聚乙烯现在是世界上产量最大、品种繁多的最重要的合成树脂之一。

其应用已深入到国民经济的各个部门和人们的日常生活中。

历经半个多世纪的开发,现在已能生产各种类型和品级的聚乙烯树脂,可以做成不同形式、不同用途的系列制品。

在满足最终用途的前提下,与其他聚合物和非聚合物材料相比,聚乙烯树脂以其价廉质优而具有强劲的市场竞争力,已发展成生产量大、用途宽广的最重要的一类通用树脂。

2 聚烯烃(聚丙烯,聚乙烯)共混改性方法2.1 塑料增韧PP采用塑料类作为PP增韧改性的改性剂,不仅可以达到增韧的目的,而且可使材料的耐磨性、染色性等得到改善,且价格低廉。

聚丙烯的共混改性

聚丙烯的共混改性
结论:PA6的韧性和强度都很高,PA6用量的增加可以提 高改性PP的韧性和强度。PA6的最佳用量是15份。
当加入PP-g-MAH后,PP/PA6共混 物的拉伸强度和断裂伸长率均提 高。这是因为两者共混时相互排 斥,难以互容。加入PP-g-MAH使 得两个不相容聚合物通过亲和力 取得协同效应,增加了相容性, 所以混合的更均匀,从而改善共 混物各方面的性能。
PP/LDPE共混物的熔体流动速率与LDPE含量的关系
12
10
熔体流动速率(g/10min)
8
6
210℃
4
230℃
2
0 0
20
40
60
80
100
LDPE含量/%
的PP/PE共混物中,TAIC主要分布在PP/PE 共混物的相界面。由辐射引发的TAIC参与的界面反应 ,增强了不相容共混物的相间粘接,改善了共混物的相容 性,提高了共混物的力学性能。
通过改性,可以使PP的性能得到显著改善。
聚丙烯的改性方法
物理改性
化学改性 表面改性
共混改性 复合材料
增强填充改性 共聚改性 接枝改性 交联PP
这里主要讲聚丙烯的共混改性。
PP共混改性是物理改性中的一种重要技术。 它是指用其他塑料、橡胶或热塑性弹性体混入PP中较大的 晶球内,以此改善PP的韧性和低温脆性。按共混物组成可 分为塑一塑共混及橡一塑共混体系,其中较常见的是PP/ 高密度聚乙烯(HDPE)、PP/低密度聚乙烯LDPE)、PP/尼 龙等体系。常用的橡胶增韧PP体系有PP/EPR(乙丙橡胶)、 PP/EPDM(一元乙丙橡胶)、PP/SBS(苯乙烯一丁二烯.苯 乙烯热塑性弹性体)、PP/BR(顺丁橡胶)和PP/POE等。PP 还可采用三元共混体系,此时某些共混改性剂对改善PP的 脆化温度有协同效应,即三元共混体系的抗冲击性能及其 他各项力学性能均优于二元体系。

pp增韧及pp、pe共混

pp增韧及pp、pe共混

PP增韧及PE/PP共混改性研究摘要:从塑料增韧聚丙烯(PP)体系(主要是与PE共混)、橡胶或热塑性弹性体增韧PP体系以及无机刚性粒子增韧PP体系3个方面详细论述了国内外PP共混增韧改性的研究进展。

采用塑料类作为改性剂增韧PP,虽可增韧,但是由于体系的不相容性,往往要大量使用改性剂或添加相容剂。

PE 增韧P P 的效果取决于共混物中PE 的用量, 当PE 质量分数达到25%~40 %时, 共混物既有良好的韧性和拉伸强度,又有较好的加工性能。

使用橡胶或者热望性弹性体与PP共混增韧效果最为明显。

但由于随着弹性体用量的增加,体系在冲击强度大幅提高的同时也出现了刚性等性能的损失。

此外,还就近年发展起来的无机刚性粒子增韧PP的研究工作进展和机理研究情况作了介绍。

关量词:聚丙烯增韧聚乙烯共混改性聚丙烯(PP)是通用热塑性树脂中增长最快的品种之一,广泛应用于工业生产的各个领域。

PP生产工艺简单,价格低廉,有着优异的综合性能。

而其亟待克服的最为突出的缺点是它的缺口敏感性显著,即缺口冲击强度较低,尤其在低温时更为突出,因此在实际应用中需要进行增韧。

PP共混增韧方法以其效果显著、工业化投资少且迅速易行等特点而广为应用。

共混增韧改性是指用其他塑料或弹性体等作为改性剂与PP共混,以此改善PP的韧性。

常用的改性材料主要分为塑料、橡胶或弹性体以及无机刚性粒子等几类。

1.塑料增韧PP体系采用塑料类作为PP增韧的改性剂.不仅可以达到增韧的目的,而且可使材料的耐磨性、染色性等得到改善,且价格较为低廉。

应用较多的有高密度聚乙烯(HDPE)、线型低密度聚乙烯(ILDPE)、乙烯-醋酸乙烯共聚物(EVA)、聚氯乙烯、聚酰胺(PA)等。

但由于他们与PP的不相容性,要使体系达到较高的韧性往往需要加大改性剂用量或添加相容剂。

1.1PP/聚乙烯(PE)1.1.1 高密度聚乙烯结构、性能及应用高密度聚乙烯(HDPE)是在每1000个碳原子中含有不多于5个支链的线型分子所组成的聚合物。

低密度聚乙烯(LDPE)共混改性聚丙烯(PP)

低密度聚乙烯(LDPE)共混改性聚丙烯(PP)

低密度聚乙烯(LDPE)共混改性聚丙烯(PP)一、实验目的通过本实验,使学生初步了解和掌握聚丙烯的性能以及聚合物共混改性的方法;了解标准试样的制备方法;了解并掌握简单的聚合物复合材料的表征方法和测试手段,为毕业论文实验打下良好的基础。

聚丙烯(PP)的合成和应用可以追溯到上1950年,一位名叫Natta 教授成功地在实验室合成聚丙烯[1]。

大半个世纪过去,几代科研人员的投入大量精力,已经把聚丙烯从实验室产品开发成为富有功能的合成树脂的主导成员。

现今,聚丙烯是热塑性树脂中发展很成熟的种类之一。

我国对聚丙烯的基础性研究已有半个世纪,生产技术从催化剂的获得到聚合工艺的精进,以及新产品和新应用领域的开发都有很大进步,然而,同国外同行研究成绩相比,我国从聚丙烯产品的开发到应用均还存在差距,因此,聚丙烯领域的相关研究还有很大空间[2]。

聚丙烯与聚乙烯,聚氯乙烯,聚苯乙烯,ABS 组成五大通用塑料,其增长速度最快、开发潜力最大的一类树脂[3]。

聚丙烯作为热塑性树脂,具有很好的实用性,并且价格低廉,在人们的日常生活和工业生产制造等多个领域到处都发挥着重要作用。

聚丙烯(PP)具有比重小、耐热性好、耐腐蚀性好、成型加工容易、力学性能优异且原料来源丰富、价格低廉等优点[1],已经在全世界范围内大量生产和使用,其产量仅次于聚乙烯,成为第二大塑料品种[2]。

聚丙烯的优点得以让其迅速发展,但同时聚丙烯的缺点却也限制了其在各行各业中的应用,比如聚丙烯强度不高、易老化、易燃、韧性差、耐寒性差、低温易脆断、成型收缩率大、抗蠕变性能差、制品尺寸稳定性差、易产生翘曲变形等等[3]。

因此,对聚丙烯的改性势在必行。

从二十世纪六、七十年代起国内外就开始针对聚丙烯的缺点、对其如何改性进行了大量的研究,采用了多种方式对聚丙烯进行改性,提高了聚丙烯的性能,大大扩展了聚丙烯的应用范围[4-5]。

对聚丙烯的改性方法可划分为化学改性和物理改性。

化学改性有共聚、接枝、交联等,物理改性有共混、填充、增强等。

(整理)聚丙烯表面改性技术及应用

(整理)聚丙烯表面改性技术及应用

聚丙烯表面改性技术与应用周清 6120805020530. 引言聚丙烯(PP)作为通用塑料,以产量大、应用面广以及物美价廉而著称,但聚丙烯具有非极性和结晶性,表面与极性聚合物、无机填料及增强材料等相容性差,导致其染色性、粘接性、抗静电性、亲水性也较差,这些缺点制约了聚丙烯的进一步推广和应用。

聚丙烯的表面改性和功能化处理技术是一种重要的改性方法,研究主要集中在接枝极性单体,如马来酸酐和丙烯酸等,以及带有第二官能团单体,如甲基丙烯酸缩水甘油脂等;是改善PP表面性状性的主要手段,可以提高PP材料与其他极性的界面作用力,增强其亲水性、染色性能、黏结性能和共混高聚物之间的相容性等。

本文主要就聚丙烯材料的表面处理方法以及改性聚丙烯的应用作简单地介绍。

1. 高能辐照表面处理法辐照接枝法是用高能射线照射产生自由基,自由基再与活性单体反应生成接枝共聚物。

与其它接枝法比较,辐照接枝法的优点在于适合各种化学、物理性质稳定的树脂,能够快速且均一地产生活性自由基,而且不需加化学引发剂,不过该方法成本较高。

根据利用辐照获得接枝活性点的方式可以将其分为同时辐照和预辐照两种方法,同时辐照法是将反应单体和PP接枝基体同时放置在辐照环境中,这样在基体上形成活性点的同时就可以进行接枝反应。

预辐照法就是首先辐照PP,使其表面带有活性点,然后再和单体反应。

比较两种方法,预辐照技术更能减少单体均聚物的生成。

辐照接枝法在改善膜或纤维的表面极性方面应用广泛[1]。

除了对基材进行辐照引发接枝反应外,通过异相引发接枝[2]还有学者研究出利用预辐照对聚乙烯进行处理,再使用经过辐照处理的聚乙烯作为聚丙烯的熔融接枝反应的引发剂来引发聚丙烯接枝丙烯酸,经反应挤出制备出高性能的聚丙烯接枝丙烯酸共聚物。

这种异相引发接枝反应很好的控制了聚丙烯在熔融接枝中的降解副反应,极大的保存了基材优异的力学性能。

1.1 γ-射线辐照接枝法γ-射线辐照属于高能物理法,利用60Co-γ射线对原纤维基材进行处理,进而与单体进行接枝反应得到所需要的接枝产物。

PP聚丙烯再生料PE聚乙烯交联改性探讨--PE塑料-PP论坛_包装印刷360

PP聚丙烯再生料PE聚乙烯交联改性探讨--PE塑料-PP论坛_包装印刷360

PP聚丙烯再生料PE聚乙烯交联改性探讨聚乙烯再生料可以进行交联改性,提高其拉伸强度和模量,以及耐热性、耐候性、耐磨性和尺寸稳定性等。

交联的程度不同,其力学改性程度也不同,聚乙烯再生料在充分交联后形成三维结构,从热塑性塑料变为热固性塑料,力学性能大大改善,对于回收聚乙烯再生料来说,只需使之轻度交联,即可保持其热塑性能的同时又适当提高其力学性能,而且回收的聚乙烯再生料制品再废弃后还可再生利用。

聚乙烯再生料的交联改性有化学交联和辐射交联两种,聚乙烯再生料主要采用化学交联法。

化学交联所用的交联剂为有机过氧化物(如过氧化二异丙苯)等。

操作步骤是:用挤出tIL将过氧化二异丙苯和粉碎后的聚乙烯再生料废旧料进行混合,在适当的高温下进行交联,温度控制在170--180度,所得到的粒料就是轻度交联改性的聚乙烯再生料,用这种料加工生成的制品不仅力学性能有所提高,而且仍保持了热塑加工特性。

所用挤出机的螺杆长径比以35为宜。

交联改性聚乙烯再生料有两种加工成型方法:1、在聚乙烯再生料软化点之上使之充分塑化,同时混入交联剂,在交联剂的分解温度之下进行造粒,在模压工艺中使交联反应与成型一步完成。

2、在交联剂分解温度以下制成坯型,再加热到产生交联反应的温度之上完成固化,此法为两步法。

塑编制品的原料主要是聚丙烯和高密度聚乙烯,其辅助原料一般有改性剂、润滑剂、色母等。

根据塑编制品的用途不同,对原料的选择也有所不同。

一般来说,用高密度聚乙烯编织的筒布手感、柔软性、耐低温性均较好。

而聚丙烯的来源丰富、价格低廉、故塑编制品广泛采用聚丙烯作为主要原料。

塑料制品的成型为挤出成型。

为了保证扁丝乱型加工件的质量,一般选择熔体流动速率(MFR)恰当的原料。

通常用于塑编的聚丙烯熔体流动速率在2~5g/10min之间。

熔融指数小,扁丝强度高,但成型困难;反之,则扁丝强度低,成型较容易。

若在配方中加入大量填充改性剂,则会降低物料在成型过程上的流动性,可加入少量的增塑剂或润滑剂以提高其流动性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

58
40
28.5
17
17.6
18
PP的发泡(连续化工艺)
发泡剂 的溶解
泡核 的形成
泡核 的生长 及稳定
世界上已商品化的最先进的聚丙烯的发泡技术是利用高熔体强度聚丙烯 经丙烷或丁烷发泡来实现的。但是高熔体强度聚丙烯树脂价格较高且使 用易燃的发泡剂, 设备须经特殊的防爆处理, 因此聚丙烯发泡材料的成 本较高,该工艺生产的聚丙烯发泡材料的市场仍以超过年20%的速度增长.
发泡聚丙烯产品应用


包 装


包 装

应 用


品 包 装
绝 缘
建 筑
体 育 休 闲
30倍EPP静态压缩曲线
Compression stress (MPa)
0.6 0.5 0.4 0.3 0.2 0.1
Strain(%) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
聚乙烯改性材料
聚丙烯改性材料
研究方向
方向定位 研发 “基础研究—中试—产业化”成套核心技术
聚合物发泡技术 超临界流体辅助加工技术
基础研究:泡孔结构调控的实现方法 泡孔结构对聚合物多功能性的影响机制 发泡珠粒水蒸气成型时的粘结机制
应用研究:聚合物发泡材料规模化制备技术及工程化应用
以应用为导向,通过解决应用研究中的基础科学问题, 来进一步地服务于工程化应用!
17
超临界流体挤出PP发泡片材
拥有自主搭
PP发泡片材:密度 0.2-0.5 g/cm3 厚度 1 – 3 mm
超临界流体加工平台
超临界微发泡注塑设备
发泡粒子成型机
发泡片材吸塑成型机
釜压发泡设备
泡沫塑料的市场构成
PU PS
PE
PP PVC
Extruded PP XPP发泡片材 PP发泡片材
PP Beads (EPP)
均相成核速率
Jhom N
2γlg exp πm
异相成核速率



3k
TB sys
16πγlg Pbub ,0
3

Psys
2
Jhet

lim
n
n

i 1

N
2 3
Q
θc ,iΔβ n

2γlg
πmF θc ,iΔβ
exp
/en/home/applications/automotive/AutomotivSAE会议于底特律
聚合物发泡原理
gas
+
polymer
超临界流体注入
混合扩散过程 扩散控制
泡孔成型
泡孔成核
EPP的制造与模压成型 (间歇式工艺)
聚丙烯发泡技术---发泡粒子
石化行业-中石化 PP基础原材料
PP发泡工业材料
包装行业
塑机装备制造业
汽车行业
连续化超临界加工系统的设计与建设
装备要求
• 超临界流体的准确 计量与输送
• 两端开放式系统中 高压环境的建立
• 均相混合体系实现 • 系统的密封与运行
核心技术
• 均相聚合物熔体与超临界流体混合体系 • 强不稳态环境的实现 • 泡孔成核、生长及稳定化
2000吨/年(产业化)
2015
(1)专有发泡分散体系/搅拌---高效分散---高产能 (2)蒸汽自动加热控温策略----±0.1℃ (3)全新设计卸料体系---高效压降控制---高成品率
EPP模压制品
EPP bead foams with foam expansion of 15, 30, 45, and 60 times are available in our lab.
EPP模压制品性能
制品密度
g/l
倍率
压缩强度
psi
@25%
拉伸强度
psi
断裂伸长率
%
(标称应变)
JSP P30
JSP 实测
Kaneka P30
宁波#3珠 宁波#3珠 粒 N16 粒N23
30
31
30
27.6
28
30
29
30
32
32
18.85 20.74 21.75 17.52 17.24
62.35 62.35 62.35 59.45
聚烯烃改性材料进展
2019年11月
报告内容
➢ 聚烯烃材料 ➢ 聚烯烃应用及改性 ➢ 聚烯烃发泡及应用
聚烯烃(PO)
聚烯烃结构
烯烃单体
聚烯烃(PO)
世界主要塑料产品
PVC 19%
ABS 4%
PS 7%
PET
HDPE
7%
17%
LLDPE 11%
PP 24%
World Plastics Demand
PP resin + additives
TP
造粒
Micro-Granulate Dryer
Blowing agent
Water
发泡
Silo
Steam System
Foam Press
成型
聚丙烯发泡粒子(EPP)
EPP = Expanded Polypropylene
PP Pellets Expansion
EPP Beads
Steam Chest Molding
Foam Molded
JSP公司年生产销售超过10万吨的EPP发泡粒子及模压制品 主要用于汽车的保险杠杠芯材料等方面,销售额逾八亿美元.
釜压法EPP的核心技术
PP resin + additives
TP
Blowing agent
微造粒
Micro-Granulate
16πγl3g F
θc ,iΔβ
Stress(MPa) 0.000 0.042 0.063 0.088 0.104 0.115 0.127 0.140 0.154 0.171 0.191 0.216 0.247 0.288 0.344 0.422
0.0 0
10
20
30
40
50
60
70
80
Strain (%)
汽车中的EPP发泡材料
()
LDPE 11%
聚烯烃特点
聚烯烃加工
聚烯烃应用
聚乙烯
聚丙烯
聚烯烃加工改性应用
✓ 填充改性:无机填料及有机调料 ✓ 增韧改性:橡胶及弹性体增韧
刚性粒子增韧 ✓ 共混改性:塑塑及橡塑共混 ✓ 功能改性:抗紫外及防老化
聚烯烃釜内改性应用
✓ 聚烯烃链结构调控 ✓ 聚合工艺研究 ✓ 高性能低成本催化剂 ✓ 高性能低成本助剂
Water

发泡



Dryer
20吨/年(中试) 200吨/年(产业化示范) 2000吨/年(产业化)
(1)专用装备---自主设计制造 (2)塑料改性及微造粒技术
(3)专有的聚丙烯CO2釜压发泡工艺
中试设备完善定型
20吨/年(中试)
2010
示范生产线投产
200吨/年(示范线)
2013
量产产线设计及建设
相关文档
最新文档