聚丙烯改性研究
化学交联改性提高聚丙烯发泡性能的研究

聚丙烯 ( P 发泡材料与聚苯乙烯 ( S 、 P) P ) 聚乙烯 (E 和聚 P) 氨酯 (U) P 等传统的发泡材料相 比, 具有 以下优点: 1耐热性 () 好, 热塑性的聚丙烯泡沫 材料最高使用温度可达 10 通常 3 ℃, 的聚苯 乙烯泡沫最高使用温度约 8  ̄ 聚乙烯泡沫使用温度 0 C,
公司 :
偶氮二 甲酰胺 ( ) A O H, AC , Z . 市售:
三官能团单体 , 季戊 四醇三丙烯酸酯 ( R 4 ) 美国沙 多 S 4 4,
玛上海分公司。
2 实验 设 备 及 仪 器 . 2
0 O ‘ 0 4i0 B i口 8 口 fc ‘ 0 l2口 ‘ T■口‘
图 1 加 入 l DC . b 份 P的 聚 丙 烯 转 矩 随 时 间 的 变化 关 系
图 1a . 所示 为纯 聚丙烯 ( P E S 0 的扭矩 变化 图。 P P 3 R) 平 衡扭矩 为 1 Nm, . 6 经过 1 0 s 7 0 平衡 时间为, 开始 加入物料 是,
转矩迅速升 高 , 2 s 约 7 后达 到转 矩最大值 , 此后 , 随着 时间 的 增加 , 转矩先迅 速下降后下 降较平缓 , 速下降段 ( 78 s 迅 2 -0 )
出, 成泡孔塌 陷, 而导致普通 P 形 从 P无 法 直 接 发 泡 。 为 了克
服这个缺点 , 必需改善 P P基体 的粘弹性 ,目前一般采用下列 ቤተ መጻሕፍቲ ባይዱ
三种方法: 1P ( ) P部分交联, 就是利用辐照交联法或者化 学交 联法使高分子链之 间通过支链连 结成三维空间网状结构,使
熔 体强度 、 体粘 度显著提高。( ) 熔 2 采用高熔体强度 P , P 所谓
转矩流 变仪测试条件 : 温度 2 0 转速 8 r 0 ℃, 0/ m。
聚丙烯的共混改性

当加入PP-g-MAH后,PP/PA6共混 物的拉伸强度和断裂伸长率均提 高。这是因为两者共混时相互排 斥,难以互容。加入PP-g-MAH使 得两个不相容聚合物通过亲和力 取得协同效应,增加了相容性, 所以混合的更均匀,从而改善共 混物各方面的性能。
PP/LDPE共混物的熔体流动速率与LDPE含量的关系
12
10
熔体流动速率(g/10min)
8
6
210℃
4
230℃
2
0 0
20
40
60
80
100
LDPE含量/%
的PP/PE共混物中,TAIC主要分布在PP/PE 共混物的相界面。由辐射引发的TAIC参与的界面反应 ,增强了不相容共混物的相间粘接,改善了共混物的相容 性,提高了共混物的力学性能。
通过改性,可以使PP的性能得到显著改善。
聚丙烯的改性方法
物理改性
化学改性 表面改性
共混改性 复合材料
增强填充改性 共聚改性 接枝改性 交联PP
这里主要讲聚丙烯的共混改性。
PP共混改性是物理改性中的一种重要技术。 它是指用其他塑料、橡胶或热塑性弹性体混入PP中较大的 晶球内,以此改善PP的韧性和低温脆性。按共混物组成可 分为塑一塑共混及橡一塑共混体系,其中较常见的是PP/ 高密度聚乙烯(HDPE)、PP/低密度聚乙烯LDPE)、PP/尼 龙等体系。常用的橡胶增韧PP体系有PP/EPR(乙丙橡胶)、 PP/EPDM(一元乙丙橡胶)、PP/SBS(苯乙烯一丁二烯.苯 乙烯热塑性弹性体)、PP/BR(顺丁橡胶)和PP/POE等。PP 还可采用三元共混体系,此时某些共混改性剂对改善PP的 脆化温度有协同效应,即三元共混体系的抗冲击性能及其 他各项力学性能均优于二元体系。
低密度聚乙烯(LDPE)共混改性聚丙烯(PP)

低密度聚乙烯(LDPE)共混改性聚丙烯(PP)一、实验目的通过本实验,使学生初步了解和掌握聚丙烯的性能以及聚合物共混改性的方法;了解标准试样的制备方法;了解并掌握简单的聚合物复合材料的表征方法和测试手段,为毕业论文实验打下良好的基础。
聚丙烯(PP)的合成和应用可以追溯到上1950年,一位名叫Natta 教授成功地在实验室合成聚丙烯[1]。
大半个世纪过去,几代科研人员的投入大量精力,已经把聚丙烯从实验室产品开发成为富有功能的合成树脂的主导成员。
现今,聚丙烯是热塑性树脂中发展很成熟的种类之一。
我国对聚丙烯的基础性研究已有半个世纪,生产技术从催化剂的获得到聚合工艺的精进,以及新产品和新应用领域的开发都有很大进步,然而,同国外同行研究成绩相比,我国从聚丙烯产品的开发到应用均还存在差距,因此,聚丙烯领域的相关研究还有很大空间[2]。
聚丙烯与聚乙烯,聚氯乙烯,聚苯乙烯,ABS 组成五大通用塑料,其增长速度最快、开发潜力最大的一类树脂[3]。
聚丙烯作为热塑性树脂,具有很好的实用性,并且价格低廉,在人们的日常生活和工业生产制造等多个领域到处都发挥着重要作用。
聚丙烯(PP)具有比重小、耐热性好、耐腐蚀性好、成型加工容易、力学性能优异且原料来源丰富、价格低廉等优点[1],已经在全世界范围内大量生产和使用,其产量仅次于聚乙烯,成为第二大塑料品种[2]。
聚丙烯的优点得以让其迅速发展,但同时聚丙烯的缺点却也限制了其在各行各业中的应用,比如聚丙烯强度不高、易老化、易燃、韧性差、耐寒性差、低温易脆断、成型收缩率大、抗蠕变性能差、制品尺寸稳定性差、易产生翘曲变形等等[3]。
因此,对聚丙烯的改性势在必行。
从二十世纪六、七十年代起国内外就开始针对聚丙烯的缺点、对其如何改性进行了大量的研究,采用了多种方式对聚丙烯进行改性,提高了聚丙烯的性能,大大扩展了聚丙烯的应用范围[4-5]。
对聚丙烯的改性方法可划分为化学改性和物理改性。
化学改性有共聚、接枝、交联等,物理改性有共混、填充、增强等。
聚丙烯及其改性材料简介

目录一聚丙烯........................................... 错误!未定义书签。
聚丙烯的性能................................... 错误!未定义书签。
(1)优点.................................... 错误!未定义书签。
(2)缺点.................................... 错误!未定义书签。
聚丙烯链的立体结构............................. 错误!未定义书签。
聚丙烯的晶体结构............................... 错误!未定义书签。
二聚丙烯改性....................................... 错误!未定义书签。
三聚丙烯填充与增强改性新材料....................... 错误!未定义书签。
聚丙烯填充改性性能特点及发展趋势............... 错误!未定义书签。
常用填充材料................................... 错误!未定义书签。
1、碳酸钙.................................... 错误!未定义书签。
2、滑石粉.................................... 错误!未定义书签。
3、高岭土.................................... 错误!未定义书签。
聚丙烯的增强改性............................... 错误!未定义书签。
聚丙烯填充与增强改性新材料..................... 错误!未定义书签。
1、碳酸钙与滑石粉填充改性聚丙烯.............. 错误!未定义书签。
2、玻璃微珠改性聚丙烯新材料.................. 错误!未定义书签。
聚丙烯功能化改性材料研究进展

达 到预期 的效 果 ,得 到 不 同需求 的 P P制 品 。本 文 即
是对 通 过 不 同 的改性 方 法 得 到 的各种 功 能 化 P P制 品 进行 分 析介绍 。
面进 行 了研究 。抗 菌 剂的制 备方 法是 以有 不 同取 代 基 的 三元胺 与氯 球 ( 联 氯 甲基 聚 苯 乙 烯 ) 进 行 季铵 交
而且 其卫 生 白洁功 能减 少 了交叉 感染 ,并且 免去 了清 洗保 洁等 繁杂 的劳 动 ,其抗 菌长 效性 可与 制 品的使用 寿命 同步 。
度进 口量 的 4倍 多 。随 着我 国对 P P需求 的大 幅增 长 ,
目前 我 国仍 在继 续投 资 P P项 目,预 期 到 2 1 我 国 0 0年
化 反应 ,由此 生成 不溶 性 的季 铵 盐 高分 子 抗 菌 剂 ( P 型抗 菌剂 ) 。研究 发 现 随取 代 基碳 链 长 度 的增 加 ,含
1 抗 菌 改性 新材 料
P P在 我们 的 日常 生 活 领 域 具 有 广 泛 的应 用 ,大
到洗 衣 机 、冰箱 ,小 到奶 瓶 、食 品包装 薄膜 ,应 用无 处不 在 。但其 易 受有 害微 生物 的 污染 ,在使 用 时会对
功能 和 应 用 范 围 的 发 展 。为 了 改 善 P P性 能 上 的 不 足 ,国内外均 对 P P进 行 了不 同 的改 性 研 究 J ,发 现P P可 通过 物 理 改 性 和 化 学 改 性 进 行 不 同的 处 理 ,
夏英 等 制 备 了不 同取 代 基 的季 铵 盐 高 分 子 抗
张丽 英等 用 钛 酸 酯 偶 联 剂 处 理 过 的抗 菌剂 对
聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用概述聚丙烯(Polypropylene,简称PP)是一种常见的塑料材料,具有良好的加工性能、强度和耐化学腐蚀性。
然而,聚丙烯在某些方面的性能还有待改善。
改性聚丙烯通过添加不同的添加剂、改变配方比例或改变加工工艺等方式,改善了聚丙烯的某些性能,扩展了其应用范围。
本文将介绍聚丙烯塑料的改性方法及其在各个领域中的应用。
聚丙烯塑料的改性方法1. 添加剂改性添加剂改性是最常见的一种聚丙烯塑料改性方法。
通过向聚丙烯中添加不同的添加剂,可以改变聚丙烯的物理、化学性能,提高其加工性能和耐候性。
常见的添加剂包括: - 填充剂:如碳酸钙、滑石粉等,可以提高聚丙烯的刚性和抗冲击性; - 阻燃剂:如氯化磷、硫酸铵等,可以提高聚丙烯的阻燃性能; - 稳定剂:如抗氧剂、紫外线吸收剂等,可以提高聚丙烯的耐氧化和耐候性; - 助剂:如流动剂、增韧剂等,可以改善聚丙烯的加工性能。
2. 共混改性通过与其他聚合物进行混合,可以改善聚丙烯的性能。
常见的共混改性方法有物理共混和化学共混两种。
•物理共混:将聚丙烯与其他聚合物机械混合,形成共混体系。
物理共混可以改善聚丙烯的强度、韧性和耐热性。
•化学共混:通过共聚反应或交联反应,将聚丙烯与其他聚合物进行化学结合。
化学共混可以显著改善聚丙烯的力学性能、热性能和耐化学性。
3. 改变配方比例通过改变聚丙烯的配方比例,如增加共聚单体的含量、调节分子量分布等方式,可以改变聚丙烯的结晶度、熔体流动性和力学性能。
•增加共聚单体含量:在聚丙烯的聚合过程中,加入适量的共聚单体,如丙烯酸、丙烯酸酯等,可以改善聚丙烯的柔韧性、降低结晶度。
•调节分子量分布:通过控制聚合反应条件,可以得到不同分子量分布的聚丙烯,从而改善聚丙烯的加工性能和力学性能。
聚丙烯塑料的应用领域聚丙烯的优良性能使其在各个领域都有广泛的应用。
1. 包装行业聚丙烯具有较高的刚性和抗冲击性,被广泛用于包装行业。
聚丙烯制成的塑料包装材料可以应用于食品包装、医药包装、化妆品包装等领域。
聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用1. 背景介绍聚丙烯(Polypropylene,简称PP)是一种常见的聚合物材料,具有良好的机械性能、耐热性、耐化学腐蚀性等特点,因此在工业和日常生活中广泛应用。
然而,纯聚丙烯材料在某些方面的性能仍然有待改善,这就需要对聚丙烯进行改性处理。
2. 改性方法2.1 添加剂改性添加剂改性是指向聚丙烯中加入适量的改性剂,以改善其特定性能。
常见的添加剂包括增塑剂、抗氧剂、阻燃剂等。
增塑剂可以提高聚丙烯的可塑性和柔韧性,抗氧剂可以延缓聚丙烯老化速度,阻燃剂可以提高聚丙烯的阻燃性能。
2.2 交联改性聚丙烯的交联改性是指通过物理或化学方法,在聚丙烯分子链之间建立交联,提高聚丙烯的热稳定性和力学性能。
常见的交联改性方法包括辐射交联、热交联和化学交联等。
2.3 接枝改性接枝改性是指将其他具有良好性能的高分子化合物接枝到聚丙烯分子链上,以提高聚丙烯的性能。
接枝改性可以增加聚丙烯的韧性、耐疲劳性和耐磨性等。
3. 改性聚丙烯的应用3.1 包装材料改性聚丙烯在包装材料领域有着广泛的应用。
由于其良好的耐热性和耐化学腐蚀性,改性聚丙烯袋可以用于食品、医药等领域的包装,保证产品的安全性和卫生要求。
3.2 汽车零部件改性聚丙烯在汽车工业中的应用越来越广泛。
其优异的力学性能和耐冲击性使得改性聚丙烯成为制造汽车零部件的理想材料,如汽车内饰件、车身板材、底盘保护装置等。
3.3 电子电器改性聚丙烯具有良好的绝缘性能和抗静电性能,因此在电子电器领域得到了广泛应用。
例如,手机壳、电视机外壳、电器配件等都可以采用改性聚丙烯制造。
3.4 医疗器械由于改性聚丙烯具有良好的耐腐蚀性、生物相容性和低毒性等特点,适用于医疗器械的制造。
例如,输液瓶、注射器、手术器械等都可以采用改性聚丙烯。
4. 结论通过添加剂改性、交联改性和接枝改性等方法,可以显著提高聚丙烯的性能,拓展其应用领域。
改性聚丙烯在包装材料、汽车零部件、电子电器和医疗器械等领域都有着重要的应用价值。
聚丙烯接枝改性技术研究进展

1P P接枝 改性技 术及进展
定条 件 下加 入挤 出机进 行熔 融 接枝 反 应 。该 方
法 始 于 2 世 纪 7 年代 , 当今一 种较 成 熟 的工业 O 0 是 化 方法 。 由于 该 方法 不需 要额 外 投资 添加 专用 设 备 , 以 利用 生 产 改 性 塑料 的双 螺 杆 挤 出机 来 实 可
摘要 : 阐述 了聚丙烯 ( P 接枝改性方法及其研究进展 。对溶液法接枝 、 P) 熔融法接枝 、 辐射法接 枝等工艺技术进行 了探讨 , 同时对各种不 同接枝方法的特点进行 了比较 , 出超临界 C 得 O 协助 固相接枝工艺是相对环保 、 实用的聚丙烯接枝改性方法 的结论 。
关 键 词 : 丙 烯 ; 枝 ; 性 技 术 ; 展 聚 接 改 进
操作 费 用 高 , 环境 污 染 严 重 。但 对 于实 验 室 研究
温 度 高 致 使 副 反应 ( 联 或 降解 ) 重 , 材 料性 交 严 对 能有 严 重 的负 面影 响 , 对 挥发 性 的单 体 适 用 不 且 佳 。熔 融法接 枝改性 P 在 国 内外 均进 行 了大量 的 P 研 究 , 志 君 等 对 P 多 单 体熔 融接 枝 进行 了研 李 P
中图分类号: Q 2 . T 351
文献标识码 : B
文章编号 :6 14 6 (0 0 0- 0 1 0 17 - 9 2 2 1 )5 0 0 — 5
聚丙烯 (P 以强度高 、 P) 耐热性好 、 密度小 、 易 加_ T和廉 价 等特点 成 为最 具发 展 前途 的 热 塑性 塑
料 之一 。但 由于 P 是 非极性 聚合 物 , 亲水 性 、 P 其 染
炼 油 与 化 T
2 1年 第 5 00 期
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原理工大学硕士学位论文聚丙烯改性研究姓名:王文杰申请学位级别:硕士专业:高分子化学与物理指导教师:吕志平20100501聚丙烯改性研究摘要本文利用对叔丁基苯甲酸、钛酸四异丙酯和正硅酸乙酯合成了钛类新型成核剂,考察了此类成核剂的性能;并探讨研究了N-甘氨酸基马来酰胺酸(GMA)、N-甘氨酸基马来酰胺酸钙(GMACa)和N-二乙酸基马来酰亚胺(DAMI)熔融接枝到聚丙烯上的可行性,考察了改性后聚丙烯的性能。
通过热重分析(TG)、X-射线衍射分析(XRD)、差示扫描量热分析(DSC)、偏光显微镜和力学性能测试等手段进行了表征,并测试了聚丙烯的维卡软化点和熔融指数。
TG测试结果表明:钛类成核剂在温度为254.1℃时开始分解,这说明此类成核剂在聚丙烯加工温度(200-220℃)下是稳定的,可以作为聚丙烯的成核剂。
DSC、XRD、维卡软化点和偏光显微镜测试结果表明:钛类成核剂为有效的聚丙烯α晶型成核剂,在聚丙烯中加入0.3%的成核剂TST后,其结晶温度和结晶速率都有了不同程度的提高,分别比纯PP提高了15.62℃和3%,结晶起始温度与结晶峰温度之差也由纯PP的4.4℃降低到了2.8℃;聚丙烯的维卡软化点比纯PP提高了7.7℃;聚丙烯的球晶尺寸明显减小,晶粒之间的界面模糊。
熔融接枝改性聚丙烯后,聚丙烯的结晶速率、结晶度和维卡软化点均有不同程度的提高,其中GMA在其质量分数为2%时,聚丙烯的结晶温度和结晶度分别比交联基础数据提高了9.18℃和5.6%;聚丙烯的维卡软化点提高了18.1℃;聚丙烯的晶粒明显细化,球晶之间界限不明显。
力学性能测试结果表明:利用钛类成核剂改性后,聚丙烯的力学性能都有了不同程度的提高。
其中拉伸强度最大为40.54MPa,最大增幅为15.2%;抗弯曲强度最大为61.35MPa,最大增幅为26.3%;抗冲击强度最大为13.02kJ/m2,最大增幅为114.9%。
利用熔融接枝改性聚丙烯后,聚丙烯的拉伸强度、抗弯曲强度和抗冲击强度比交联基础数据也有了大幅度地提高,而且尤以接枝N-甘氨酸基马来酰胺酸后聚丙烯的力学性能最好,其拉伸强度、抗弯曲强度和抗冲击强度最大分别为41.18MPa、51.74MPa和17.35kJ/m2。
关键词:聚丙烯,成核剂,钛类成核剂,熔融接枝,性能STUDY ON MODIFICATION OF POLYPROPYLENEABSTRACTIn this paper, a kind of new titanium nucleating agents were prepared by isopropyl titanate, p-tert-butyl-benzoic acid and tetraethyl orthosilioate, and their performance were investigated. The feasibility of melt-grafteded polypropylene(PP) by maleic anhydride(MAH), N-glycine amide maleic acid (GMA), N-glycine amide maleic calcium (GMACa) and N-diacetic acid maleimide (DAMI) were explored, and the performance of modified polypropylene were also studied.The modified polypropylene with new nucleating agents were tested by the methods of thermogravimetric analysis (TG), X-ray diffraction analysis(XRD), differential scanning calorimetry(DSC), polarizing microscopy and biomechanical testing, and vicat softening point and melt index were also tested.The results of TG show that titanium nucleating agent begin to decompose at the temperature of 254.1℃. They are stable in the polypropylene’s processing℃, so they can be used as nucleating agent of temperature (200-220)polypropylene.The results of DSC, XRD, vicat softening point and polarizing microscopy show that the titanium nucleating agent are effective α crystalline nucleating agent of polypropylene, the crystallinity, crystallization temperature and crystallization rate of modified polypropylene have been increased in varyingdegrees. Compared with pure PP, the crystallization temperature and crystallinity are increased 15.62℃ and 3%, the difference of crystallization onset temperature and crystallization peak temperature reduced from 4.4℃ of the pure PP to 2.8℃, vicat softening point of modified polypropylene increased 7.7℃. Polypropylene’s spherulite size are decreased significantly, and the boundaries between grains are weakened.The crystallization rate and crystallinity of modified PP by melt grafting have been improved to some extent, Compared with the cross-linking blank in 2% of GMA’s mass fraction, polypropylene’s crystallization temperature and crystallinity are increased 9.18℃ and 5.6%; vicat softening point of modified polypropylene increased 18.1℃, the grains of modified polypropylene are refined significantly, and the boundaries between spherulites are not obvious.The mechanical properties of PP modified with titanium nucleating agents are improved in varying degrees, the maximum of tensile strength is 40.54MPa, and the largest increase is 15.2%; the maximum of anti-bending is 61.35MPa, and the largest increase is 26.3%; the maximum of impact strength is 13.02kJ/m2, and the largest increase is 114.9%.The melt grafted polypropylene’s tensile strength, flexural strength and impact strength have been significantly increased compared with cross-linked blank of PP. The mechanical properties of grafted polypropylene by N-glycine Maleic acid amide are the best, their largest tensile strength, flexural strength and impact strength are 41.18MPa, 51.74MPa and 17.35kJ/m2.KEY WORDS: polypropylene, nucleating agents, titanium nucleating agents, melt grafting, performance第一章文献综述及选题聚丙烯(PP)是一种性能优良的塑料材料,具有高的热变形温度、优良的刚性、电绝缘性、卓越的耐折叠性和易加工成型。
因而广泛地应用于纤维、日用品、包装薄膜、工业制品、涂料等领域[1-3]。
在五大通用塑料中,产量仅次于聚乙烯和聚氯乙烯,国内消费量仅次于聚乙烯位列第二位。
但聚丙烯也存在对缺口敏感、韧性差、成型收缩率大和不耐磨等缺点。
随着塑料工业的迅速发展,工业需要调整产品结构,开拓新的应用领域,增加新型高性能的品种和牌号,大力研究开发PP改性技术和改性产品,促使PP向功能材料和工程塑料方向发展[4-9]。
1.1 聚丙烯改性方法为了改进聚丙烯性能,延长其寿命并进一步扩大聚丙烯的应用领域,聚丙烯的改性研究工作相当活跃,其方法也多种多样。
总体上可分为:物理改性和化学改性。
1.1.1 物理改性方法1.填充改性填充PP的有机填料有木粉、稻壳粉、玉米棒芯、花生壳粉等;常用的无机填料常用:碳酸钙、滑石粉、云母粉、硅灰石等。
为了得到性能优良的填充聚丙烯,应考虑以下几点:填料粒度、填料种类、填料的界面作用和填料在聚丙烯中的分散性等。