PP与PE共混改性ppt

合集下载

PE对PP共混改性是如何起到抗冲击强度

PE对PP共混改性是如何起到抗冲击强度

广州科系维新材料有限公司TPE、TPR透明料白色料耐黄变性影响因素探讨开始讨论之前,先来谈谈两个概念:耐黄变性和氢化。

1.耐黄变性——指浅色材料遇电负性强(强氧化性)介质时对该氧化性介质的抵御能力(或称抗氧化性),若材料对氧化性介质的抵御性差,则材料容易发生氧化变黄,耐黄变性差。

2.氢化——含不饱和键(通常指碳碳双键和三键,也包含其他原子之间的不饱和键)的有机或高分子化合物分子,在适当的作用条件下(如温度,压力,引发剂及催化剂等存在)与氢原子发生加成或加聚反应,破坏不饱和的双键或三键,使氢原子与原来不饱和键原子间形成更为稳定的化学键(如碳氢单键)。

发生氢化作用后,在微观层面,材料由于形成更稳定的单键结构,使得材料的化学稳定性,抗氧化性及耐黄变性增强。

再来讨论TPE、TPR透明料白色料的耐黄变性影响因素。

个人的观点,影响TPE.TPR透明料或浅色料耐黄变性的主要因素有三,一是橡胶基料的种类和产地,二是操作油的种类,三是抗UV剂的添加。

先看橡胶基料。

首先以SEBS为基料的TPE比以SBS为基料的TPR具有更好的耐黄变性。

因为SEBS是SBS热塑性橡胶的氢化产物。

按照上面谈到的氢化理论,那么TPE透明料的耐黄变性要优于TPR透明料的耐黄变性。

再来看操作油的种类,有些品质差的操作油,容易导致TPE透明料易发黄,因此操作油生产厂家的生产加工工艺很重要。

选择加氢次数多的白油,可以改善其耐黄变性能.另外操作生产过程中添加抗氧化剂或防老化剂,可以改善操作油的耐黄变性。

对于一些耐黄变要求很高的透明或白色TPE制品,可以考虑在TPE配方中添加抗UV剂,以增强材料的抗黄变性能。

最后再说下关于SEBS的氢化度,在业界提到这么一种观点。

国产的SEBS的氢化度要低于进口的SEBS。

笔者比较认同这一论断。

以不同产地的SEBS(SEPS)做基料,得到的TPE的透明度不同。

而SEPS与SEBS,二者的橡胶链段相比较,SEPS的结晶性更高,更容易获得高的透明度。

关于聚烯烃(聚丙烯、聚乙烯)共混改性的现代研究

关于聚烯烃(聚丙烯、聚乙烯)共混改性的现代研究

关于聚烯烃(聚丙烯、聚乙烯)共混改性的现代研究摘要随着当今社会的快速发展和科学技术的不断进步,高分子材料在工农业中应用的比重也在不断增加,并得到了广泛的应用。

由于塑料是高分子材料发展的重要内容之一,PP在使用过程中,不仅应该具有较高的强度,也应该有良好的韧性。

因此对通用大品种树脂聚丙烯(PP)和聚乙烯(PE)开展改性研究一直是高分子材料科学研究领域的重要课题。

关键词聚烯烃;聚丙烯;聚乙烯;共混改性前言众所周知,PP和PE是重要的通用大品种树脂,聚丙烯(PP)具有比重小、耐应力开裂性和耐磨性能突出、较好的耐热性和化学稳定性等优点,但脆性和低温抗冲击性能差。

聚乙烯(PE)具有优良的电绝缘性、耐化学性、耐低温性和良好的加工流动性等特点,但耐热性差、耐大气老化性能差以及易应力开裂等缺点也相当突出。

因此聚丙烯和聚乙烯的改性研究已经成为目前高分子材料科学研究的重点,本文主要对聚丙烯(PP)与聚乙烯(PE)的共混改性进行研究与探讨。

1 聚烯烃概述1.1 聚丙烯聚丙烯(即)是非常重要的廉价通用高分子材料,它具有比重小、耐应力开裂性和耐磨性能突出、较好的耐热性和化学稳定性等优点,广泛用于薄膜、管材、板材、注射产品及中空制品中。

聚丙烯相对低的价格和适宜的特性提高了它的市场效能,不仅用做其他材料的替代物,而且也不断地开发出一些新的应用[1]。

1.2 聚乙烯聚乙烯工艺化已有60多年的歷史,聚乙烯现在是世界上产量最大、品种繁多的最重要的合成树脂之一。

其应用已深入到国民经济的各个部门和人们的日常生活中。

历经半个多世纪的开发,现在已能生产各种类型和品级的聚乙烯树脂,可以做成不同形式、不同用途的系列制品。

在满足最终用途的前提下,与其他聚合物和非聚合物材料相比,聚乙烯树脂以其价廉质优而具有强劲的市场竞争力,已发展成生产量大、用途宽广的最重要的一类通用树脂。

2 聚烯烃(聚丙烯,聚乙烯)共混改性方法2.1 塑料增韧PP采用塑料类作为PP增韧改性的改性剂,不仅可以达到增韧的目的,而且可使材料的耐磨性、染色性等得到改善,且价格低廉。

聚丙烯的共混改性优秀课件

聚丙烯的共混改性优秀课件
二、PP/尼龙6(PA6)共混体系
聚酰胺(PA)具有较高的强度、耐磨性和抗疲劳性,抗 冲击性能较好,广泛应用于工程领域。尼龙6(PA6)是PA中 最韧的一种,它具有弹性好、冲击和拉伸强度高、耐磨和加 工流动性好等优点,但也存在吸水性大、吸水后冲击强度和 弹性模量下降、形状和尺寸稳定性变差等缺点。
安徽建筑大学
8
将PP与PA6共混不仅可达到增韧PP的目的,使其耐磨性 、刚性等得到改善,还可以改善PA6尺寸稳定性等,克服了 PP及PA6各自固有的缺点,性能上取长补短,而且由于PP价 格低廉。因此,对于PP与PA6共混,人们进行了大量的研究 。但PP是一个非极性的高聚物,在大分子链上无可反应的 基团,其溶解度参数为8.2~9.2,而PA6大分子链节中含有 酰胺基团,是一个极性很强的聚合物,其溶解度参数达 12.7,因此,PP与PA6是严格的不相容体系。需要在共混物 中加入增容剂,以改善体系的相容性。
安徽建筑大学
13
目前解决相容性的主要方法还是加入带反应性官能团的 增容剂与PA6和PP共混,使增容剂与PA6在共混过程中生成 具有增容作用的共聚物,实现PA6与PP相容性共混,进而影 响PP/PA6共混物的微观结构和性能。早期的研究者认为, 共混过程中增容剂发生了迁移,分布到了PP和PA6两相界面 上,减小了两相界面张力,产生了一种强的物理相互作用 ,与液—液不相容体系的乳化机制相似。后来研究者发现 ,增容剂能与PA6反应生成新的共聚物,正是该共聚物对 PP、PA6起实质性的增容作用,即通过相间的化学反应,产 生类似于聚合物—玻纤或矿物填料的偶联机制,增容剂可 视为一种聚合物—聚合物化学偶联剂。已研究的增容剂主
安徽建筑大学
4
下面主要介绍几种塑料、橡胶和热塑性弹性体对PP共混增 韧改性。

pp增韧及pp、pe共混

pp增韧及pp、pe共混

PP增韧及PE/PP共混改性研究摘要:从塑料增韧聚丙烯(PP)体系(主要是与PE共混)、橡胶或热塑性弹性体增韧PP体系以及无机刚性粒子增韧PP体系3个方面详细论述了国内外PP共混增韧改性的研究进展。

采用塑料类作为改性剂增韧PP,虽可增韧,但是由于体系的不相容性,往往要大量使用改性剂或添加相容剂。

PE 增韧P P 的效果取决于共混物中PE 的用量, 当PE 质量分数达到25%~40 %时, 共混物既有良好的韧性和拉伸强度,又有较好的加工性能。

使用橡胶或者热望性弹性体与PP共混增韧效果最为明显。

但由于随着弹性体用量的增加,体系在冲击强度大幅提高的同时也出现了刚性等性能的损失。

此外,还就近年发展起来的无机刚性粒子增韧PP的研究工作进展和机理研究情况作了介绍。

关量词:聚丙烯增韧聚乙烯共混改性聚丙烯(PP)是通用热塑性树脂中增长最快的品种之一,广泛应用于工业生产的各个领域。

PP生产工艺简单,价格低廉,有着优异的综合性能。

而其亟待克服的最为突出的缺点是它的缺口敏感性显著,即缺口冲击强度较低,尤其在低温时更为突出,因此在实际应用中需要进行增韧。

PP共混增韧方法以其效果显著、工业化投资少且迅速易行等特点而广为应用。

共混增韧改性是指用其他塑料或弹性体等作为改性剂与PP共混,以此改善PP的韧性。

常用的改性材料主要分为塑料、橡胶或弹性体以及无机刚性粒子等几类。

1.塑料增韧PP体系采用塑料类作为PP增韧的改性剂.不仅可以达到增韧的目的,而且可使材料的耐磨性、染色性等得到改善,且价格较为低廉。

应用较多的有高密度聚乙烯(HDPE)、线型低密度聚乙烯(ILDPE)、乙烯-醋酸乙烯共聚物(EVA)、聚氯乙烯、聚酰胺(PA)等。

但由于他们与PP的不相容性,要使体系达到较高的韧性往往需要加大改性剂用量或添加相容剂。

1.1PP/聚乙烯(PE)1.1.1 高密度聚乙烯结构、性能及应用高密度聚乙烯(HDPE)是在每1000个碳原子中含有不多于5个支链的线型分子所组成的聚合物。

PP与PE共混改性

PP与PE共混改性

原料的称量与干燥
称量: 称量:用电子秤分别称取 PP 850g 、LDPE 150g 设备: 设备:干燥机 塑料名称 PP LDPE 吸水率 0.01%~0.04 % <0.01% 干燥温度 80~100℃ ℃ (热风循环) 70~80℃ ℃ 干燥时间 2小时左右 小时左右 1~2小时 ~ 小时
注:PP,LDPE为非极性的结晶塑料,吸水率很低, , 为非极性的结晶塑料,吸水率很低, 为非极性的结晶塑料 一般可不干燥。 一般可不干燥。
PP与PP/LDPE共混流变性检测 与 共混流变性检测
仪 器 物(混)料 量 切出样条规 格 温度设 切样时 间 定
熔体流动速率仪 砝码: (砝码:21.18g 电子秤、 ) 、电子秤、天 平
5g
长1~2.5cm
230℃ ℃
30s
试验注意事项: 试验注意事项:
• 试验前需对物料进行干燥将所用仪器、容器进行洁净 试验前需对物料进行干燥将所用仪器、 • 加料需在一分钟内完成并用压料杆压紧物料 • 样条要求:无气泡,不发黄,无杂质,外观良好 样条要求:无气泡,不发黄,无杂质, • 样条冷却后,分别称量 精确至 样条冷却后,分别称量(精确至 精确至0.1mg)。若所切样条中的 。 重量最大值和最小值超过其平均值10%,试验必须重做。 %,试验必须重做 重量最大值和最小值超过其平均值 %,试验必须重做。
1. 吸湿性小 易发生融体破裂 容易高温热氧老化,长期与热金属 吸湿性小,易发生融体破裂 容易高温热氧老化, 易发生融体破裂,容易高温热氧老化 接触易分解。 接触易分解。 2. PP熔体的粘度随剪切速率的增大而降低。 熔体的粘度随剪切速率的增大而降低。 熔体的粘度随剪切速率的增大而降低 3.保压时间长,制品的收缩率低,但由于凝封压力增加,制品会 保压时间长,制品的收缩率低,但由于凝封压力增加, 保压时间长 产生内应力,故保压时间不能太长。 产生内应力,故保压时间不能太长。 4.塑料壁厚须均匀 避免缺胶 尖角 以防应力集中。 塑料壁厚须均匀,避免缺胶 尖角,以防应力集中 塑料壁厚须均匀 避免缺胶,尖角 以防应力集中。 5.收缩范围及收缩值大 易发生缩孔 凹痕 变形。 收缩范围及收缩值大,易发生缩孔 凹痕,变形 收缩范围及收缩值大 易发生缩孔.凹痕

PP与PE共混改性PPT优秀课件

PP与PE共混改性PPT优秀课件
16
试验流程:
称取试样 调温 机器预热 投料
称量
计算
出料
MFR计算公式 : 600W/t
单位:g/min
m——切取样条质量的算术平均值 t——切取时间间隔
17
实验数据统计:
试样 数量
(个 )
总量 (g )
单量 (g )
MFR
(g/10 min)
PP 7
1.2 0.171 3.4 4
PP/LD 6
断裂力值 (N) 893.7



75
75
50
1500 1200 1500
1090.9 1116.4 未
14.2 15.4


1090.5 1116.1
973.4 953.0
22
燃烧试验
• 仪器:铁架台,酒精喷灯,秒表 • 试样规格:长8.76㎝ • 试验过程:
各取PP,PP/LDPE试样五个,分别放在铁架台上 作水平燃烧试验,记录其在1min内所燃烧的长度。
• ④夹具夹持试样时,试样纵轴与上,下夹具中心线重合, 并防止试样滑脱,或断在夹具内。
• ⑤试样断裂在中间平行部分之外时,应另取试样补做。
21
实验数据统计:
PP
实验一
拉伸速度
100
(mm/min)
拉伸力值 (N) 1500
最大力值 (N) 1121.0
最大位移( 19.5 mm) 应服力值 (N) 1120.8
前言
1951 年制成了结晶聚丙烯,此后发展了PP/ PE 共混物,通过对聚丙烯进行共混改性,克服其纸 温脆性、易老化、耐候性差等缺点,使其综合性 能大大提高,进入了工程塑料领域,并成为通用工 程塑料及合金的强用力的对手。

塑料共混改性技术培训讲义

塑料共混改性技术培训讲义
聚合物的共混改性。
2020/11/26
12
(2)填充改性
在聚合物基体中添加与基体组成和结构不同 的固体添加物以降低成本,或是聚合物制品的 性能有明显改变。
(3)纤维增强改性
在聚合物基体中加入增强材料(纤维)以改 进聚合物性能,特别是力学性能的改性方法
2020/11/26
13
(4)化学改性
通过聚合物的化学反应,改变大分子链上的原 子或原子团的种类及其结合方式,如嵌段和接枝共 聚、交联、互穿聚合物网络等化学的方法进行的改 性。
35
3、开机
①主机起动前全部机组运转部分须供电备用;
②主机起动后引膜同时供气(挤出——提膜——喂辊 ——充气——卷取),
③按制品规定达到宽度后调整好制品厚度及偏差; ④调整好风量,各部分运行线速度配合适当,收卷
效果良好。
2020/11/26
36
4、运行过程重点检测: ①纵横向收缩率; ②直径尺寸及两端直径偏差; ③厚度尺寸及偏差; ④宽度尺寸及偏差; ⑤端面平整度和外圆平整度。
• 不同的制品对材料性能的要求有 哪些?(如水杯、塑料盆、矿泉 水瓶、工艺品等)
• 当现有原材料不能满足制品要求 时如何处理?(两种办法)
• (1)更换原材料
• (2)对现有材料改性
2020/11/26
3
• 绪论 1.本课程内容、性质、任务和要求 <1>课程内容 • 情境一、啤酒包装用PE热收缩膜用料的制备 • 情境二、增溶剂MaPE的制备及应用 • 情境三、共混型热塑性弹性体的制备 • 情境四、抗冲击聚苯乙烯料的制备 • 情境五、阻燃电器外壳ABS合金料的制备
2020/11/26
10
任务:选择改性方法 一.高分子改性的主要方法 (1)共混改性 (2)填充改性 (3)纤维增强改性 (4)化学改性 (5)纳米复合材料

聚丙烯的共混改性

聚丙烯的共混改性

8.2.1

显示了采用四螺杆挤出机制备的PP/UHMWPE 二元共混物冲击样 条断裂面的SEM照片。可以注意到,其冲击断裂面的形态与采用双螺 杆挤出机制备的样品完全不同。在断裂面中形变加大的同时,可以发 现分布均匀且尺寸非常细微的小颗粒,颗粒直径约在013μ m 左右,其 尺寸随UHMWPE 含量增加而减小,并在UHMWPE 含量为15 %(wt) 时达 到最细化。对比图9 和图10 ,也表明四螺杆挤出机对UHMWPE 的分散 作用远大于双螺杆挤出机。
8.2.3聚丙烯与其他弹性体的共混
SBS类热塑性弹性体与PP的共混,SBS可作为 PP的增韧剂。随SBS掺入量的提高,PP/SBS共 混物的冲击强度,断裂伸长率逐步提高,拉伸 强度,弯曲膜量和硬度下降。
CaCO3填充的PP/SBS体系,可提高其弯曲强 度,降低热收缩率,改善尺寸稳定性,但对冲 击强度又不利的影响。
8.2.1聚丙烯与聚乙烯的共聚
• 聚丙烯/聚乙烯共混为多相体系,其性质受组 成比例制约。此种共混物的密度与组成的关系 符合式8-3
m 0.9029 0.0544 PE % W
• PP/PE的拉伸强度一般随聚乙 烯含量增加而下降。如图8- 16,在大约含20%HDPE以内, PP/HDPE共混物的拉伸强度及 冲击强度均随HDPE含量的增加 而提高。 • PP/PE共混,韧性有所改善。
聚丙烯钙塑塑料
聚丙烯钙塑塑料中掺入LDPE亦有良好的改性效 果,例如可以提高聚丙烯钙塑塑料的冲击强度、刚 度、耐磨耗性能,而且制品较透明。此种共混物钙 塑材料管,可采用表8-19所示之配方: 原料名称 配比 (重量份) 90 10 原料名称 配比 (重量份) 50 1.5
PP
LDPE
重晶石粉
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
增韧原理
PP与PE都是结晶性聚合物,它们之间没有形成共 晶,而且各自结晶,形成相容性不良的多相体系。
但两者晶体之间却发生相互制约作用,可破坏PP 的球晶结构,PP球晶被PE分割成晶片,使PP不能 生产球晶。随着PE用量增大,分割越显著,PP晶 体则被细化,PP晶体尺寸变小,促使PP与PE共混 体系冲击强度得到提高。
组号:八
主讲人:张丽萍
组员:张丽萍
刘晓露
-
陈岁年
前言
1951 年制成了结晶聚丙烯,此后发展了PP/ PE 共混物,通过对聚丙烯进行共混改性,克服其纸 温脆性、易老化、耐候性差等缺点,使其综合性 能大大提高,进入了工程塑料领域,并成为通用工 程塑料及合金的强用力的对手。
-
目录
一、PP与LDPE共混配方及分析
-
原料的称量与干燥
称量:用电子秤分别称取 PP 850g 、LDPE 150g
设备:干燥机
塑料名称
吸水率
干燥温度
干燥时间
PP LDPE
0.01%~0.04 %
<0.01%
80~100℃ (热风循环) 70~80℃
2小时左右 1~2小时
注:PP,LDPE为非极性的结晶塑料,吸水率很低,
一般可不干燥。
PP/LDPE共混样4个 要求:试样中间标记范围内无缩孔、气泡
表面完好无损,无裂纹
-
试验注意事项:
• ①在试样中间部分作标线,此标线应对测试结果没有影响 。
• ②测量试样中间平行部分的宽度和厚度,每个试样测量三 点,取算术平均值。
• ③拉伸速度一般根据材料及试样类型进行选择。
• ④夹具夹持试样时,试样纵轴与上,下夹具中心线重合, 并防止试样滑脱,或断在夹具内。
可通过延长补料时间降低成型收缩率避免制品产生缩壁 ,需要很长时间对制品进行保压。
浇注系统及冷却系统应缓慢散热,并注意控制成型温度。
-
小结
• LDPE的加入对PP加工流动性影响较小 • PP和LDPE在高温时均有氧化倾向,但PP比
LDPE更容易发生
-
PP与PP/LDPE共混试样的检测
LDPE加入主要为了提高PP的韧性,相应的如冲击强度, 拉伸强度,弯曲强度等,我们小组主要对拉伸强度,熔体 流动速率进行了探究与试验。为了进一步认识PP与PP / LDPE共混体,我们最后还做了燃烧试验。
-
PP用LDPE增韧的原因
• PP作为一种通用塑料,力学性能良好,价格低廉但其对 缺口敏感,缺口冲击强度较低,为此,我们需要对PP进 行增韧。
• 而LDPE分子链柔顺,柔韧性好。
• 两者溶解参数相近,极性相似,若将PP与PE共混合金化 可使PP达到增韧的效果。目前,PE增韧PP,是最常用、 最经济,也是最成功的共混增韧体系
2. PP熔体的粘度随剪切速率的增大而降低。
3.保压时间长,制品的收缩率低,但由于凝封压力增加,制品会 产生内应力,故保压时间不能太长。
4.塑料壁厚须均匀,避免缺胶,尖角,以防应力集中。
5.收缩范围及收缩值大,易发生缩孔.凹痕,变形。
-
建议:
提高注射压力和注射速度会提高其流动性,改善收缩变 形和凹陷。
-
PP与PP/LDPE共混试样外观检测
现象:
1) PP 制品比PP/LDPE制品更黄
2)PP/LDPE制品中的缩孔(气泡)比PP成型制品的少 (气泡呈线性分布且聚中在制品较厚较窄区域)
原因分析:
1)PP在成型加工时易产生高温氧老化,制品稍显浅黄,是 老化的结果。
2)缩孔的产生:制品高结晶,成型收缩率大,可加长补料 时间解决
1)PP增韧配方
2)PP用LDPE增韧的原因
3)LDPE对PP增韧的原理
二、PP与PP/LDPE共混试样的制备
1)料的称量与干燥
2)物料的混合
3)物料的注塑成型
三、PP与PP/LDPE共混试样的检测
1)试样外观检测
2)流变性检测
3)拉伸强度检测
4)燃烧实验
-
PP增韧改性配方
• PP:850g • LDPE:150g
-
物料的混合
• 设备:高混机 在高速混合机中混合到100-115℃排料,冷混到 40℃排料待用。采用蒸汽加热,混合8-10分钟左 右,温度达到130℃左右,即可出料。
-
物料的注塑成型
成型设备:SM-120注塑 机
工艺参数:
210 209 204 185 一段 二段 三段 四段 210 210 205 185 +40 +40 +40 +45 -45 -45 -35 -35
PE
结论:LDPE的加入对PP的熔体黏度、流动性影响不大
-
试验现象及其分析:
• 切出的样条有少许气泡 分析:加料时间过长 加料时没有将物料捣紧其中有空气
• 有少量样条呈团状 分析:用于切料的刀片过钝 物料流动性太好,设定的温度过高
-
PP与PP/LDPE共混拉伸强度检测
仪器:电子万能试验机、游标卡尺 试样:PP样4个
-
试验流程:
称取试样 调温 机器预热 投料
称量
计算
出料
MFR计算公式 : 600W/t
单位:g/min
m——切取样条质量的算术平均值 t——切取时间间隔
-
实验数据统计:
试样数 总量

(g )Βιβλιοθήκη (个)单量 (g )MFR
(g/10mi n)
PP
7
1.2
0.1714 3.4
PP/LD 6
1
0.1667 3.33
• ⑤试样断裂在中间平行部分之外时,应另取试样补做。
-
储料
熔胶|抽胶|冷却设定
压力 背压 流量 位置
前抽 40 ** 15 20
熔一 80 1 55 75
冷却时间:23s
熔二
后抽
80
52
1
**
55
48
100
102
锁模
压力 流量
慢速
60 55
快速
70 60
低压
15 33
-
高压
120 55
PP加工时易出现的问题:
1. 吸湿性小,易发生融体破裂,容易高温热氧老化,长期与热金属 接触易分解。
3)气泡的产生:①物料干燥不够;②模具设计不好,排气 受阻;③温度过高,导致分解所产生。
-
PP与PP/LDPE共混流变性检测
仪器
物(混)料 切出样条规 温度设 切样时




熔体流动速率仪 (砝码:21.18g ) 、电子秤、天 平
5g
长1~2.5cm 230℃ 30s
-
试验注意事项:
• 试验前需对物料进行干燥将所用仪器、容器进行洁净 • 加料需在一分钟内完成并用压料杆压紧物料 • 样条要求:无气泡,不发黄,无杂质,外观良好 • 样条冷却后,分别称量(精确至0.1mg)。若所切样条中的 重量最大值和最小值超过其平均值10%,试验必须重做。
相关文档
最新文档