机械优化设计习题参考答案
机械优化设计课后习题答案

机械优化设计课后习题答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章习题答案1-1 某厂每日(8h 制)产量不低于1800件。
计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/h ,正确率为98%,计时工资为4元/h ;二级检验员标准为:速度为15件/h ,正确率为95%,计时工资3元/h 。
检验员每错检一件,工厂损失2元。
现有可供聘请检验人数为:一级8人和二级10人。
为使总检验费用最省,该厂应聘请一级、二级检验员各多少人 解:(1)确定设计变量;根据该优化问题给定的条件与要求,取设计变量为X = ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡二级检验员一级检验员21x x ;(2)建立数学模型的目标函数;取检验费用为目标函数,即:f (X ) = 8*4*x 1+ 8*3*x 2 + 2(8*25* +8*15* ) =40x 1+ 36x 2(3)本问题的最优化设计数学模型:min f (X ) = 40x 1+ 36x 2 X ∈R 3·. g 1(X ) =1800-8*25x 1+8*15x 2≤0g 2(X ) =x 1 -8≤0 g 3(X ) =x 2-10≤0g 4(X ) = -x 1 ≤0 g 5(X ) = -x 2 ≤01-2 已知一拉伸弹簧受拉力F ,剪切弹性模量G ,材料重度r ,许用剪切应力[]τ,许用最大变形量[]λ。
欲选择一组设计变量T T n D dx x x ][][2321==X 使弹簧重量最轻,同时满足下列限制条件:弹簧圈数3n ≥,簧丝直径0.5d ≥,弹簧中径21050D ≤≤。
试建立该优化问题的数学模型。
注:弹簧的应力与变形计算公式如下322234881,1,(2n s s F D FD D k k c d c d Gd τλπ==+==旋绕比), 解: (1)确定设计变量;根据该优化问题给定的条件与要求,取设计变量为X = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n D d x x x 2321; (2)建立数学模型的目标函数;取弹簧重量为目标函数,即:f (X ) =322124x x rx π(3)本问题的最优化设计数学模型:min f (X ) =322124x x rx π X ∈R 3·. g 1(X ) = ≤0g 2(X ) =10-x 2 ≤0 g 3(X ) =x 2-50 ≤0 g 4(X ) =3-x 3 ≤0 g 5(X ) =[]τπ-+312218)21(x Fx x x ≤0 g 6(X ) =[]λ-413328Gx x Fx ≤01-3 某厂生产一个容积为8000 cm 3的平底、无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型。
机械优化设计试题及答案

机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。
2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。
#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。
如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。
2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。
若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。
#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。
(完整版)机械优化设计习题参考答案孙靖民第四版机械优化设计

2.黄金分割法(0.618法)
原理:提高搜索效率:1)每次只插一个值,利用一个前次的插值;2)每次的缩短率λ相同。左右对称。
程序:p52
(四)插值方法
1.抛物线法
原理:任意插3点:
算得: ; ;
要求:
设函数 用经过3点的抛物线 代替,有
解线代数方程
解得:
程序框图p57
网格法 ,缩小区间,继续搜索。
Monte Carlo方法 , ,随机数。
比较各次得到的 得解
遗传算法(专题)
(二)区间消去法(凸函数)
1.搜索区间的确定:高—低--高( )则区间内有极值。
2.区间消去法原理:在区间[a, b]内插两个点a1, b1保留有极值点区间,消去多余区间。
缩短率:
(三)0.618法
可行方向—约束允许的、函数减小的方向。(图)约束边界的切线与函数等高线的切线方向形成的区域。
数学模型
用内点法或混合法,取 ,
直接方法
(一)随机方向法
1.在可行域产生一个初始点 ,因 (约束),则
--(0,1)的随机数。
2.找k个随机方向,每个方向有n个方向余弦,要产生kn个随机数 , , ,随机方向的单位向量为
3.取一试验步长 ,计算每个方向的最优点
4.找出可行域中的最好点 得搜索方向 。以 为起点, 为搜索方向得 。最优点必须在可行域内或边界上,为此要逐步增加步长。
得
穷举下去得递推公式
3.算例
p73
4.框图p72
5.特点
作业:1. 2.
(六)变尺度法
1.引言
坐标变换
二次函数
令 为尺度变换矩阵
《机械优化设计》试卷习题及答案

精选文档你我共享《机械优化设计》复习题及答案一、填空题、用最速降落法求22212的最优解时,设X(0)=[-0.5,0.5]T,第一1)+(1-x)1f(X)=100(x-x步迭代的搜寻方向为[-47;-50]。
2、机械优化设计采纳数学规划法,其中心一是成立搜寻方向二是计算最正确步长因子。
3、当优化问题是__凸规划______的状况下,任何局部最优解就是全域最优解。
4、应用进退法来确立搜寻区间时,最后获取的三点,即为搜寻区间的始点、中间点和终点,它们的函数值形成高-低-高趋向。
5、包括n个设计变量的优化问题,称为n维优化问题。
、函数1X THX BTX C的梯度为HX+B。
627、设G为n×n对称正定矩阵,若n维空间中有两个非零向量0,d1,知足(d0T1,d)Gd=0则d0、d1之间存在_共轭_____关系。
8、设计变量、拘束条件、目标函数是优化设计问题数学模型的基本因素。
9、对于无拘束二元函数f(x1,x2),若在x0(x10,x20)点处获得极小值,其必需条件是梯度为零,充足条件是海塞矩阵正定。
10、库恩-塔克条件能够表达为在极值点处目标函数的梯度为起作用的各拘束函数梯度的非负线性组合。
11、用黄金切割法求一元函数f(x)x210x36的极小点,初始搜寻区间[a,b][10,10],经第一次区间消去后获取的新区间为[-2.36,2.36]。
12、优化设计问题的数学模型的基本因素有设计变量、拘束条件目标函数、13、牛顿法的搜寻方向d k=,其计算量大,且要求初始点在极小点迫近位置。
14、将函数f(X)=x222-10x1-4x2+60表示成1XTHXTX C的形1+x2-x1x2B式。
15、存在矩阵H,向量d,向量d,当知足(d1)TGd2=0,向量d和向量d1212是对于H共轭。
16、采纳外点法求解拘束优化问题时,将拘束优化问题转变为外点形式时引入的处罚因子r数列,拥有由小到大趋于无量特色。
《机械优化设计》试题及答案解析

《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(X2- X12) 2+(1- x i) 2的最优解时,设X(°)=[-0.5,0.5]T,第一步迭代的搜索方向为卜47;-50] ______________ 。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子 ________ 。
3、当优化问题是—凸规划______ 的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高___________ 趋势。
5、包含n个设计变量的优化问题,称为__n _______ 维优化问题。
16、函数—X T HX B T X C的梯度为HX+B 。
27、设G为n>n对称正定矩阵,若n维空间中有两个非零向量d°, d1,满足(d°)T Gd—=0, 则d0、d1之间存在—共轭 ______ ■关系。
8、设计变量、约束条件______________ 、目标函数________________ 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数f(X1,X2),若在X°(X10,X20)点处取得极小值,其必要条件是_梯度为零,充分条件是海塞矩阵正定 ______________ 。
10、 ________________ 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数f (xHx2 -10x 36的极小点,初始搜索区间[a,b] =[-10,10],经第一次区间消去后得到的新区间为[-2.36236] 。
12、优化设计问题的数学模型的基本要素有设_________ 、13、牛顿法的搜索方向d k= ______ ,其计算量大,且要求初始点在极小点逼近位置。
14、将函数f(X)=x 12+X22-X1X2-10X1-4X2+60表示成-X T HX - B T X C 的形2式 ________________________ 。
机械优化设计试题及答案

计算题1.试用牛顿法求()221285f X x x =+的最优解,设()[]01010TX =。
初始点为()[]01010TX =,则初始点处的函数值和梯度分别为()()0120121700164200410140f X x x f X x x =+⎡⎤⎡⎤∇==⎢⎥⎢⎥+⎣⎦⎣⎦,沿梯度方向进行一维搜索,有()010000010200102001014010140X X f X αααα-⎡⎤⎡⎤⎡⎤=-∇=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦0α为一维搜索最佳步长,应满足极值必要条件()()[]()()()(){}()αϕααααααααm i n 14010514010200104200108min min 200020001=-⨯+-⨯-⨯+-⨯=∇-=X f X f X f()001060000596000ϕαα'=-=, 从而算出一维搜索最佳步长 0596000.05622641060000α==则第一次迭代设计点位置和函数值01010200 1.245283010140 2.1283019X αα--⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦ ()124.4528302f X =,从而完成第一次迭代。
按上面的过程依次进行下去,便可求得最优解。
2、试用黄金分割法求函数()20f ααα=+的极小点和极小值,设搜索区间[][],0.2,1a b =(迭代一次即可)解:显然此时,搜索区间[][],0.2,1a b =,首先插入两点12αα和,由式 ()1()10.61810.20.5056b b a αλ=--=--= ()2()0.20.6181.20.6944a b a αλ=+-=+⨯-=计算相应插入点的函数值()()4962.29,0626.4021==ααf f 。
因为()()12f f αα>。
所以消去区间[]1,a α,得到新的搜索区间[]1,b α, 即[][][]1,,0.5056,1b a b α==。
《机械优化设计》习题及答案1word版本

机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。
答:优化问题的数学模型是实际优化设计问题的数学抽象。
在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。
求设计变量向量[]12Tn x x x x =L 使 ()min f x → 且满足约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂+∂∂=∂∂2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂∂=∇21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。
(1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。
(2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。
梯度)0(x f ∇方向为函数变化率最大方向,也就是最速上升方向。
负梯度-)0(x f ∇方向为函数变化率最小方向,即最速下降方向。
2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最大的方向和数值。
解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p表示,函数变化率最大和数值时梯度的模)0(x f ∇。
求f (x1,x2)在x0点处的梯度方向和数值,计算如下:()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂=∇120122214210x x x x f x f x f 2221)0(⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇x f x f x f =5⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇∇=5152512)0()0(x f x f p ϖ2-3.试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。
《机械优化设计》试卷及答案,DOC

《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(x 2-x 12)2+(1-x 1)2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50]。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子。
3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。
4567,则89点处取得极小值,其必要条件是梯1011间121314121212++215、存在矩阵H ,向量d 1,向量d 2,当满足(d1)TGd2=0,向量d 1和向量d 2是关于H 共轭。
16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有由小到大趋于无穷特点。
17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求。
二、选择题1、下面方法需要求海赛矩阵。
A、最速下降法B、共轭梯度法C、牛顿型法D、DFP法2、对于约束问题),1D[a,b]15、_________不是优化设计问题数学模型的基本要素。
A设计变量B约束条件C目标函数D最佳步长6、变尺度法的迭代公式为x k+1=x k -αk H k ▽f(x k ),下列不属于H k 必须满足的条件的是________。
A.H k 之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(X f 在某点的梯度方向为函数在该点的。
10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,假设要求在区间[a ,b]插入两点α1、α2,且α1<α2。
A 、其缩短率为0.618B 、α1=b-λ(b-a )C 、α1=a+λ(b-a )D 、在该方法中缩短搜索区间采用的是外推法。
11、与梯度成锐角的方向为函数值上升方向,与负梯度成锐角的方向为函数值下降方向,与梯度成直角的方向为函数值不变方向。
A、上升B、下降C、不变D、为零12、二维目标函数的无约束极小点就是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章习题解答.已知约束优化问题:122)(x?(x?2)1?xminf()?2120??xtg(x)?xs???T)(k2?1x?-0.254)区间的随机数0.562和出发,沿由(-1 1 试从第k次的2110?2?x)?x?xg(212迭代点)k?1(x。
并作图画出目标函数所确定的方向进行搜索,完成一次迭代,获取一个新的迭代点的等值线、可行域和本次迭代的搜索路线。
解] 1)确定本次迭代的随机方向:[T??0.2540.562??T0.412S???0.911??R2222??0.254?0.254?0.5620.562??(1)k)?(k?Sx?x?计算新的迭代点。
步长α用公式:2)取为搜索到约束边界R上的最大步长。
到第二个约束边界上的步长可取为2,则:k?1k?S??1?2?0?x.?911?0.x82211R1k?k?x)?1.176412(2?x?S??2??0.222R0.822??1?k?X即:??1.176??该约束优化问题的目标函数的等值线、可行域和本次迭代的搜索路线如下图所示。
2.已知约束优化问题:2minf(x)?4x?x?122122?x?25?0sg(x)?x?t2110??x?g(x)120??x?g(x)23??????TTT000312x,x?13?4,x?为复合形的初始顶点,用复合形法进行试以213两次迭代计算。
[解] 1)计算初始复合形顶点的目标函数值,并判断各顶点是否为可行点:??00??5x??f2111??00?f13x??422??00????xf3393300为最坏点。
x为最好点,x经判断,各顶点均为可行点,其中,230x后的复合形的中心点:2)计算去掉最坏点?00????xx?????????????ic32132L??????????1i?2?i1?x3.?1(取反233532.2??????????11射系数3)计算反射点)R2.540.552.5??????????1000?????)???(x1.3?x?xx??????????2cRc2213.3??????????11经判断x为可行点,其目标函数值f??20.69RR0010,xx和xx,由)去掉最坏点构成新的复合形,在新的复合形中4R12310x为最好点,x为最坏点,进行新的一轮迭代。
1R 5)计算新的复合形中,去掉最坏点后的中心点得:30.551.775????????11????x?????????c33.33.152????????6)计算新一轮迭代的反射点得:1.77521.48251.775??????????2110???)??1.3???x?(x?xx??????????1cRc3.155.9453.151 ??????????21经判断x为可行点,其目标函数值f??41.413,完成第二次迭代。
RR ??T xx?x度的梯的适时约束点,并已的3.设已知在二维空间中点知该21????TT50?f?g???1?11.?,目标函数的梯度,试用简化方法确定一个适用的可行方向。
kkk计算适用的可行方向:)?f(xP?f(x)/Pd??按公式6-32 [解]??Tkk1?0.?f(x)?5x点的目标函数梯度为:k x Jn? J=1:点处起作用约束的梯度G 为一个阶的矩阵,题中:n=2,??Tk1?(x1)???G?g1P为:梯度投影矩阵??????????1?????TT???01?1?G??GP?I?GG1?11?50.0?1.5??101????????????50.0??0111.5???????????则:适用可行方向为:0.5?0.5?0.50.5?0.5?0.5?0.707??????????k??d???????????707.10.5?0.5010.5?0.5??????????4.已知约束优化问题:43)(22xx)?xminf(x)?(x?x?43121230?x?g?s?t??Tk1/2?x1/40点的梯度投影方向。
试求在kkk计算适用的可行方向:110?x?g?220?x?g?33x)/P?f?d?P?f(x()按公式6-32 [解]??Tkk1?1250.f?(x)?25?0.x点的目标函数梯度为:k x J?n:,J=1 点处起作用约束的梯度G为一个阶的矩阵,题中:n=3??Tk0?1??g(x0)?G1为:梯度投影矩阵P1?0001?1100???????????????????????1?????TT0100000?1?1??0G?PI?G1G000G?????????????????????10010000??????????则:适用可行方向为:000?0.1250000?0.125????????????????????k0.25125.?2430.00?d?0100 ????????????????????11?100100?97.0??????????5.用内点法求下列问题的最优解:221?x?2f(x)?xx?min121t?x?0sg?3?212????))?rxln(g(x,r)?f(x,然后用解析法求解。
)(提示:可构造惩罚函数u1u? [解] 构造内点惩罚函数:2???22?)x?rln(3??x?x?2x?x(x,r)?f()?r1ln(gx)2u2111?u x的极值等于零:令惩罚函数对2?2x???d10????)3?x(2x??r)/(dx??221?x1得:r?86?36x?246?36?8r?x舍去负根后,得24??T3为解最题该3?时,?0x,问的优rx?1。
当26.用外点法求下列问题的最优解:minf(x)?x?x212?x?g?x0ts?211g??x?012[解] 将上述问题按规定写成如下的数学模型:subroutine ffx(n,x,fx)dimension x(n)fx=x(1)+x(2)endsubroutine ggx(n,kg,x,gx)dimension x(n),gx(kg)gx(1)=x(1)*x(1)-x(2)gx(2)=-x(1)endsubroutine hhx(n,kh,x,hx)domension x(n),hx(kh)hx(1)=0.0end然后,利用惩罚函数法计算,即可得到如下的最优解:============== PRIMARY DATA ==============N= 2 KG= 2 KH= 0X : .1000000E+01 .2000000E+01GX: -.1000000E+01 -.1000000E+01X : .1000000E+01 .2000000E+01FX: .3000000E+01GX: -.1000000E+01 -.1000000E+01PEN = .5000000E+01R = .1000000E+01 C = .2000000E+00 T0= .1000000E-01EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ==============IRC= 21 ITE= 54 ILI= 117 NPE= 3759 NFX= 0 NGR= 0R= .1048577E-13 PEN= .4229850E-06X : .9493056E-07 .7203758E-07FX: .1669681E-06GX: -.7203757E-07 -.9493056E-077.用混合惩罚函数法求下列问题的最优解:minf(x)?x?x12s?tg(x)??lnx?0110???x1xh()?x221将上述问题按规定写成如下的数学模型:[解]subroutine ffx(n,x,fx)dimension x(n)fx=x(2)-x(1)endsubroutine ggx(n,kg,x,gx)dimension x(n),gx(kg)gx(1)=-log(x(1))]gx(2)=-x(1)gx(3)=-x(2)endsubroutine hhx(n,kh,x,hx)domension x(n),hx(kh)hx(1)=x(1)+x(2)-1end然后,利用惩罚函数法计算,即可得到如下的最优解:============== PRIMARY DATA ==============N= 2 KG= 3 KH= 1X : .2000000E+01 .1000000E+01FX: -.1000000E+01GX: -.6931472E+00 -.2000000E+01 -.1000000E+01X : .2000000E+01 .1000000E+01GX: -.6931472E+00 -.2000000E+01 -.1000000E+01HX: .2000000E+01PEN = .5942695E+01R = .1000000E+01 C = .4000000E+00 T0= .1000000E-01 EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ==============IRC= 29 ITE= 143 ILI= 143 NPE= 1190 NFX= 0 NGR= 172 R= .7205765E-11 PEN= -.9999720E+00X : .1000006E+01 .3777877E-05FX: -.1000012E+01GX: -.5960447E-05 -.1000006E+01 .6222123E-05HX: -.2616589E-06。